Vakuutusmatematiikan sovellukset klo 9-15

Koko: px
Aloita esitys sivulta:

Download "Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15"

Transkriptio

1 SHV-tutinto Vauutusmatematiian sovelluset lo (7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi orvausen masuvuosi Inflaatio mitattuna edellisen vuoden eseltä alla olevan vuoden eselle on ollut seuraava: 2005: 5 %, 2006: 5,5 %, 2007: 5,4 %. Tulevasi inflaatiosi oletetaan 8 % per vuosi. Voidaan olettaa, että orvauset tulevat aii masetuisi viimeistään olmantena vuonna vahinovuoden jäleen. Lase vuoden 2007 vahingoista orvausvastuuseen varattava määrä äyttäen chain ladder menetelmää, jossa on otettu huomioon inflaation vaiutus orvausmenoon. Y2. Yhtiö soveltaa erään vauutuslajin aiiin vauutusiin iinteää risimasua P. Tämä vastaa yli oo annan lasettua esimääräistä vuotuista oonaisvahinomäärää per vauutettu. Havaintoaineistoon perustuen on arvioitavissa, että vahinojen suuruudet ovat samoin jaautuneita aiilla vauutetuilla. Vahinojen luumäärän odotusarvot eivät ole identtisiä, vaan 40 prosentilla vauutetuista yseinen odotusarvo on 1 = 0.1 ja 60 prosentilla 2 = 0.2. Kunin vauutetun vuotuiset oonaisvahinomäärät mallinnetaan yhdistetyisi Poisson-muuttujisi ja eri vuodet oletetaan aiilta osiltaan toisistaan riippumattomisi. Hinnoittelun oieudenmuaisuuden lisäämisesi yhtiö ottaa äyttöön seuraavan alennusjärjestelmän. Perusmasu P peritään niiltä vauutetuilta, joille on edellisenä vuotena sattunut vähintään ysi vahino. Miäli edeltävä vuosi on vahingoton, mutta sitä edeltävä ei, on vauutusmasu 90 prosenttia perusmasusta. Muissa tapausissa vauutusmasu on 80 prosenttia perusmasusta. Uusille vauutusille masu määrätään edellä uvatulla tavalla olettamalla, että ahtena edeltävänä vuotena on sattunut vahino. a. Määrää P siten, että yhtiön yli oo annan lasettu risimasutaso vastaa oonaisvahinomäärän odotusarvoa pitällä tähtäimellä. Koonaisvahinomäärien jaaumien ja annan raenteen oletetaan pysyvän muuttumattomina tulevina vuosina. b. Määrää vauutetun vahinojen luumäärän odotusarvoja 1 ja 2 vastaavat pitän tähtäimen risimasujen odotusarvot.

2 2(7) Y3. a. Selvitä laisääteisessä työeläevauutusessa sovellettavan Z-mallin pääperiaatteet b. Johda t-iäisen ajan u työyvyttömänä olleen työyvyttömän työyvyttömyyden vastaisen eston tiheysfuntio c. Voidaano mallissa määrätä todennäöisyydet henilö on atiivi ja henilö on työyvytön. Perustele vastausesi.

3 3(7) E4 Työeläevauutusyhtiön vastuuvelaan sisältyy eriä, joilla pusuroidaan erilaisia risejä. Mitä nämä vastuuvelan osat ovat? Mitä risejä uin osa pusuroi? Jos jotin osat pusuroivat samaa risiä, niin miä osa on ensisijainen pusuri? E5 Kahiseva Oy:n aii työnteijät ovat vauutettuina TyEL-vauutusessa, jona uusien vuosina v=2005, 2006 ja 2007 myönnettyjen työyvyttömyyseläeiden menot hetellä v ovat (euroa): Vuosi Laji: Työyvyttömyyseläeet Kuntoutustuet Kuntoutusrahat Vauutusen palasummat ja teoreettiset työyvyttömyyseläeosat ovat vastaavasti (euroa): Vuosi Palasumma Teoreettinen työyvyttömyyseläeosa P I v (1) Määrää vuodelle 2008 edellä mainitun vauutusen a. työyvyttömyysmasuluoa ja b. TyEL-masun työyvyttömyyseläeosa. c. Mitä voit sanoa yritysen työyvyttömyysmasun suuruudesta esimääräiseen työyvyttömyysmasuun verrattuna? Mistä ero johtuu. d. Mitä menoja tällä masun työyvyttömyyseläeosalla rahoitetaan? Tehtävässä oletetaan, että vauutusen teoreettinen meno vuodelta i lasetaan aavalla p 0 I 1 I 2 I R = b P (1) + b P (1) + b P (1), missä vi, i i1 i i2 i i3 b- ertoimet i=2005 i=2006 i=2007 b 0 0,57 0,56 0,04 b 1 0,20 0,19 0,64

4 4(7) b 2 0,05 0,04 0,22 Kerroin 5,5 un Lv 5 4,5 un 4 Lv < 5 3,5 un 3 Lv < 4 2,75 un 2,5 Lv < 3 2, 25 un 2 Lv < 2,5 mv = 1,75 un 1,5 Lv < 2 1,35 un 1,2 Lv < 1,5 1 un 0,8 Lv < 1,2 0,65 un 0,5 Lv < 0,8 0,35 un 0,2 Lv < 0,5 0,1 Lv < 0, 2 F Y Lisäsi tiedetään, että R 2004 = 1, 5 M, R 2004 = 24,0 M ja palaertoimen arvot ovat , , , , Työyvyttömyysmasun tilapäisen alennusen määräävä erroin c 2008 = 0, 01.

5 5(7) H4. Tarastellaan panilainaan liitettävää uolemanvaraturvaa. Laina oroineen masetaan taaisin olmessa yhtä suuressa erässä yhden vuoden, ahden vuoden ja olmas erä olmen vuoden uluttua lainan nostamisesta. Vauutussumma on oo ajan masamattomien (annuiteetti)erien summa. Vauutusyhtiön atuaarina suunnittelet vauutusmasujen rytmiä. Vaihtoehtoina ovat ertamasu tai vuosimasut. Vuosimasut voivat olla tasamasut tai joaiselle vauutusvuodelle lasetaan eriseen ertamasu. Masut noudattavat lasuperustetta Ysilöllisen henivauutusen lasuperusteet (perusluvut ohessa) muutoin, mutta -uormitus on masutavasta riippumatta 10%. Lisäsi haluat verrata luonnollisia masuja jota pohjautuvat q- luuihin äyttäen lasuperusteen uormitusraennetta ja uolevuusoletusta. Tee esimerilaselma 28-vuotiaalle miehelle, jona lainan oro on 5% ja lainapääoma 100. Millaista tai millaisia masurytmejä suosittelet tuoteehittelijöille? H5. Kesinäinen Henivauutusyhtiö Finlandia aioo tuoda marinoille ysilöllisen eläevauutusen, jona täreimmät piirteet ovat seuraavat 1) Vauutus on orosidonnainen ja 2) ertamasuinen. 3) Kiinteää uuausieläettä E masetaan vauutetulle ertamasun masamista seuraavan uuauden alusta (heti alava) 4) niin auan uin hän on elossa (eliniäinen) 5) Vauutusmasusta peritään uormitusta 1,5% ja 6) vauutussäästöstä peritään eläeen lisäsi uormitusta 1% masettavasta eläeestä. Finlandian hoitojärjestelmä on tehty reursiivisella teniialla toimivia henivauutusia varten, ja uudet eläevauutuset on taroitus hoitaa samassa järjestelmässä, jota täydennetään masatusosalla. Muoaa reursiivisen teniian henivauutusien vastuuvelan ehittymistä osevat aavat uutta eläevauutusta varten seuraaville ahdelle muunnelmalle: A. Vauutetun uollessa ei maseta enää mitään orvausta (puhdas elämänvaravauutus) B. Jos vauutettu uolee ennen uin hänelle on suoritettu 120 eläe-erää, eläeen masamista jatetaan edunsaajalle unnes yhteensä 120 uuausieläettä on masettu (ja masatus päättyy siihen).

6 6(7) V4. Laisääteisen tapaturmavauutusen hinnoittelussa sovelletaan ysilöllistä masujärjestelmää erään toimialan suurille vauutusenottajille. Meritään X j (t) = vauutetun j oonaisvahinomäärä vuonna t, L j (t) = vauutetun j palasumma vuonna t. Tarastellaan vauutusten hinnoittelua vuoden ysi alussa. Yhtiön mallissa inflaatiohistorialla ehdollistetut oonaisvahinomäärät X j (t) ovat toisistaan riippumattomia ja noudattavat yhdistettyä Poisson-jaaumaa siten, että vahinojen luumäärän odotusarvo on vauutusenottajaohtainen vaio j ja ysittäisen vahingon suuruus on muotoa (1 + i(1)) (1 + i(t))z, missä i(s) on vuoden s inflaatioaste ja Z on ei-negatiivinen sattumisvuodesta ja vauutusenottajasta riippumaton satunnaismuuttuja. Oloot a 1 = E(Z) ja a 2 = E(Z 2 ) tunnettuja parametreja. Inflaation oletetaan vaiuttavan palasummiin samoin uin vahingon suuruusiin siten, että L j (t) = (1 + i(1)) (1 + i(t)) L j (0), missä L j (0) on vauutetun j vuoden nolla palasumma. Oloon x j (t) vauutetun j vahinopromille vuonna t. Vuoden t pohjamasumasupromille p j (t) määräytyy ehdosta p j (t) = j (t)x j (t) + (1 - j (t)) p j-1 (t), missä j (t) [0, 1] on deterministinen tasoitusparametri. Tasoitusparametrin mitoitusen avulla ontrolloidaan vauutusmasun suhteellisia vuosivaihteluita vaatimalla, että ehdolla p j (t-1) = E(x j (t-1)), vuoden t pohjamasupromillen variaatioerroin (hajonta/odotusarvo) on vaio d. Lisäsi vaaditaan, että j (t) 1. a. Osoita, että j (t) on muotoa j (t) = min ( j,1) ja määrää aiilla t = 1,2, b. Tee perusteltu ehdotus tasoitusparametrin j (1) määräämisesi, un äytettävissä ovat vauutusenottajittain viiden edeltävän vuoden pohjamasut ja palasummat.

7 7(7) V5. Vauutusyhtiössä on voimassa autoille seuraavanlainen Bonus-Malus-järjestelmä: UUSI LUOKKA x-vahingon JÄLKEEN LUOKKA VAKUUTUSMAKSU x = 0 x = 1 x > OLETUKSET: - Yhtä vauutusvuotta ohden sattuu esimäärin 0.1 vahinoa - Vahinojen luumäärä noudattaa Poisson - jaaumaa - esimääräinen vahingon suuruus on 1 - Vahingon suuruus noudattaa Normaalijaaumaa (esihajonta 200 ) a) Riittääö vauutusyhtiön vauutusmasut pitällä aiavälillä attamaan orvauset? b) Kuina suuri tasoorotusen (alennusen) tulisi olla, jotta vauutusmasut vastaisivat masettuja orvausia? c) Kuina paljon b-ohdassa vauutusmasutulo muuttuu, jos vahinotaajuus asvaa (suhteellisesti) 10 %:a? d) Miä on todennäöisyys, että luoassa 1 oleva vauutettu ilmoittaa vahingosta vauutusyhtiölle yhden vuoden aiana (olettaen vauutetun äyttäytyvän rationaalisesti)?

K-KS vakuutussumma on kiinteä euromäärä

K-KS vakuutussumma on kiinteä euromäärä Kesinäinen Henivauutusyhtiö IIIELLA TEKNIIKALLA LAKUPERUTE H-TUTKINTOA ARTEN HENKIAKUUTU REKURIIIELLA TEKNIIKALLA OIMAAOLO 2 AIKALAKU JA AKUUTUIKÄ Tätä lasuperustetta sovelletaan..25 alaen myönnettäviin

Lisätiedot

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely.

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. 1144/2011 7 Liite 1 Vauutustenisistä riseistä johtuvien suureiden lasemista varten äytettävä vauutuslajiryhmittely. Vauutuslajiryhmä Vauutusluoat Ensivauutus 1 Laisääteinen tapaturma 1 (laisääteinen) 2

Lisätiedot

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3: Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään

Lisätiedot

Talousmatematiikan verkkokurssi. Koronkorkolaskut

Talousmatematiikan verkkokurssi. Koronkorkolaskut Sivu 1/7 oronorolasuja sovelletaan tapausiin, joissa aia on pidempi uin ysi oonainen orojaso, eli aia, jolle oroanta ilmoittaa oron määrän. orolasu: enintään yhden orojason pituisille oroajoille; oronorolasu:

Lisätiedot

YRITTÄJIEN ELÄKELAIN (YEL) MUKAISEN LISÄELÄKEVAKUUTUKSEN PERUSTEET. Kokooma 30.3.2006. Viimeisin perustemuutos vahvistettu 20.12.2004.

YRITTÄJIEN ELÄKELAIN (YEL) MUKAISEN LISÄELÄKEVAKUUTUKSEN PERUSTEET. Kokooma 30.3.2006. Viimeisin perustemuutos vahvistettu 20.12.2004. YITTÄJIN LÄKLAIN (YL) MUKAISN LISÄLÄKVAKUUTUKSN PUSTT Koooma 30.3.2006. Viimeisin perustemuutos vahvistettu 20.12.2004. SISÄLTÖ YITTÄJIN LÄKLAIN (YL) MUKAISN LISÄLÄKVAKUUTUKSN PUSTT 1. PUSTIDN SOVLTAMINN...

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET 5 TLOUYRTTÄJÄN ELÄKELN UKEN VKUUTUKEN PERUTEET PERUTEDEN OVELTNEN Näitä perusteita soelletaan..009 lähtien maatalousrittäjän eläelain 80/006 YEL muaisiin auutusiin. VKUUTUKU Vauutusmasu uodelta on maatalousrittäjän

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja

Lisätiedot

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan 3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa

Lisätiedot

1974 N:o 622. Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. Liite 1.

1974 N:o 622. Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. Liite 1. 1974 N:o 622 Liite 1 Vauutustenisistä riseistä johtuvien suureiden lasemista varten äytettävä vauutuslajiryhmittely Vauutuslajiryhmä Vauutusluoat Ensivauutus Laisääteinen tapaturma 1 (laisääteinen) Muu

Lisätiedot

APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPERUSTEET

APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPERUSTEET APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPEUSTEET Koooma 28.3.2006. Viimeisin perustemuutos on ahistettu 16.1.2003. APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄELÄKEVAKUUTUKSEN LASKU-

Lisätiedot

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1 Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1. Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV. Suomen Aktuaariyhdistyksen vuosikokousesitelmä

ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV. Suomen Aktuaariyhdistyksen vuosikokousesitelmä ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV Suomen Atuaariyhdistysen vuosioousesitelmä 27.2.2006 2 Sisällysluettelo: sivu 1. Tasoitusvastuujärjestelmän uvaus

Lisätiedot

3 x ja 4. A2. Mikä on sen ympyräsektorin säde, jonka ympärysmitta on 12 ja pinta-ala mahdollisimman

3 x ja 4. A2. Mikä on sen ympyräsektorin säde, jonka ympärysmitta on 12 ja pinta-ala mahdollisimman HTKK, TTKK, LTKK, OY, ÅA/Insinööriosastot alintauulustelujen matematiian oe 900 Sarja A A Lase äyrien y, (Tara vastaus) y, ja rajaaman äärellisen alueen inta-ala A Miä on sen ymyräsetorin säde, jona ymärysmitta

Lisätiedot

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5. Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen

Lisätiedot

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien

Lisätiedot

Naulalevylausunto Kartro PTN naulalevylle

Naulalevylausunto Kartro PTN naulalevylle LAUSUNTO NRO VTT-S-04256-14 1 (6) Tilaaja Tilaus Yhteyshenilö ITW Construction Products Oy Jarmo Kytömäi Timmermalmintie 19A 01680 Vantaa 18.9.2014 Jarmo Kytömäi VTT Expert Services Oy Ari Kevarinmäi PL

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A00 Disreetin matematiian perusteet Esimerejä ym., osa I G. Gripenberg Jouo-oppi ja logiia Todistuset logiiassa Indutioperiaate Relaatiot ja funtiot Funtiot Aalto-yliopisto. maalisuuta 0 Kombinatoriia

Lisätiedot

Kaupunkisuunnittelu 17.8.2015

Kaupunkisuunnittelu 17.8.2015 VANTAAN KAUPUNKI MIEIPITEIDEN KOONTI Kaupunisuunnittelu..0 MR :N MUKAISEEN KUUEMISKIRJEESEEN..0 VASTAUKSENA SAADUT MIEIPITEET JA KANNANOTOT ASEMAKAAVAN MUUTOKSESTA NRO 009, MARTINAAKSO YHTEENSÄ KANNANOTTOJA

Lisätiedot

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet Työnteijän eläelain (TyEL) muaisen eläeauutusen erityisperusteet 205 PERUSTEIDEN SOVELTAMINEN 2 IKÄÄN JA PALKKAAN LIITTYVÄT SUUREET 2 2. IKÄLASKU 2 2.2 VAKUUTUSMAKSUN PERUSTEENA OLEVA PALKKA JA SEN ARVIOIMINEN

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, evät 05 / ORMS00 Matemaattinen Analyysi 6. harjoitus. Approsimoi toisen asteen polynomilla P(x) = b 0 +b x+b x oheisen tauluon muaisia havaintoja. (Teorian löydät opetusmonisteen sivuilta

Lisätiedot

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa / DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa

Lisätiedot

Luku kahden alkuluvun summana

Luku kahden alkuluvun summana Luu ahden aluluvun summana Juho Salmensuu Lahden Lyseon luio Matematiia 008 Tiivistelmä Tutielmassa tarastellaan ysymystä; uina monella eri tavalla annettu parillinen oonaisluu voidaan esittää ahden aluluvun

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

2 Taylor-polynomit ja -sarjat

2 Taylor-polynomit ja -sarjat 2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.

Lisätiedot

S , Fysiikka III (ES) Tentti Tentti / välikoeuusinta. Laaditaan taulukko monisteen esimerkin 3.1. tapaan ( nj njk Pk

S , Fysiikka III (ES) Tentti Tentti / välikoeuusinta. Laaditaan taulukko monisteen esimerkin 3.1. tapaan ( nj njk Pk S-.35, Fysiia III (ES) entti 8..3 entti / välioeuusinta I älioeen alue. Neljän tunnistettavissa olevan hiuasen miroanonisen jouon mahdolliset energiatasot ovat, ε, ε, 3ε, ε,, jota aii ovat degeneroitumattomia.

Lisätiedot

Nurmijärven kunnan kaupan palveluverkkoselvitys 28.5.2012

Nurmijärven kunnan kaupan palveluverkkoselvitys 28.5.2012 aupan palveluveroselvitys 28.5.2012 aupan palveluveroselvitys 1 Sisällysluettelo 1 JOHDANTO 2 2 KAUPAN NYKYTILAN KARTOITUS JA KUVAUS 3 2.1 Vähittäisaupan toimipaiat ja myynti 3 2.2 Ostovoima ja ostovoiman

Lisätiedot

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet Työnteijän eläelain (TyEL) muaisen eläeauutusen erityisperusteet 202 2 TYÖNTEKIJÄN ELÄKELAIN (TYEL) MUKAISEN ELÄKEVAKUUTUKSEN ERITYISPERUSTEET Voimaantulosäännöset Perusteen 20.2.2006 oimaantulosäännös

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,

Lisätiedot

Taajamaosayleiskaava Kaupallisen selvityksen päivitys 28.2.2011

Taajamaosayleiskaava Kaupallisen selvityksen päivitys 28.2.2011 Taajamaosayleisaava Kaupallisen selvitysen päivitys Lohjan aupuni, Taajamaosayleisaava Kaupallisen selvitysen päivitys 1 1 JOHDANTO 2 2 KAUPALLINEN PALVELUVERKKO LOHJALLA 2011 3 2.1 Kaupalliset esittymät

Lisätiedot

KAUNIAISTEN KAUPUNKI MYY TARJOUSTEN PERUSTEELLA OMATOIMISEEN RAKENTAMISEEN PIENTALOTONTIN OSOIT- TEESSA ALPPIKUJA 2

KAUNIAISTEN KAUPUNKI MYY TARJOUSTEN PERUSTEELLA OMATOIMISEEN RAKENTAMISEEN PIENTALOTONTIN OSOIT- TEESSA ALPPIKUJA 2 KAUNIAISTEN KAUPUNKI GRANKULLA STAD KAUNIAISTEN KAUPUNKI MYY TARJOUSTEN PERUSTEELLA OMATOIMISEEN RAKENTAMISEEN PIENTALOTONTIN OSOIT- TEESSA ALPPIKUJA Myyjä Kauniaisten aupuni, Kauniaistentie 0, 0700 Kauniainen.

Lisätiedot

Nurmijärven kunnan kaupan palveluverkkoselvitys. Luonnos 11.5.2012

Nurmijärven kunnan kaupan palveluverkkoselvitys. Luonnos 11.5.2012 aupan palveluveroselvitys Luonnos 11.5.2012 aupan palveluveroselvitys 1 Sisällysluettelo 1 JOHDANTO 1 2 KAUPAN NYKYTILAN KARTOITUS JA KUVAUS 3 2.1 Vähittäisaupan toimipaiat ja myynti 3 2.2 Ostovoima ja

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

KUNTIEN ELÄKEVAKUUTUS 30.10.2008 VARHAISELÄKEMENOPERUSTEISESSA MAKSUSSA 1.1.2009 LÄHTIEN NOUDATETTAVAT LASKUPERUSTEET

KUNTIEN ELÄKEVAKUUTUS 30.10.2008 VARHAISELÄKEMENOPERUSTEISESSA MAKSUSSA 1.1.2009 LÄHTIEN NOUDATETTAVAT LASKUPERUSTEET KUNTIN LÄKVKUUTU 328 VRHILÄKMNORUTI MKU 29 LÄHTIN NOUDTTTVT LKURUTT Valtuusuta ahstaa arhaseläemeoperustese masu eaode yhtesmäärä uodelle euromääräsest Tämä ahstettu masu o samalla lopullste masue yhtesmäärä

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

3. Markovin prosessit ja vahva Markovin ominaisuus

3. Markovin prosessit ja vahva Markovin ominaisuus 30 STOKASTISET DIFFERENTIAALIYHTÄLÖT 3. Marovin prosessit ja vahva Marovin ominaisuus Aloitamme nyt edellisen appaleen päättäneen esimerin yleistämisen Brownin liieelle. Käymme ysitellen läpi esimerin

Lisätiedot

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24 Sarjateorian tehtävät 0. syysuuta 2005 sivu / 24 Perustehtäviä. Muunna sarja telesooppimuotoon ja osoita, että se suppenee. Lase myös sarjan summa. ( + ) = 2 + 6 + 2 +... 2. Osoita suoraan määritelmään

Lisätiedot

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet. Kokooma 16.3.2009. Viimeisin perustemuutos on vahvistettu 26.1.2009.

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet. Kokooma 16.3.2009. Viimeisin perustemuutos on vahvistettu 26.1.2009. Työnteijän eläelain (TyEL) muaisen eläeauutusen erityisperusteet Koooma 6.3.29. Viimeisin perustemuutos on ahistettu 26..29. Voimaantulosäännöset TYÖNTEKIJÄN ELÄKELAIN (TYEL) MUKAISEN ELÄKEVAKUUTUKSEN

Lisätiedot

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet Työnteijän eläelain (TyEL) muaisen eläeauutusen erityisperusteet 204 2 TYÖNTEKIJÄN ELÄKELAIN (TYEL) MUKAISEN ELÄKEVAKUUTUKSEN ERITYISPERUSTEET Voimaantulosäännöset Perusteen 20.2.2006 oimaantulosäännös

Lisätiedot

1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2)

1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2) . Harjoitusoe. a) Valitaan suorilta asi pistettä ja määritetään yhtälöt. Suora s: (, y ) = (0, ) (, y ) = (, ) 0 0 0 Suoran yhtälö on y. Suora t: (, y ) = (0, ) (, y ) = (, ) ( ) 0 Suoran yhtälö on y.

Lisätiedot

SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN

SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN Miten modulaation P S P B? 536A Tietoliienneteniia II Osa 4 Kari Käräinen Sysy 05 SEP VS. BEP D-SIGNAALIAVARUUDESSA Kullein modulaatiolle johdetaan

Lisätiedot

KAUNIAISTEN KAUPUNKI MYY TARJOUSTEN PERUSTEELLA OMATOIMISEEN RAKENTAMISEEN PIENTALOTONTIN OSOIT- TEESSA ALPPIKUJA 2

KAUNIAISTEN KAUPUNKI MYY TARJOUSTEN PERUSTEELLA OMATOIMISEEN RAKENTAMISEEN PIENTALOTONTIN OSOIT- TEESSA ALPPIKUJA 2 KAUNIAISTEN KAUPUNKI GRANKULLA STAD KAUNIAISTEN KAUPUNKI MYY TARJOUSTEN PERUSTEELLA OMATOIMISEEN RAKENTAMISEEN PIENTALOTONTIN OSOIT- TEESSA ALPPIKUJA Myyä Kauniaisten aupuni, Kauniaistentie, 0700 Kauniainen.

Lisätiedot

9 Lukumäärien laskemisesta

9 Lukumäärien laskemisesta 9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta

Lisätiedot

Naulalevylausunto LL13 Combi naulalevylle

Naulalevylausunto LL13 Combi naulalevylle LAUSUNTO NRO VTT-S-0361-1 1 (5) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 15100 Lahti 7.4.01 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 1001, 0044 VTT Puh. 00 7 5566, ax. 00 7 7003

Lisätiedot

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. yhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. yhmäni taajuus on Seuraavan projetin aiana

Lisätiedot

1 JOHDANTO 2 2 KAUPALLINEN PALVELUVERKKO LOHJALLA 2011 3

1 JOHDANTO 2 2 KAUPALLINEN PALVELUVERKKO LOHJALLA 2011 3 1 JOHDANTO 2 2 KAUPALLINEN PALVELUVERKKO LOHJALLA 2011 3 2.1 Kaupalliset esittymät Lohjalla 3 2.2 Kaupallisten palveluiden pinta-ala aupan esittymissä 2006 ja 2010 9 2.3 Päivittäistavaraaupan palveluvero

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. yhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. yhmäni taajuus on Seuraavan projetin aiana

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille taroitetut rataisuehdotuset Tämän harjoitusen ideana on opetella -muunnosen äyttöä differenssiyhtälöiden rataisemisessa Lisäsi äytetään

Lisätiedot

% %228koti. Lava. Lava. Srk -k es k us. III k. II Ts. III k. Ts k. M-market

% %228koti. Lava. Lava. Srk -k es k us. III k. II Ts. III k. Ts k. M-market I I I Kp a sp Sai r V t t Sair. t r at sp % %228oti t IV h Sai ra ala h r h Lava Lava Sa ir IV IV h h h Sr - es us t VI Kpa t r r r I r r I t t t t rr ts ts t M-met Kelloosen osayleisaava Kaupallinen selvitys

Lisätiedot

Naulalevylausunto LL13 naulalevylle

Naulalevylausunto LL13 naulalevylle LAUSUNTO NRO VTT-S-3259-12 1 (4) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 151 Lahti 27.4.212 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 11, 244 VTT Puh. 2 722 5566, Fax. 2 722 73

Lisätiedot

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä DEE-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Ennen uin mennään varsinaisesti tämän harjoitusen asioihin, otetaan alusi ysi merintäteninen juttu Tarastellaan differenssiyhtälöä y y y 0 Vaihtoehtoinen

Lisätiedot

JLP:n käyttämättömät mahdollisuudet. Juha Lappi

JLP:n käyttämättömät mahdollisuudet. Juha Lappi JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p

Lisätiedot

M y. u w r zi. M x. F z. F x. M z. F y

M y. u w r zi. M x. F z. F x. M z. F y 36 5.3 Tuipaalutusen lasenta siitmämenetelmällä 5.3.1 Yleistä Jos paaluvoimia ei voida määittää suoaan tasapainohtälöistä (uten ohdassa 5.), on smsessä staattisesti määäämätön paalutus, jona paaluvoimien

Lisätiedot

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi

Lisätiedot

RuuviliitoSTEN. Sisällysluettelo

RuuviliitoSTEN. Sisällysluettelo RuuviliitoSTEN MITOITUS Sisällysluettelo 1 Yleistä... 1.1 Kansiruuvit... 1. Itseporautuvat ruuvit... Esiporaus... 3 Materiaalit... 3 4 Kuormitustapa... 4 5 Leiausrasitettu ruuvi... 4 5.1 Itseporautuvat

Lisätiedot

Luento Otosavaruus, tapahtuma. Otosavaruus (sample space) on kaikkien mahdollisten alkeistapahtumien (sample) ω joukko.

Luento Otosavaruus, tapahtuma. Otosavaruus (sample space) on kaikkien mahdollisten alkeistapahtumien (sample) ω joukko. Luento 0 odennäöisyyslasentaa Otosavaruus, tapahtuma ja todennäöisyys Ehdollinen todennäöisyys, tilastollinen riippumattomuus, Bayesin teoreema, oonaistodennäöisyys Odotusarvo, varianssi, momentti Stoastiset

Lisätiedot

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x ,

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x , III. SARJATEORIAN ALKEITA Sarja on formaali summa III.. Sarjan suppeneminen = x + x 2 + x 3 +..., missä R aiilla N (merintä ei välttämättä taroita mitään reaaliluua). Luvut x, x 2,... ovat sarjan yhteenlasettavat

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Luentomonisteen harjoitustehtävien vastauset Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt. Järjestelmien lineaarisuus: Järjestelmä on lineaarinen,

Lisätiedot

RATKAISUT: 21. Induktio

RATKAISUT: 21. Induktio Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista TAMPEREEN YLIOPISTO Pro gradu -tutielma Hannu Pajula Stirlingin luvuista Informaatiotieteiden ysiö Matematiia Maalisuu 2014 Tampereen yliopisto Informaatiotieteiden ysiö PAJULA, HANNU: Stirlingin luvuista

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen / ÄRÄHELYMEKANIIKKA SESSIO : Usean vapausasteen systeein liieyhtälöien johto Lagrangen yhtälöillä JOHDANO Kirjoitettaessa liieyhtälöitä suoraan Newtonin laeista äytetään systeeistä irrotettujen osien tai

Lisätiedot

b 4i j k ovat yhdensuuntaiset.

b 4i j k ovat yhdensuuntaiset. MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä

Lisätiedot

Martingaalit ja informaatioprosessit

Martingaalit ja informaatioprosessit 4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu

Lisätiedot

Valon diffraktio yhdessä ja kahdessa raossa

Valon diffraktio yhdessä ja kahdessa raossa Jväslän Ammattioreaoulu, IT-instituutti IXPF24 Fsiia, Kevät 2005, 6 ECTS Opettaja Pasi Repo Valon diffratio hdessä ja ahdessa raossa Laatija - Pasi Vähämartti Vuosiurssi - IST4S1 Teopäivä 2005-2-17 Palautuspäivä

Lisätiedot

KAUNIAISTEN KAUPUNKI MYY PIENTALOTONTIN OSOITTEESSA TORNIKUJA 3

KAUNIAISTEN KAUPUNKI MYY PIENTALOTONTIN OSOITTEESSA TORNIKUJA 3 KAUNASTEN KAUPUNK GRANKULLA STAD KAUNASTEN KAUPUNK MYY PENTALOTONTN OSOTTEESSA TORNKUJA 3 Myyjä: Kauniaisten aupuni, Kauniaistentie 0, 0200 Kauniainen. Myytävä tontti: Kauniaisten 2. aupunginosassa orttelissa

Lisätiedot

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström Näyäalueanalyysi Jouhaisselä Tuore Kulvaoselä tuulipuisto 29032012 Annua Engströ Näyäalueanalyysin uodostainen Näeäalueanalyysilla saadaan yleisuva siitä, ihin tuulivoialat äytettyjen lähtötietojen perusteella

Lisätiedot

Vakuutusyhtiö Mopokone Oyj:llä on seuraavat maksettujen korvausten tilastot koskien mopedivakuutuksia, jotka ovat voimassa kalenterivuoden kerrallaan:

Vakuutusyhtiö Mopokone Oyj:llä on seuraavat maksettujen korvausten tilastot koskien mopedivakuutuksia, jotka ovat voimassa kalenterivuoden kerrallaan: SHV Vakuutusmatematiikan sovellukset 30.11.2006 1 1. (10p) Vakuutusyhtiö Mopokone Oyj:llä on seuraavat maksettujen korvausten tilastot koskien mopedivakuutuksia, jotka ovat voimassa kalenterivuoden kerrallaan:

Lisätiedot

25.9.2008 klo 9-15. 1. Selvitä vakuutustekniseen vastuuvelkaan liittyvät riskit ja niiltä suojautuminen.

25.9.2008 klo 9-15. 1. Selvitä vakuutustekniseen vastuuvelkaan liittyvät riskit ja niiltä suojautuminen. SHV-tutkinto Vakavaraisuus 25.9.28 klo 9-15 1(5) 1. Selvitä vakuutustekniseen vastuuvelkaan liittyvät riskit ja niiltä suojautuminen. (1p) 2. Henkivakuutusyhtiö Huolekas harjoittaa vapaaehtoista henkivakuutustoimintaa

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Harjoitustehtävät Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt Järjestelmien lineaarisuus: Järjestelmä on lineaarinen, jos T u u T u T u, jossa ja

Lisätiedot

Luento Otosavaruus, tapahtuma. Otosavaruus (sample space) on kaikkien mahdollisten alkeistapahtumien (sample) ω joukko.

Luento Otosavaruus, tapahtuma. Otosavaruus (sample space) on kaikkien mahdollisten alkeistapahtumien (sample) ω joukko. Luento odennäöisyyslasentaa Otosavaruus, tapahtuma ja todennäöisyys Ehdollinen todennäöisyys, tilastollinen riippumattomuus, Bayesin teoreema, oonaistodennäöisyys Odotusarvo, varianssi, momentti Stoastiset

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi 02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin

Lisätiedot

KESKUSTA 2 ASEMAKAAVAMUUTOS, RADAN POHJOISPUOLI, RATATYÖLÄISTEN KORTTELI

KESKUSTA 2 ASEMAKAAVAMUUTOS, RADAN POHJOISPUOLI, RATATYÖLÄISTEN KORTTELI FCG Suunnittelu ja teniia Oy Kauniaisten aupuni KESKUSTA ASEMAKAAVAMUUTOS, RADAN POHJOISPUOLI, RATATYÖLÄISTEN KORTTELI Kaavaselostus 6-C783 Yhdysuntalautaunta 5..008 58 Kaavaluonnos nähtävillä MRL 6, MRA

Lisätiedot

Tilastolliset menetelmät: Varianssianalyysi

Tilastolliset menetelmät: Varianssianalyysi Variassiaalsi Tilastolliset meetelmät: Variassiaalsi 0. Ysisuutaie variassiaalsi. asisuutaie variassiaalsi. olmi a useampisuutaie variassiaalsi T @ Ila Melli (006) 433 Variassiaalsi T @ Ila Melli (006)

Lisätiedot

SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy consumption of sauna and related factors

SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy consumption of sauna and related factors LAPPEENRANNAN TEKNILLINEN YLIOPISTO Tenillinen tiedeunta Ympäristöteniian oulutusohelma BH10A0300 Ympäristöteniian andidaatintyö a seminaari SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy

Lisätiedot

ASEMAKAAVAN SELOSTUS. Porin kaupunkisuunnittelu 15.10.2013 Asemakaava tunnus 609 1616

ASEMAKAAVAN SELOSTUS. Porin kaupunkisuunnittelu 15.10.2013 Asemakaava tunnus 609 1616 VANHANKOIVISTON (4.) KAUPUNGINOSAN KORTTELIN KIINTEISTÖJEN :80, :8, :8, : 84 JA POHJOLANTIEN (OSA) JA UNTAMONPUISTON (OSA) ASEMAKAAVAN MUUTOS ASEMAKAAVAN SELOSTUS Porin aupunisuunnittelu.0.0 Asemaaava

Lisätiedot

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:. AMMATIKKA top 7..005 MATEMATIIKAN KOE. ateen ammatillien oulutuen aiien alojen yteinen matematiia ilpailu Nimi: Oppilaito:. Koulutuala:... Luoa:.. Sarjat: MERKITSE OMA SARJA. Teniia ja liienne:... Matailu-,raitemu-

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 11 Kari Kärkkäinen Syksy 2015

BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 11 Kari Kärkkäinen Syksy 2015 BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS 536A Tietoliienneteniia II Osa Kari Käräinen Sysy 5 Kantataajuusjärjestelmä lähettää ±A -tasoisia symboleita T:n välein. Optimaalinen vastaanotin

Lisätiedot

Konttorikonemiehet Oy

Konttorikonemiehet Oy m m Konttorionemiehet Oy MALLISTO 2011-2012 Konttorionemiehet Oy Hintoihin sisältyy alv 23 %. Voimassa 31.1.2012 saaa Kaii hinnat voimassa 31.1.2012 saaa. Eri turvaluoat toimistopapereille Konttorionemiehet

Lisätiedot

S-114.240 Hahmontunnistus ihmisläheisissä käyttöliittymissä Kasvojen tunnistus ja identiteetin tarkistus: ZN-Face

S-114.240 Hahmontunnistus ihmisläheisissä käyttöliittymissä Kasvojen tunnistus ja identiteetin tarkistus: ZN-Face S-114.240 Hahmontunnistus ihmisläheisissä äyttöliittymissä Kasvojen tunnistus ja identiteetin taristus: ZN-Face Kalle Korhonen sorhon@cc.hut.fi 13.4.2000 Tiivistelmä: Raportissa tutustutaan aupalliseen

Lisätiedot

NAULALIITOSTEN MITOITUS

NAULALIITOSTEN MITOITUS NAULALIITOSTEN MITOITUS Sisällysluettelo 1 Yleistä... Esiporaus... 3 Materiaalit... 4 Kuormitustapa...3 5 Leiausrasitettu naula...4 5.1 Puutavara-puutavara -liitos...4 5. Kerto-Kerto -liitos...5 5.3 Kerto-Puutavara

Lisätiedot

AMBIGUITEETTIONGELMA KANTOAALLONVAIHEMITTAUKSESSA. JUKKA TOLONEN Teknillinen korkeakoulu Maanmittaustieteiden laitos jotolone@cc.hut.

AMBIGUITEETTIONGELMA KANTOAALLONVAIHEMITTAUKSESSA. JUKKA TOLONEN Teknillinen korkeakoulu Maanmittaustieteiden laitos jotolone@cc.hut. MIGUITEETTIONGELM KNTOLLONVIHEMITTUKSESS JUKK TOLONEN Tenillinen oreaoulu Maanmittaustieteiden laitos otolone@cc.hut.fi . Johdanto Satelliittipaiannus perustuu vastaanottimen a satelliittien välisen etäisyyden

Lisätiedot

Tontti esitetään asetettavaksi myyntiin liitteenä 2 olevan myyntiesitteen mukaisesti.

Tontti esitetään asetettavaksi myyntiin liitteenä 2 olevan myyntiesitteen mukaisesti. Yhdysuntalautaunta.0.00 Yhdysuntalautaunta.0.00 Kaupunginhallitus.0.00 Kaupungin omistaman pientalotontin myynti Espoon Ymmerstassa //00 YLK Vuoden 00 talousvioon sisältyy aupungin omistaman pientalotontin

Lisätiedot

Matemaatikkona vakuutusyhtiössä. Sari Ropponen Suomen Aktuaariyhdistyksen kuukausikokous 27.10.2014 Kumpulan kampus

Matemaatikkona vakuutusyhtiössä. Sari Ropponen Suomen Aktuaariyhdistyksen kuukausikokous 27.10.2014 Kumpulan kampus Matemaatikkona vakuutusyhtiössä Sari Ropponen Suomen Aktuaariyhdistyksen kuukausikokous 27.10.2014 Kumpulan kampus Miksi vakuutusmatemaatikoilla on töitä Vakuutusyhtiölaki (2008/521) 6. luku Vakuutusyhtiössä

Lisätiedot

EETU OJANEN SIGNAALIN ENNUSTAMINEN KALMAN-SUOTIMELLA. Kandidaatintyö

EETU OJANEN SIGNAALIN ENNUSTAMINEN KALMAN-SUOTIMELLA. Kandidaatintyö EETU OJANEN SIGNAALIN ENNUSTAMINEN KALMAN-SUOTIMELLA Kandidaatintyö Tarastaja: Lehtori Konsta Koppinen Jätetty tarastettavasi 11. tououuta 2009 2 TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Tietoliienne-

Lisätiedot

MATEMAATIKKONA VAKUUTUSYHTIÖSSÄ. Sari Ropponen Suomen Aktuaariyhdistyksen kokous Helsingin Yliopisto, Kumpulan kampus

MATEMAATIKKONA VAKUUTUSYHTIÖSSÄ. Sari Ropponen Suomen Aktuaariyhdistyksen kokous Helsingin Yliopisto, Kumpulan kampus MATEMAATIKKONA VAKUUTUSYHTIÖSSÄ Sari Ropponen 11.10.2016 Suomen Aktuaariyhdistyksen kokous Helsingin Yliopisto, Kumpulan kampus VAKUUTUSMATEMAATIKON ASEMA TUNNISTETTU TÄRKEÄKSI yhtiölaki (2008/521) 6.

Lisätiedot

STOKASTISET DIFFERENTIAALIYHTÄLÖT 7

STOKASTISET DIFFERENTIAALIYHTÄLÖT 7 STOKASTISET DIFFERENTIAALIYHTÄLÖT 7 1. Todennäöisyyslasennasta ja merinnöistä Palautamme seuraavassa lyhyesti mieleen todennäöisyyslasennan äsitteitä ja esittelemme myös muutamia urssilla äytettäviä merintätapoja.

Lisätiedot

ASEMAKAAVOJEN 480 ja 481 SELOSTUS

ASEMAKAAVOJEN 480 ja 481 SELOSTUS ASEMAKAAVOJEN 0 ja SEOSTUS 0 KEVÄTAAKSONPURO PORVOO KAUPUNGINOSA 0 orttelit -0 erillispientalojen orttelialueita, yleisten raennusten orttelialue seä atu- ja viristysalueita KEVÄTAAKSONKAIO PORVOO KAUPUNGINOSAT

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg Disreeti Matematiia Paja Rataisuja viiolle 5. (28.4-29.4 Jeremias Berg Yleisiä ommeteja: Näissä tehtävissä aia usei rataisua oli ysittäie lasu. Kuitei vastausee olisi hyvä lisätä ommeteja siitä misi jou

Lisätiedot

Kiinteätuottoiset arvopaperit

Kiinteätuottoiset arvopaperit Mat-.34 Ivestoititeoria Kiiteätuottoiset arvopaperit 6..05 Lähtöohtia Lueolla tarasteltii tilateita, joissa yyarvo laseassa äytettävä oro oli aettua ja riippuato aiaperiodista Käytäössä orot äärittyvät

Lisätiedot

HalliPES 1.0 OSA 14: VOIMALIITOKSET

HalliPES 1.0 OSA 14: VOIMALIITOKSET HalliPES 1.0 OSA 14: VOIMALIITOKSET 28.4.2015 1.0 JOHDANTO Tässä osassa esitetään primäärirungon voimaliitosia ja niien mitoitusohjeita. Voimaliitoset mitoitetaan tapausohtaisesti määräävän uormitusyhistelmän

Lisätiedot

9 ALIKERAVA 381 AK-58 AK-69 LPA-22 259 K-8 LPA-22 LPA 314 K-27 AK-43 LPA AK-43 T-1 2:146 SAMPOLANKATU SIBELIUKSENTIE. i-21. 40 db. 40 db +68.10.

9 ALIKERAVA 381 AK-58 AK-69 LPA-22 259 K-8 LPA-22 LPA 314 K-27 AK-43 LPA AK-43 T-1 2:146 SAMPOLANKATU SIBELIUKSENTIE. i-21. 40 db. 40 db +68.10. 8 0 8. Kp 0 8. 8. LPA- :6 0--6-M60.7 8..6 6 I II.8 KESKUSTA K-8 t 7 II 0 SAMPOLANKATU...0 SIBELIUKSENTIE.. 0 öintitalo SANTANIITYNKUJA Santaniitynuja 8 8.6 8. 8 AK-6 8 SANTANIITYNKUJA pp/t LPA 0 AK- 7

Lisätiedot