VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

Koko: px
Aloita esitys sivulta:

Download "VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen"

Transkriptio

1 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen tarvitaan asi tai useampia oordinaatteja. Koordinaatteina voidaan äyttää seä translaatioita että rotaatioita. Vapausasteiden luumäärä taroittaa niiden toisistaan riippumattomien oordinaattien luumäärää, jota tarvitaan systeemin liietilan uvaamiseen mielivaltaisella ajan hetellä. Usean vapausasteen dynaamisen systeemin äyttäytymisen analysointi edellyttää sen liieyhtälöiden tuntemista. Liieyhtälöihin sisältyvät systeemin massa-, vaimennus- ja jäyyysominaisuudet seä uloiset uormituset. Jos liieyhtälöissä ei ole uormitustermejä, yseessä ovat ominaisvärähtelyn liieyhtälöt. Ominaisvärähtely on systeemin vapaata värähtelyä ilman uloisten uormitusten vaiutusta ja se riippuu vain systeemin massa-, vaimennus- ja jäyyysominaisuusista seä aluehdoista. Ominaisvärähtelyn liieyhtälöistä selviävät systeemin ominaisulmataajuudet ja ominaismuodot. Jos vapausasteiden luumäärä on n, on ominaisulmataajuusia n pl. Kutain niistä vastaa systeemin värähtelytapa, jota utsutaan ominaismuodosi. Kun usean vapausasteen systeemiin vaiuttaa uloisia uormitusia, sanotaan sillä olevan paotettu liietila. Ysinertaisin uormitus on tietyllä taajuudella vaihteleva harmoninen uormitus, jolloin syntyvä pysyvä liie on harmonista paovärähtelyä ja tapahtuu herätteen taajuudella. Tavallinen uormitustapaus sovellusissa on myös jasollinen eli säännöllisin väliajoin samanlaisena toistuva uormitus. Lyhytestoisista tai äillistä uormitusista eli transienttiuormitusista taas aiheutuu systeemiin lyhytestoisia värähtelyitä masimiamplitudin ollessa vastaavaa staattista siirtymää suurempi. Erityyppiset itavaiutuset aiheuttavat systeemiin vaimennusta, joa pienentää värähtelyjen amplitudia ja transienttiuormitusien aiheuttamia masimi siirtymiä. Vaimennusen analyyttinen äsittely on usean vapausasteen systeemeissä hanalaa johtuen vaimennusilmiön mutiaasta luonteesta. Vaimennusen äsittelyssä tyydytäänin useimmiten melo ysinertaisten vaimennusmallien äyttöön. Liieyhtälöiden johtamiseen äytetään pääasiassa ahta menetelmää, joista toisessa turvaudutaan suoraan Newtonin liieyhtälöihin ja toinen perustuu energiaperiaatteen äyttöön. Tässä sessiossa tarastellaan näistä ensimmäistä menetelmää.

2 9/ NEWTONIN LAKIEN KÄYTTÖ Usean vapausasteen systeemin liieyhtälöt voidaan aina johtaa äyttämällä suoraan Newtonin laeja niiden perusmuodossa. Tämä meritsee sitä, että tarasteltavan systeemin osista laaditaan sopiva määrä vapaaappaleuvia, joista sitten irjoitetaan tarpeellinen määrä voima- ja momenttiliieyhtälöitä ja lopusi yhtälöt sievennetään ja järjestetään valittujen oordinaattien muaisesti yhtälöryhmäsi. Liieyhtälöryhmässä tulee olla systeemin vapausasteiden luumäärän osoittama määrä yhtälöitä. Lineaarisen systeemin liieyhtälöryhmässä on vain oordinaattien ja niiden aiaderivaattojen (nopeudet ja iihtyvyydet) ensimmäisen asteen lauseeita. Epälineaarisen systeemin liieyhtälöt sisältävät oordinaattien ja/tai niiden aiaderivaattojen epälineaarisia termejä, jolloin liieyhtälöryhmän rataiseminen on oleellisesti hanalampaa. Tässä tarastellaan vain lineaarisia systeemejä. Seuraavassa esitetään esimerejä usean vapausasteen systeemin liieyhtälöiden irjoittamisesta Newtonin laeja äyttäen, un vapausasteita on vain muutamia. ESIMERKKI VMS9E Tarastellaan alusi uvan (a) muaista olmen vapausasteen jousi-massa systeemiä, jona massoihin vaiuttavat voimat F (t), F (t) ja F (t). Systeemin tilaa uvaavisi oordinaateisi on valittu massojen (a) asemat, ja, jota on mitattu systeemin staattisesta tasa- F F F painoasemasta lähtien. Kuvassa m m m (b) on massojen vapaaappaleuvat, joista voidaan irjoittaa ullein massalle vaaasuunnassa Newtonin lain muainen liieyhtälö. Tulosesi saadaan seuraava f F f f F f f F (b) liieyhtälöryhmä m m Jousivoimien lauseeet ovat f = ( ) f = ( ) f = ( ) F + f Sijoittamalla jousivoimat liieyhtälöihin ja järjestelemällä termejä seuraa m & & & & Kuva. Kolmen vapausasteen systeemi ilman vaimennusta. & & F F + f f f = m && f = m && = m && m m m && && && + ( + ) + ( + + ) = F (t) = F (t) = F (t)

3 9/ jota ovat systeemin liieyhtälöt. Tarasteltavana on olmen vapausasteen systeemi, jolloin liieyhtälöisi tuli olmen tavallisen differentiaaliyhtälön muodostama yhtälöryhmä. Siinä esiintyy tuntemattomien siirtymien, ja ertaluvun nolla ja asi aiaderivaattoja ensimmäisessä potenssissa, joten yseessä on toisen ertaluvun lineaarinen differentiaaliyhtälöryhmä. Kirjoittamalla liieyhtälöryhmä matriisimuotoon saadaan m m && && m && F (t) = F (t) F (t) () tai lyhyemmin irjoitettuna [ M ]{ & } + [ K]{ } = { F(t) } & () Matriisi [ M ] on systeemin massamatriisi, [ K ] sen jäyyysmatriisi, { & } { } siirtymävetori ja { (t)} & iihtyvyysvetori F uormitusvetori. Saaduista liieyhtälöistä nähdään, että tarasteltavan systeemin massamatriisi on lävistäjämatriisi, mutta jäyyysmatriisin lävistäjän ulopuoliset aliot eivät aii ole nollia. Tästä seuraa, että ryhmän () yhtälöt ovat ytettyjä ja rataistavana on siis differentiaaliyhtälöryhmä. ESIMERKKI VMS9E Toisena esimerinä tarastellaan uvan (a) muaista ahden vapausasteen systeemiä, jossa uormitusena on alustan vaaasuuntainen liie tunnetun funtion u(t) muaisesti. u(t) Koordinaatit ja ilmaisevat massojen absoluuttiset asemat vaaasuunnassa. Määritellään suhteelliset oordinaatit z ja (a) z yhtälöillä m m (b) f f f d m d d m & & & & Kuva. Kahden vapausasteen vaimennettu systeemi z = u ja z = jolloin ne ilmaisevat massojen asemat alustaan nähden. Vapaaappaleuvista (b) saadaan liieyhtälöt f f d d + f + d = m && = m = m u && = m (&& z (&& z + u) && + u) && Jousi- ja vaimennusvoimille voidaan irjoittaa seuraavat lauseeet f = ( u) = z f = ( ) = ( z z ) = ( & u) & = z& d = ( & & ) = ( z& z ) d &

4 9/4 Edellä olevista tulosista seuraa liieyhtälöt m m && z + z& + z && z + ( z& z& ) + jota voidaan laittaa matriisimuotoon ( z& z& ) ( z z ( z z ) = m ) = m m m && z && z + + z& z& + + z z m = m () eli tiiviimmin irjoitettuna [ M]{ z& } + [ C]{ z& } + [ K] { z} = { F (t)} & (4) & ovat suhteellinen iihtyvyys-, nopeus- ja siirtymävetori seä C vaimennusmatriisi. Suhteellisten oordinaattien äytön taia alustan liieestä aiheu- F a esiintyy vain iihtyvyys u& &, miä on helpompi mitata Yhtälössä (4) { z &}, { z& } ja { z} [ ] tuvassa uormitusvetorissa { (t)} a uin asema u tai nopeus u&. g B a θ M I u(t) / B K / / m / (a) (t) f (b) MA N A y A & & f mg d d () M A & θ θ & y& A y A Mg & Kuva. Raennusen lasentamalli. ESIMERKKI VMS9E Tarastellaan olmantena esimerinä uvan (a) muaista lasentamallia, jolla voidaan tutia esimerisi alustan tunnetusta liieestä u(t) johtuvaa raennusen värähtelyä. Lasentamallissa raennusta on uvattu jäyällä appaleella B ja sen perustusta partielilla B. Koordinaateisi valitaan perustusen absoluuttinen asema ja raennusen ulmaasema θ, jolloin siis yseessä on ahden vapausasteen lasentamalli. Rajoitutaan lisäsi

5 9/5 pieniin värähtelyihin. Perustusen vapaaappaleuvasta (b) saadaan seuraava vaaasuuntainen liieyhtälö = m& f d + A Perustusen pystysuuntaista liieyhtälöä ei jatossa tarvita. Raennusen vapaaappaleuvasta () saadaan seuraavat olme liieyhtälöä A = M& A Mg = M& y! : M + A asinθ + A aosθ = I & θ y A y Jousi- ja vaimennusvoimille voidaan irjoittaa lauseeet f = ( u) d = ( & u) MA = K θ & Kosa ulma θ on pieni, voidaan äyttää approsimaatioita sinθ θ ja osθ. Massaesiön asemaoordinaatit ja y voidaan lausua oordinaattien ja θ avulla = + a sinθ + aθ y = a osθ a & = && + a&& θ & y = Ottamalla edellä esitetyt tuloset huomioon perustusen liieyhtälössä ja raennusen momenttiliieyhtälössä saadaan liieyhtälöpari ( u) ( & u) & M( && + a&& θ ) = m&& Kθ + Mgaθ M( && + a&& θ )a = I && θ eli matriisimuodossa M + m Ma I Ma + Ma && && θ + & θ& + u& + u = K Mga θ (5) tai lyhyemmin irjoitettuna [ M]{ y& } + [ C]{ y& } + [ K] { y} = { F (t) } & (6) a Alustan liie näyy liieyhtälössä (5) oiealla puolella olevana uormitusvetorina.

6 9/6 HARJOITUS VMS9H 5 F F m m F m Johda uvan muaisen olmen vapausasteen systeemin liieyhtälöt Newtonin laia äyttäen ja esitä tulos matriisimuodossa. Koordinaateisi valitaan massojen asemat, ja, jota mitataan systeemin staattisesta tasapainoasemasta, jolloin jousissa ei ole pituudenmuutosia. m Vast. [ M ] = m [ K] = { F} Vihjeet: m F = F F HARJOITUS VMS9H L L/ 5L/ m θ F F 5m F Johda uvan muaisen olmen vapausasteen systeemin liieyhtälöt Newtonin laia äyttäen ja esitä tulos matriisimuodossa. Koordinaateisi valitaan palin massaesiön asema pystysuunnassa ja rotaatioulma θ seä pistemassan 5 m asema pystysuunnassa. Koordinaatit mitataan systeemin staattisesta tasapainoasemasta, jolloin jousien staattisia muodonmuutosia vastaavat voimat umoavat liieyhtälöissä painovoimien vaiutuset. Pali on tasapasu ja homogeeninen. Vast. [ ] M = m 5L / 6 [ C] L / [ ] K = L / 7L / L / { F} L / 5 = L / L / L / 4 L / F + F = 5L(F F F L / )/ Vihjeet:

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi 02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen / ÄRÄHELYMEKANIIKKA SESSIO : Usean vapausasteen systeein liieyhtälöien johto Lagrangen yhtälöillä JOHDANO Kirjoitettaessa liieyhtälöitä suoraan Newtonin laeista äytetään systeeistä irrotettujen osien tai

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 06: Aksiaalinen sauvaelementti, osa 1.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 06: Aksiaalinen sauvaelementti, osa 1. 6/ ELEMENTTIMENETELMÄN PERSTEET SESSIO 6: Asiaalinen sauvaelementti, osa. ASIAALINEN RAENNE L, A, E L, A, E L, A, E uva. Asiaalinen raenne. Asiaalinen raenne taroittaa tässä yhteydessä raennetta, joa oostuu

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

Palkkielementti hum 3.10.13

Palkkielementti hum 3.10.13 Palilmntti hum.0. Palilmnttjä Tarastllaan tässä sitysssä vain Eulr-Brnoullin palitoriaan prustuvia palilmnttjä. Tässä palitoriassa olttaan, ttä palin poiiliaus säilyy taivutttunain tasona, joa on ohtisuorassa

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

RATKAISUT: 21. Induktio

RATKAISUT: 21. Induktio Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön

Lisätiedot

1 JOHDANTO. 1.1 Yleistä värähtelyistä. 1.2 Värähtelyyn liittyviä peruskäsitteitä

1 JOHDANTO. 1.1 Yleistä värähtelyistä. 1.2 Värähtelyyn liittyviä peruskäsitteitä Värähtelymekaniikka 1.1 1 JOHDANTO 1.1 Yleistä värähtelyistä Värähtely on yleinen luonnonilmiö, joka esiintyy myös monissa inhimillisissä toiminnoissa. Esimerkiksi kuuloaistimus perustuu tärykalvojen värähtelyyn

Lisätiedot

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15 SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali 7/ VÄRÄHTELYMEKANIIKKA SESSIO 7: Yhn vapausasn paovärähly, impulssiuormius ja Duhamlin ingraali IMPULSSIKUORMITUS Maanisn sysmiin ohisuva jasoon hrä on usin ajasa riippuva lyhyaiainn uormius. Ysinraisin

Lisätiedot

Naulalevylausunto Kartro PTN naulalevylle

Naulalevylausunto Kartro PTN naulalevylle LAUSUNTO NRO VTT-S-04256-14 1 (6) Tilaaja Tilaus Yhteyshenilö ITW Construction Products Oy Jarmo Kytömäi Timmermalmintie 19A 01680 Vantaa 18.9.2014 Jarmo Kytömäi VTT Expert Services Oy Ari Kevarinmäi PL

Lisätiedot

APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPERUSTEET

APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPERUSTEET APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPEUSTEET Koooma 28.3.2006. Viimeisin perustemuutos on ahistettu 16.1.2003. APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄELÄKEVAKUUTUKSEN LASKU-

Lisätiedot

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa / DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa

Lisätiedot

HalliPES 1.0 OSA 14: VOIMALIITOKSET

HalliPES 1.0 OSA 14: VOIMALIITOKSET HalliPES 1.0 OSA 14: VOIMALIITOKSET 28.4.2015 1.0 JOHDANTO Tässä osassa esitetään primäärirungon voimaliitosia ja niien mitoitusohjeita. Voimaliitoset mitoitetaan tapausohtaisesti määräävän uormitusyhistelmän

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

M y. u w r zi. M x. F z. F x. M z. F y

M y. u w r zi. M x. F z. F x. M z. F y 36 5.3 Tuipaalutusen lasenta siitmämenetelmällä 5.3.1 Yleistä Jos paaluvoimia ei voida määittää suoaan tasapainohtälöistä (uten ohdassa 5.), on smsessä staattisesti määäämätön paalutus, jona paaluvoimien

Lisätiedot

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET 5 TLOUYRTTÄJÄN ELÄKELN UKEN VKUUTUKEN PERUTEET PERUTEDEN OVELTNEN Näitä perusteita soelletaan..009 lähtien maatalousrittäjän eläelain 80/006 YEL muaisiin auutusiin. VKUUTUKU Vauutusmasu uodelta on maatalousrittäjän

Lisätiedot

Naulalevylausunto LL13 Combi naulalevylle

Naulalevylausunto LL13 Combi naulalevylle LAUSUNTO NRO VTT-S-0361-1 1 (5) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 15100 Lahti 7.4.01 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 1001, 0044 VTT Puh. 00 7 5566, ax. 00 7 7003

Lisätiedot

K-KS vakuutussumma on kiinteä euromäärä

K-KS vakuutussumma on kiinteä euromäärä Kesinäinen Henivauutusyhtiö IIIELLA TEKNIIKALLA LAKUPERUTE H-TUTKINTOA ARTEN HENKIAKUUTU REKURIIIELLA TEKNIIKALLA OIMAAOLO 2 AIKALAKU JA AKUUTUIKÄ Tätä lasuperustetta sovelletaan..25 alaen myönnettäviin

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Harjoitustehtävät Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt Järjestelmien lineaarisuus: Järjestelmä on lineaarinen, jos T u u T u T u, jossa ja

Lisätiedot

Valon diffraktio yhdessä ja kahdessa raossa

Valon diffraktio yhdessä ja kahdessa raossa Jväslän Ammattioreaoulu, IT-instituutti IXPF24 Fsiia, Kevät 2005, 6 ECTS Opettaja Pasi Repo Valon diffratio hdessä ja ahdessa raossa Laatija - Pasi Vähämartti Vuosiurssi - IST4S1 Teopäivä 2005-2-17 Palautuspäivä

Lisätiedot

Jäykistävän seinän kestävyys

Jäykistävän seinän kestävyys Esimeri Jäyistävän seinän estävyys 1.0 Kuormitus Jäyistävän seinän ominaisuormat on esitetty alla olevassa uvassa. Laselman ysinertaistamisesi tarastellaan seinästä vain iuna-auon vasemman puoleista osaa,

Lisätiedot

Naulalevylausunto LL13 naulalevylle

Naulalevylausunto LL13 naulalevylle LAUSUNTO NRO VTT-S-3259-12 1 (4) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 151 Lahti 27.4.212 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 11, 244 VTT Puh. 2 722 5566, Fax. 2 722 73

Lisätiedot

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5. Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Luentomonisteen harjoitustehtävien vastauset Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt. Järjestelmien lineaarisuus: Järjestelmä on lineaarinen,

Lisätiedot

SIMULINK 5.0 Harjoitus. Matti Lähteenmäki 2004 www.tpu.fi/~mlahteen/

SIMULINK 5.0 Harjoitus. Matti Lähteenmäki 2004 www.tpu.fi/~mlahteen/ SIMULINK 5.0 Harjoitus 2004 www.tpu.fi/~mlahteen/ SIMULINK 5.0 Harjoitus 2 Harjoitustehtävä. Tarkastellaan kuvan mukaisen yhden vapausasteen jousi-massa-vaimennin systeemin vaakasuuntaista pakkovärähtelyä,

Lisätiedot

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan 3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely.

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. 1144/2011 7 Liite 1 Vauutustenisistä riseistä johtuvien suureiden lasemista varten äytettävä vauutuslajiryhmittely. Vauutuslajiryhmä Vauutusluoat Ensivauutus 1 Laisääteinen tapaturma 1 (laisääteinen) 2

Lisätiedot

ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV. Suomen Aktuaariyhdistyksen vuosikokousesitelmä

ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV. Suomen Aktuaariyhdistyksen vuosikokousesitelmä ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV Suomen Atuaariyhdistysen vuosioousesitelmä 27.2.2006 2 Sisällysluettelo: sivu 1. Tasoitusvastuujärjestelmän uvaus

Lisätiedot

HÄMEENLINNAN KESKUSTAN LÄNSIREUNAN KAUPPA- KESKUKSEN KAUPALLISTEN VAIKTUKSTEN ARVIOINTI Yleiskaavoitusta varten

HÄMEENLINNAN KESKUSTAN LÄNSIREUNAN KAUPPA- KESKUKSEN KAUPALLISTEN VAIKTUKSTEN ARVIOINTI Yleiskaavoitusta varten HÄMEENLNNAN KESKUSTAN LÄNSREUNAN KAUPPA- KESKUKSEN KAUPALLSTEN AKTUKSTEN ARONT Yleisaavoitusta varten Hämeenlinnan esustan liietilan ehitys 2005-2020 lineaarinen asvu n. 2 % /v. 160 000 140 000 120 000

Lisätiedot

Tilayhtälötekniikasta

Tilayhtälötekniikasta Tilayhtälötekniikasta Tilayhtälöesityksessä it ä useamman kertaluvun differentiaaliyhtälö esitetään ensimmäisen kertaluvun differentiaaliyhtälöryhmänä. Jokainen ensimmäisen kertaluvun differentiaaliyhtälö

Lisätiedot

YRITTÄJIEN ELÄKELAIN (YEL) MUKAISEN LISÄELÄKEVAKUUTUKSEN PERUSTEET. Kokooma 30.3.2006. Viimeisin perustemuutos vahvistettu 20.12.2004.

YRITTÄJIEN ELÄKELAIN (YEL) MUKAISEN LISÄELÄKEVAKUUTUKSEN PERUSTEET. Kokooma 30.3.2006. Viimeisin perustemuutos vahvistettu 20.12.2004. YITTÄJIN LÄKLAIN (YL) MUKAISN LISÄLÄKVAKUUTUKSN PUSTT Koooma 30.3.2006. Viimeisin perustemuutos vahvistettu 20.12.2004. SISÄLTÖ YITTÄJIN LÄKLAIN (YL) MUKAISN LISÄLÄKVAKUUTUKSN PUSTT 1. PUSTIDN SOVLTAMINN...

Lisätiedot

3 KEHÄRAKENTEET. 3.1 Yleistä kehärakenteista

3 KEHÄRAKENTEET. 3.1 Yleistä kehärakenteista Elementtimenetelmän peusteet. KEHÄRAKENTEET. leistä ehäaenteista Kehäaenteen osina oleat palit oiat ottaa astaan aiia annattimen asitusia, jota oat nomaali- ja leiausoima seä taiutus- ja ääntömomentti.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

AMBIGUITEETTIONGELMA KANTOAALLONVAIHEMITTAUKSESSA. JUKKA TOLONEN Teknillinen korkeakoulu Maanmittaustieteiden laitos jotolone@cc.hut.

AMBIGUITEETTIONGELMA KANTOAALLONVAIHEMITTAUKSESSA. JUKKA TOLONEN Teknillinen korkeakoulu Maanmittaustieteiden laitos jotolone@cc.hut. MIGUITEETTIONGELM KNTOLLONVIHEMITTUKSESS JUKK TOLONEN Tenillinen oreaoulu Maanmittaustieteiden laitos otolone@cc.hut.fi . Johdanto Satelliittipaiannus perustuu vastaanottimen a satelliittien välisen etäisyyden

Lisätiedot

RuuviliitoSTEN. Sisällysluettelo

RuuviliitoSTEN. Sisällysluettelo RuuviliitoSTEN MITOITUS Sisällysluettelo 1 Yleistä... 1.1 Kansiruuvit... 1. Itseporautuvat ruuvit... Esiporaus... 3 Materiaalit... 3 4 Kuormitustapa... 4 5 Leiausrasitettu ruuvi... 4 5.1 Itseporautuvat

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

Nurmijärven kunnan kaupan palveluverkkoselvitys 28.5.2012

Nurmijärven kunnan kaupan palveluverkkoselvitys 28.5.2012 aupan palveluveroselvitys 28.5.2012 aupan palveluveroselvitys 1 Sisällysluettelo 1 JOHDANTO 2 2 KAUPAN NYKYTILAN KARTOITUS JA KUVAUS 3 2.1 Vähittäisaupan toimipaiat ja myynti 3 2.2 Ostovoima ja ostovoiman

Lisätiedot

Tuomo Mäki-Marttunen Stokastiset ja tavalliset differentiaaliyhtälöt inertiapaikannuksessa

Tuomo Mäki-Marttunen Stokastiset ja tavalliset differentiaaliyhtälöt inertiapaikannuksessa TAMPEREEN TEKNILLINEN YLIOPISTO Luonnontieteiden ja ympäristöteniian tiedeunta Tuomo Mäi-Marttunen Stoastiset ja tavalliset differentiaaliyhtälöt inertiapaiannusessa Diplomityö Aihe hyväsytty tiedeuntaneuvostossa

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Nurmijärven kunnan kaupan palveluverkkoselvitys. Luonnos 11.5.2012

Nurmijärven kunnan kaupan palveluverkkoselvitys. Luonnos 11.5.2012 aupan palveluveroselvitys Luonnos 11.5.2012 aupan palveluveroselvitys 1 Sisällysluettelo 1 JOHDANTO 1 2 KAUPAN NYKYTILAN KARTOITUS JA KUVAUS 3 2.1 Vähittäisaupan toimipaiat ja myynti 3 2.2 Ostovoima ja

Lisätiedot

NAULALIITOSTEN MITOITUS

NAULALIITOSTEN MITOITUS NAULALIITOSTEN MITOITUS Sisällysluettelo 1 Yleistä... Esiporaus... 3 Materiaalit... 4 Kuormitustapa...3 5 Leiausrasitettu naula...4 5.1 Puutavara-puutavara -liitos...4 5. Kerto-Kerto -liitos...5 5.3 Kerto-Puutavara

Lisätiedot

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

Nimi: Muiden ryhmäläisten nimet:

Nimi: Muiden ryhmäläisten nimet: Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,

Lisätiedot

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3: Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,

Lisätiedot

Tilastolliset menetelmät: Varianssianalyysi

Tilastolliset menetelmät: Varianssianalyysi Variassiaalsi Tilastolliset meetelmät: Variassiaalsi 0. Ysisuutaie variassiaalsi. asisuutaie variassiaalsi. olmi a useampisuutaie variassiaalsi T @ Ila Melli (006) 433 Variassiaalsi T @ Ila Melli (006)

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2.

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2. Luu 7: Oiosulusuojaus 7. OIKOLKOJA 7.. Yleistä Vero laitteide mitoittamisessa, oiosulusuojause suuittelussa ja turvallise äytö suuittelussa o tuettava oiosuluvirrat eri tilateissa ja eri osissa veroa.

Lisätiedot

REIKIEN JA LOVIEN MITOITUS

REIKIEN JA LOVIEN MITOITUS REIKIEN JA LOVIEN ITOITUS REIKIEN JA LOVIEN ITOITUS Leiauslujuuen ja poiittaisen etolujuuen ansiosta Kertotuotteisiin on mahollista tehä reiiä. Erityisesti ristiiiluraenteinen soeltuu ohteisiin, joissa

Lisätiedot

b 4i j k ovat yhdensuuntaiset.

b 4i j k ovat yhdensuuntaiset. MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

Totte Virtanen, Hannu Pelkonen. totte.virtanen@valtra.com, hannu.t.pelkonen@valtra.com

Totte Virtanen, Hannu Pelkonen. totte.virtanen@valtra.com, hannu.t.pelkonen@valtra.com TÄRINÄNERISTYKSEN TOIMINTAAN VAIKUTTAVAT TEKIJÄT Kari Saarinen VTT Tuotteet ja tuotanto PL 1307, 33101 TAMPERE kari.p.saarinen@vtt.fi Totte Virtanen, Hannu Pelkonen Valtra Oy PL 557, 40101 JYVÄSKYLÄ totte.virtanen@valtra.com,

Lisätiedot

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet Työnteijän eläelain (TyEL) muaisen eläeauutusen erityisperusteet 205 PERUSTEIDEN SOVELTAMINEN 2 IKÄÄN JA PALKKAAN LIITTYVÄT SUUREET 2 2. IKÄLASKU 2 2.2 VAKUUTUSMAKSUN PERUSTEENA OLEVA PALKKA JA SEN ARVIOIMINEN

Lisätiedot

TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A

TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintauulustelujen matematiian oe 30.5.006 sarja A Ohjeita. Sijoita joainen tehtävä omalle sivulleen. Laadi rataisut seleästi v älivaiheineen, tarvittaessa

Lisätiedot

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet. Kokooma 16.3.2009. Viimeisin perustemuutos on vahvistettu 26.1.2009.

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet. Kokooma 16.3.2009. Viimeisin perustemuutos on vahvistettu 26.1.2009. Työnteijän eläelain (TyEL) muaisen eläeauutusen erityisperusteet Koooma 6.3.29. Viimeisin perustemuutos on ahistettu 26..29. Voimaantulosäännöset TYÖNTEKIJÄN ELÄKELAIN (TYEL) MUKAISEN ELÄKEVAKUUTUKSEN

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

HOITOTARVIKKEIDEN JAKELUOHJE 1.1.2015

HOITOTARVIKKEIDEN JAKELUOHJE 1.1.2015 1 HOITOTARVIKKEIDEN JAKELUOHJE 1.1.2015 SISÄLTÖ 1. YLEISET PERUSTEET HOITOTARVIKEJAKELULLE 2 2. TAVOITTEET 3. HOITOTARVIKEJAKELUN PERIAATTEET 4. HOITOTARVIKKEIDEN JAKELUOHJE 4.1 VIRTSAAMISEN APUVÄLINEET

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen

BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen BM30A0240, Fysiikka L osa 4 Värähtelyfysiikkaa 1 Luennot: Heikki Pitkänen Oppikirja: Young & Freedman: University Physics Periodic motion Mechanical waves Sound and hearing Muuta - Diffraktio, interferenssi,

Lisätiedot

KIIKUNJOEN KALATALOUDELLINEN TARKKAILU VUONNA 2009

KIIKUNJOEN KALATALOUDELLINEN TARKKAILU VUONNA 2009 KIIKUNJOEN KALATALOUDELLINEN TARKKAILU VUONNA 2009 Kymijoe vesi ja ympäristö ry: julaisu o 199/2010 Jussi Mätye ISSN 1458-8064 TIIVISTELMÄ Tässä raportissa äsitellää Kiiu-, Savero- ja Silmujoe sähöoealastus-

Lisätiedot

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström Näyäalueanalyysi Jouhaisselä Tuore Kulvaoselä tuulipuisto 29032012 Annua Engströ Näyäalueanalyysin uodostainen Näeäalueanalyysilla saadaan yleisuva siitä, ihin tuulivoialat äytettyjen lähtötietojen perusteella

Lisätiedot

Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002

Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002 Kimmoton törmäys Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002 1 1 Tiivistelmä Tutkittiin liikemäärän ja liike-energian muuttumista kimmottomassa törmäyksessä.

Lisätiedot

PUTKIJÄRJESTELMÄSSÄ ETENEVÄN PAINEVAIHTELUN MALLINNUS HYBRIDIMENETELMÄLLÄ 1 JOHDANTO 2 HYBRIDIMENETELMÄN MATEMAATTINEN ESITYS

PUTKIJÄRJESTELMÄSSÄ ETENEVÄN PAINEVAIHTELUN MALLINNUS HYBRIDIMENETELMÄLLÄ 1 JOHDANTO 2 HYBRIDIMENETELMÄN MATEMAATTINEN ESITYS PUTKIJÄRJESTELMÄSSÄ ETENEVÄN PAINEVAIHTELUN MALLINNUS HYBRIDIMENETELMÄLLÄ Erkki Numerola Oy PL 126, 40101 Jyväskylä erkki.heikkola@numerola.fi 1 JOHDANTO Työssä tarkastellaan putkijärjestelmässä etenevän

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

ASEMAKAAVOJEN 480 ja 481 SELOSTUS

ASEMAKAAVOJEN 480 ja 481 SELOSTUS ASEMAKAAVOJEN 0 ja SEOSTUS 0 KEVÄTAAKSONPURO PORVOO KAUPUNGINOSA 0 orttelit -0 erillispientalojen orttelialueita, yleisten raennusten orttelialue seä atu- ja viristysalueita KEVÄTAAKSONKAIO PORVOO KAUPUNGINOSAT

Lisätiedot

KIRJASTO KESKUSTAN ALUEEN RAKENTAMISOHJE KORTTELIT 224, 301, 302, 303, 304, 319 JA 320

KIRJASTO KESKUSTAN ALUEEN RAKENTAMISOHJE KORTTELIT 224, 301, 302, 303, 304, 319 JA 320 KRJASTO KESKUSTAN UEEN RENTAMSOHJE KORTTELT, 301,,,, 319 JA 2 Sisällysluettelo: yleisohjeet...3 ortteli...6 orttelit, ja...7 orttelit ja 319...12 Kuvaluettelo: annen uva: näymä Kesusadulta ohti unnantaloa

Lisätiedot

Pohjaveden alenemisesta aiheutuvien painumien mallintaminen pehmeikkökohteissa

Pohjaveden alenemisesta aiheutuvien painumien mallintaminen pehmeikkökohteissa 57 2013 LKENNEVRASTON tutimusia ja selvitysiä jania alanen Pohjaveden alenemisesta aiheutuvien painumien mallintaminen pehmeiöohteissa Jania Alanen Pohjaveden alenemisesta aiheutuvien painumien mallintaminen

Lisätiedot

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet Työnteijän eläelain (TyEL) muaisen eläeauutusen erityisperusteet 204 2 TYÖNTEKIJÄN ELÄKELAIN (TYEL) MUKAISEN ELÄKEVAKUUTUKSEN ERITYISPERUSTEET Voimaantulosäännöset Perusteen 20.2.2006 oimaantulosäännös

Lisätiedot

% %228koti. Lava. Lava. Srk -k es k us. III k. II Ts. III k. Ts k. M-market

% %228koti. Lava. Lava. Srk -k es k us. III k. II Ts. III k. Ts k. M-market I I I Kp a sp Sai r V t t Sair. t r at sp % %228oti t IV h Sai ra ala h r h Lava Lava Sa ir IV IV h h h Sr - es us t VI Kpa t r r r I r r I t t t t rr ts ts t M-met Kelloosen osayleisaava Kaupallinen selvitys

Lisätiedot

Taajamaosayleiskaava Kaupallisen selvityksen päivitys 28.2.2011

Taajamaosayleiskaava Kaupallisen selvityksen päivitys 28.2.2011 Taajamaosayleisaava Kaupallisen selvitysen päivitys Lohjan aupuni, Taajamaosayleisaava Kaupallisen selvitysen päivitys 1 1 JOHDANTO 2 2 KAUPALLINEN PALVELUVERKKO LOHJALLA 2011 3 2.1 Kaupalliset esittymät

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

Kaurialan kaavarunko SITO OY, 31.1.2013

Kaurialan kaavarunko SITO OY, 31.1.2013 Kaurialan aavuno, 31.1.2013 Sisältö lusanat lusanat Kaupuniraenneanalyysi Suunnittelualueen nyytilanne Voimassa oleva asemaaava Nyyiset tontit Suunnitelma Rataisuvaihtoehdoista Suunnitelman havainneuva

Lisätiedot

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = =

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = = 2 Lasuarjoitus 2 21 Kytentäimpedanssin asenta Mitä taroittaa ytentäimpedanssi? 5 ma:n suuruinen äiriövirta oasiaaiaapein vaipassa (uojoto) aieuttaa 1 mv:n suuruisen äiriöjännitteen 1 m:n mataa Miä on ytentäimpedanssin

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

TUOTTEEN NIMI VALMISTAJA TUOTEKUVAUS SERTIFIOINTIMENETTELY. Myönnetty 28.8.2012. Kerto-S ja Kerto-Q Rakenteellinen LVL

TUOTTEEN NIMI VALMISTAJA TUOTEKUVAUS SERTIFIOINTIMENETTELY. Myönnetty 28.8.2012. Kerto-S ja Kerto-Q Rakenteellinen LVL SERTIFIKAATTI VTT-C-184-03 Myönnetty 28.8.2012 TUOTTEEN NIMI VALMISTAJA Kerto-S ja Kerto-Q Raenteellinen LVL Metsäliitto Osuusunta Metsä Wood PL 24 08101 LOHJA TUOTEKUVAUS SERTIFIOINTIMENETTELY Kerto-S

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Asemakaavan selostus LIIKEKESKUSTAN ASEMAKAAVAN MUUTOS. Haapajärven kaupunki

Asemakaavan selostus LIIKEKESKUSTAN ASEMAKAAVAN MUUTOS. Haapajärven kaupunki Haaajärven auuni Asemaaavan selostus KEKESKUSTAN ASEMAKAAVAN MUUTOS Selostus liittyy..0 äivättyyn Haaajärven Ronaalan auunginosan orttelia, orttelin tontteja ja seä näihin liittyviä atu- ja torialueita

Lisätiedot

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002 Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty

Lisätiedot

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen

Lisätiedot

SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy consumption of sauna and related factors

SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy consumption of sauna and related factors LAPPEENRANNAN TEKNILLINEN YLIOPISTO Tenillinen tiedeunta Ympäristöteniian oulutusohelma BH10A0300 Ympäristöteniian andidaatintyö a seminaari SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy

Lisätiedot

kestämään elämää asunto oy Kanttiininkuja 9, 13100 HÄMEENLINNA

kestämään elämää asunto oy Kanttiininkuja 9, 13100 HÄMEENLINNA Tehty estämään elämää asunto oy ANTTNN UMA anttiininuja, 00 HÄMEENNNA UJAOT ON TEHTY ÄMÄÄN EÄMÄÄ Omassa odissa nautit yhteisistä hetistä perheenjäsenten ja ystävien esen. Toimivasi suunniteltu ujaoti estää

Lisätiedot

KÄYTTÖOPAS SUOMI KÄYTTÖOPAS. "Ohjelmiston aloitusopas" ja "Pikaopas" ovat tämän käyttöoppaan lopussa.

KÄYTTÖOPAS SUOMI KÄYTTÖOPAS. Ohjelmiston aloitusopas ja Pikaopas ovat tämän käyttöoppaan lopussa. KÄYTTÖOPAS "Ohjelmiston aloitusopas" ja "Piaopas" ovat tämän äyttöoppaan lopussa. SUOMI KÄYTTÖOPAS Johdanto EOS 600D on huippulaatuinen digitaalinen SLR (Single-Lens Reflex) -amera, jossa on erittäin tara

Lisätiedot

SÄHKÖASEMAN ENSIÖPUOLEN SUUNNITTELUSSA KÄYTETTÄ- VIEN LASKENTAMENETELMIEN KEHITTÄMINEN

SÄHKÖASEMAN ENSIÖPUOLEN SUUNNITTELUSSA KÄYTETTÄ- VIEN LASKENTAMENETELMIEN KEHITTÄMINEN aalto-yliopito tenillinen oreaoulu Eletroniian, tietoliienteen ja automaation tiedeunta Rauno Hirvonen SÄHKÖASEMAN ENSIÖPUOLEN SUUNNIELUSSA KÄYEÄ- VIEN LASKENAMENEELMIEN KEHIÄMINEN Diplomityö, joa on jätetty

Lisätiedot

6 JÄYKÄN KAPPALEEN TASOKINETIIKKA

6 JÄYKÄN KAPPALEEN TASOKINETIIKKA Dyamiia 6. 6 JÄYKÄN KAPPALEEN TASKINETIIKKA 6. Yleisä Jäyä appalee ieiiassa arasellaa appaleesee aiuaie uloise oimie ja seurausea olea liiee (raslaaio ja roaaio) älisiä yheysiä. Voimie äsielyssä ariaa

Lisätiedot

Kaupunkisuunnittelu 17.8.2015

Kaupunkisuunnittelu 17.8.2015 VANTAAN KAUPUNKI MIEIPITEIDEN KOONTI Kaupunisuunnittelu..0 MR :N MUKAISEEN KUUEMISKIRJEESEEN..0 VASTAUKSENA SAADUT MIEIPITEET JA KANNANOTOT ASEMAKAAVAN MUUTOKSESTA NRO 009, MARTINAAKSO YHTEENSÄ KANNANOTTOJA

Lisätiedot

Siltaeurokoodien koulutus - Teräs-, liitto- ja puusillat 29-30.3.2009

Siltaeurokoodien koulutus - Teräs-, liitto- ja puusillat 29-30.3.2009 Uuen Euroooi 5:n yleisesittely itt l Siltaeuroooien oulutus - Teräs-, liitto- ja puusillat 9-30.3.009 Maru Kortesmaa Euroooi 5, Puuraenteet EN 1995-1-1: Euroooi 5: Puuraenteien suunnittelu. Osa 1-1: Yleiset

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot