RATKAISUT: 10. Lämpötila ja paine

Koko: px
Aloita esitys sivulta:

Download "RATKAISUT: 10. Lämpötila ja paine"

Transkriptio

1 Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila. ) Suure, joa ilmaisee pituuen muutosen pituusysiöä ja lämpötilaysiöä ohti. e) Suure, joa uvaa voiman jaautumista pinnalle. f) Veen (tai muun nesteen) omasta painosta johtuva paine. g. Silmän halaisija on = 8,5 mm, syvyys h = 4 m, veen tiheys ρ = m 3 normaali-ilmanpaine p = 3 Pa. F Paineen määritelmän p = perusteella voima on, F = pa, jossa paine on A ilmanpaineen ja hyrostaattisen paineen summa p = p + ρ gh ja silmän pinta-ala on A = π r. Silmään ohistuva voima on siten ( ρ ) π F = p + gh r g m,85 m 3 Pa 9,8 4 m π 3 = + m s = 3,547 N 4 N. Vastaus: Silmään ohistuu 4 N:n voima.. ja.3 Elementin pituus on l = 5, m, lämpötila talvella T = 35, lämpötila esällä α =. Lämpötilan muuttumisesta johtuva pituuen muutos on T = 5 ja betonin pituuen lämpötilaerroin ( ( )) Vastaus: Elementti on esällä 3,7 mm piempi uin talvella. Δ l = lαδ T = 5, m 5 35 =,3744 m 3,7 mm..4 Veen paine maalämpöpumpun liittymän tasolla on p =,8 bar, tarastelutason oreus Δ h = 3, m ja venttiilin halaisija 3 = 7, m. F Paineen määritelmän p = perusteella voima on, F = pa. A Yläerrassa veen paine p on hyrostaattisten paineien eron Δ p = ρ gδhverran h Teijät ja WSOY Oppimateriaalit Oy, 7

2 Physica 9. painos (6). Lämpötila ja paine pienempi, joten paine yläerrassa on 5 g m p = p Δ ph = p ρ gδ h=,8 Pa 9,8 3, m = 4868 Pa 3 m s Siten venttiiliin ohistuu voima 3 7, m F = pa= pπr = pπ = 4868 Pa π = 9,5676 N 9,6 N. Vastaus: Säätöventtiiliin ohistuu 9,6 N:n voima..5 Rautasylinterin sisähalaisija on Fe, = 8, mm, αfe =,7, pituuen lämpötilaerroin raualle α Fe =,7, alumiinisylinterin halaisija Al, = 79,8 mm, pituuen lämpötilaerroin alumiinille α ja alulämpötila t =. Al = 3, Kosa alumiini laajenee lämmetessään enemmän uin rauta, alumiinisylinteri juuttuu iinni rautasylinteriin siinä lämpötilassa, jossa mainitut halaisijat ovat yhtä suuret. Rautasylinterin halaisija on silloin = +Δ = + α Δ t Fe Fe, Fe Fe, Fe, Fe ja alumiinisylinterin halaisija = +Δ = + α Δ t Al Al, Al Al, Al, Al Yhtäsuuruuesta seuraa yhtälö + α Δ t = + α Δ t, Al, Al, Al Fe, Fe, Fe josta rataistaan lämpötilan muutos Al,αAlΔt Fe,αFeΔ t = Fe, Al, ( Al,αAl Fe,αFe ) Δ t = Fe, Al, Fe, Al, Δ t = α α Al, Al Fe, Fe Sijoittamalla tähän tunnetut arvot saaaan lämpötilan muutosesi Δ t = Fe, α Al, α Al, Al Fe, Fe 8, mm 79,8 mm =, 79,8 mm 3, 8, mm,7 = 8,49. Joten sylinterit juuttuvat iinni lämpötilassa t = t +Δ t = + 8,49 = 38, Vastaus: Alumiinisylinteri juuttuu iinni rautasylinteriin 4 ºC:een lämpötilassa. Teijät ja WSOY Oppimateriaalit Oy, 7

3 Physica 9. painos 3(6). Lämpötila ja paine.6 Metalliputen pituus alussa on l = 98 mm ja alulämpötila t = 8,. Pituuen muutos lämpötilan muuttuessa on Δ l = αlδ t. Lämpölaajenemisen yhtälöstä nähään, että yhtälöä vastaavan suoran fysiaalinen ulmaerroin ilmaisee tulon α l arvon. Lasetaan mitatuista lämpötiloista lämpötilan muutoset ja esitetään graafisesti pituuen muutosen riippuvuus lämpötilan muutosesta: lämpötilan muutos Δt (), 9,8 3,8 4,3 49, pituuen muutos Δl (mm),,3,36,47,57 Kun ulmaertoimen määrittämiseen tarvittavisi pisteisi valitaan origo ( ºC, mm)ja suoralta piste (5ºC,,6 mm), ulmaertoimen arvosi tulee ( l) ( t) Δ Δ,6 mm mm mm = = =, 54, Δ Δ 5 joten pituuen lämpötilaerroin on α l 5 5 = = =,75,. mm, mm Vastaus: Tutittavan aineen pituuen lämpötilaerroin on,. 5.7 Ilmanpaine oli p = 98 hpa ja suellussyvyys h = 3, m. a) Koonaispaine veessä on p = p + p = p + ρ gh. Siten aluperäisellä syvyyellä paine on p p ρ gh = +. Paine sueltajan elimistössä on p = g m 98 Pa + 9,8 3 m 49 Pa, 4 MPa 3 m s =. b) Sueltaja nousee syvyyteen h, jossa paine on p p + ρ gh p = = = p + ρ gh, josta voiaan rataista ysytty syvyys h. h Teijät ja WSOY Oppimateriaalit Oy, 7

4 Physica 9. painos 4(6). Lämpötila ja paine p ρ gh p + ρ gh = + p ρ gh ρ gh = p + p h h = + ρ g 98 Pa 3 m = + g m 9,8 3 m s =,5 m m. Vastaus: a) Paine sueltajan elimistössä on 3 m:n syvyyessä,4 Mpa. b) Sueltaja nousi oottamaan typen poistumista m:n syvyyteen..8 Ilmanpaine on p = 3 hpa yli, ylipaine hyrauliianesteessä on p = 3, 5 MPa, nostimen sisähalaisija on = 5,5 cm ja aselin etäisyys nostimesta on a = 4, m. Nostimella saaaan aiaan momentti M Nostimen lavaan ohistama voima on F oonaispaine p = p + pyli. Momentti on siten ( ) ( yli) = = = π = + M Fa paa p r a p p r a 6,55 m,3 3, 5 Pa π 4, m = + = Nm, 66 Nm. Vastaus: Nostimella aiaan saatava momentti on π = Fa, jossa a on nostimen etäisyys lavan aselista. = pa, jossa paine p on hyrauliianesteessä vallitseva 5,66 Nm.9 a) Tilavuuen lämpölaajenemisen yhtälö on V = V + γvδ t, joten nesteen alutilavuus V, on määritettävä alusi. Tilavuus voiaan määrittää äyttämällä mittalasia, mutta sillä ei saaa tilavuuelle ovin taraa arvoa. Jos mittausessa äytettävä pullo on mittapullo, voiaan tarasti meriviivaan asti täytetyssä pullossa olevan nesteen määrä luea pullosta. Miäli nesteen tiheys ρ tunnetaan, tilavuus voiaan määrittää mittaamalla pullon massa tyhjänä ja täytettynä, jolloin mtäysi mtyhjä pullossa olevan nesteen tilavuus on V =. Pulloa lämmitetään ρ hitaasti vesihauteessa, ja lämpötila mitataan vesihauteen veestä. Tilavuuen muutos voiaan lasea pullon aulassa nousevan nestepinnan oreuen muutosen avulla: Teijät ja WSOY Oppimateriaalit Oy, 7

5 Physica 9. painos 5(6). Lämpötila ja paine V A h πr h π h h Δ = Δ = Δ = Δ = Δ. Pullon aulan sisähalaisija voiaan mitata 4 työntömitalla. Myös nestepinnan oreus eri lämpötiloissa voiaan mitata työntömitan avulla. b) Pullon tilavuus on V = 5,6 ml ja pullon aulan sisähalaisija on = 5,5 mm. Tilavuuen muutos lämpölaajenemisessa on Δ V = γvδ t. Kun tähän sijoitetaan a)- ohassa mainittu tilavuuen muutosen lausee, saaaan yhtälö Δ h = γvδ t. 4 Rataistaan yhtälö nestepatsaan oreuen muutosen suhteen, jolloin se tulee muotoon 4γV 4γV Δ h = Δ t. Tämä on suoran yhtälö muotoa y = x, jossa ulmaerroin on =. Lasetaan lämpötilan muutoset mittaustulosista ja esitetään oreuen muutos graafisesti lämpötilan muutosen funtiona: Δt (ºC),9 5,9 9,,9 5,3 Δh (mm) 8,3 58,5 83,8 4,8 49, 4γV Kuvaajan fysiaalinen ulmaerroin on =. Sen arvo voiaan määrittää suoralla olevista pisteistä ( ºC, mm) ja (5 ºC, 45 mm): ( h) ( t) Δ Δ 45 mm mm mm 3 m = = = 9,6667 = 9,6667. Δ Δ 5 C C Tilavuuen lämpötilaerroin on siten m 9,6667 π ( 5,5 m ) γ = = = 3-3 π C 4 4 8,353 8,. 3 4V 4 5,6 m C C Vastaus: Paasnesteen tilavuuen lämpötilaerroin on 8,. C 4. Tunnetussa ilmanpaineessa p = 987 mbar elohopeapatsaan oreus on h = 78 mm ja ilmatilan oreus on = 46 mm. Kysytään ilmanpainetta p, un elohopeapatsaan oreus on h = 75 mm ja ilmatilan oreus on = 35 mm. 3 g Elohopean tiheys on ρ = 3,54. m 3 Teijät ja WSOY Oppimateriaalit Oy, 7

6 Physica 9. painos 6(6). Lämpötila ja paine Kosa puten yläpäässä on ilmaa, paine on puten suljetussa haarassa vapaan pinnan tasalla elohopeapatsaan hyrostaattisen paineen ja puteen jääneen ilman paineen summa. Ensimmäisessä tilanteessa on p = p + ρ gh ja jälimmäisessä p = p + ρ gh. i i i i i Lämpötila on vaio ja puten päässä olevan ilman määrä ei muutu, joten sen paine nouattaa Boylen laia pv = pv p A = p A. Jälimmäisessä tilanteessa puteen jääneen ilman paine on p = p. i i Kosa ensimmäisessä tilanteessa p = p ρ gh, vallitseva ilmanpaine jälimmäisessä tapausessa on siten p = p + ρgh = p + ρgh i i ( ρ ) ρ = p gh + gh i 46 mm g m g m = 98 7 Pa 354 9,8, 78 m 354 9,8, 75 m mm m s m s = 5 Pa hpa. Vastaus: Vallitseva ilmanpaine on hpa. i Teijät ja WSOY Oppimateriaalit Oy, 7

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5. Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 010 Jukka Maalampi LUENTO 9 Paine nesteissä Nesteen omalla painolla on merkitystä Nestealkio korkeudella y pohjasta: dv Ady dm dv dw gdm gady paino Painon lisäksi alkioon

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen / ÄRÄHELYMEKANIIKKA SESSIO : Usean vapausasteen systeein liieyhtälöien johto Lagrangen yhtälöillä JOHDANO Kirjoitettaessa liieyhtälöitä suoraan Newtonin laeista äytetään systeeistä irrotettujen osien tai

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

Naulalevylausunto Kartro PTN naulalevylle

Naulalevylausunto Kartro PTN naulalevylle LAUSUNTO NRO VTT-S-04256-14 1 (6) Tilaaja Tilaus Yhteyshenilö ITW Construction Products Oy Jarmo Kytömäi Timmermalmintie 19A 01680 Vantaa 18.9.2014 Jarmo Kytömäi VTT Expert Services Oy Ari Kevarinmäi PL

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

REIKIEN JA LOVIEN MITOITUS

REIKIEN JA LOVIEN MITOITUS REIKIEN JA LOVIEN ITOITUS REIKIEN JA LOVIEN ITOITUS Leiauslujuuen ja poiittaisen etolujuuen ansiosta Kertotuotteisiin on mahollista tehä reiiä. Erityisesti ristiiiluraenteinen soeltuu ohteisiin, joissa

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

3 Lämpölaajaneminen ja tilanyhtälöt

3 Lämpölaajaneminen ja tilanyhtälöt Läölaajaneinen ja tilanyhtälöt Läölaajeneinen POHDI J ETSI - a) Kaksisetalliläöittarissa n liitetty yhteen kaksi eri ateriaalista valistettua etalliliuskaa, jtka läölaajenevat eri tavalla Kska tinen laajenee

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Valon diffraktio yhdessä ja kahdessa raossa

Valon diffraktio yhdessä ja kahdessa raossa Jväslän Ammattioreaoulu, IT-instituutti IXPF24 Fsiia, Kevät 2005, 6 ECTS Opettaja Pasi Repo Valon diffratio hdessä ja ahdessa raossa Laatija - Pasi Vähämartti Vuosiurssi - IST4S1 Teopäivä 2005-2-17 Palautuspäivä

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

Kävelyn aiheuttamien ilmanliikkeiden todentaminen laminaatin alla käytettäessä PROVENT alustaa (parketinalusta)

Kävelyn aiheuttamien ilmanliikkeiden todentaminen laminaatin alla käytettäessä PROVENT alustaa (parketinalusta) TUTKIMUSSELOSTUS Nro VTT-S-02441-07 Korvaa selostuksen Nro VTT-S-00671-07 7.3.2007 n aiheuttamien ilmanliikkeiden todentaminen laminaatin alla käytettäessä PROVENT alustaa (parketinalusta) Tilaaja: SIA

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Derivaatan sovelluksia

Derivaatan sovelluksia Derivaatan sovelluksia Derivaatta muutosnopeuden mittarina Tehdään monisteen esimerkistä 5 hiukan mutkikkaampi versio Olete- taan, että meillä on mpräpohjaisen kartion muotoinen astia, johon virtaa vettä

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

b 4i j k ovat yhdensuuntaiset.

b 4i j k ovat yhdensuuntaiset. MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali 7/ VÄRÄHTELYMEKANIIKKA SESSIO 7: Yhn vapausasn paovärähly, impulssiuormius ja Duhamlin ingraali IMPULSSIKUORMITUS Maanisn sysmiin ohisuva jasoon hrä on usin ajasa riippuva lyhyaiainn uormius. Ysinraisin

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2007

MAOL-Pisteitysohjeet Fysiikka kevät 2007 MAOL-Pisteityshjeet Fysiikka kevät 007 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tuls, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

BLY. Paalulaattojen suunnittelu kuitubetonista. Petri Manninen 24.1.2011

BLY. Paalulaattojen suunnittelu kuitubetonista. Petri Manninen 24.1.2011 BLY Paalulaattojen suunnittelu uitubetonista Petri Manninen BY 56 Paalulaatta - Yleistä Käytetään tyypillisesti peheillä, noraali- tai lievästi ylionsolidoituneilla savioilla ja uilla peheiöillä Mitoitustietojen

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Luentomonisteen harjoitustehtävien vastauset Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt. Järjestelmien lineaarisuus: Järjestelmä on lineaarinen,

Lisätiedot

- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja

- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja - 26 - - mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline - yksiköien avulla voiaan verrata mitattujen suureien arvoja - suure on jonkin esineen tai asian mitattava ominaisuus, jonka arvo

Lisätiedot

HalliPES 1.0 OSA 14: VOIMALIITOKSET

HalliPES 1.0 OSA 14: VOIMALIITOKSET HalliPES 1.0 OSA 14: VOIMALIITOKSET 28.4.2015 1.0 JOHDANTO Tässä osassa esitetään primäärirungon voimaliitosia ja niien mitoitusohjeita. Voimaliitoset mitoitetaan tapausohtaisesti määräävän uormitusyhistelmän

Lisätiedot

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma. Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C

Lisätiedot

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan 3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

Kertaustehtävien ratkaisut LUKU 2

Kertaustehtävien ratkaisut LUKU 2 Kertaustehtävien ratkaisut LUKU 1. Neutraoitumisen reaktioyhtäö: H (aq) NaOH(aq) Na (aq) H O(). Lasketaan NaOH-iuoksen konsentraatio, kun V(NaOH) 150 m 0,150, m(naoh),40 ja M(NaOH) 39,998. n m Kaavoista

Lisätiedot

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004 Koesuunnitelma: Paineen mittaus venymäliuskojen avulla Ryhmä C Aleksi Mäki 350637 Simo Simolin 354691 Mikko Puustinen 354442 1. Tutkimusongelma ja

Lisätiedot

DFCL3 FYSIIKAN HAHMOTTAVA KOKEELLISUUS 8. AIHEKOKONAISUUS LÄMPÖOPPI I TILANYHTÄLÖ KIRJALLINEN ESITYS

DFCL3 FYSIIKAN HAHMOTTAVA KOKEELLISUUS 8. AIHEKOKONAISUUS LÄMPÖOPPI I TILANYHTÄLÖ KIRJALLINEN ESITYS DFCL3 FYSIIKAN HAHMOTTAVA KOKEELLISUUS 8. AIHEKOKONAISUUS LÄMPÖOPPI I TILANYHTÄLÖ KIRJALLINEN ESITYS RYHMÄ P8 Marita Intonen toukokuu 2002 A. PERUSHAHMOTUS JA ESIKVANTIFIOINTI...1 LÄMMITTÄMISEN, JÄÄHDYTTÄMISEN

Lisätiedot

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015 Ene-59.4130, Kuivaus- ja haihduusprosessi eollisuudessa, asuharjoius 5, sysy 2015 Tehävä 4 on ähiehävä Tehävä 1. eijuerrosilassa poleaan rinnain uora ja urvea. Kuoren oseus on 54% ja uiva-aineen ehollinen

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = =

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = = 2 Lasuarjoitus 2 21 Kytentäimpedanssin asenta Mitä taroittaa ytentäimpedanssi? 5 ma:n suuruinen äiriövirta oasiaaiaapein vaipassa (uojoto) aieuttaa 1 mv:n suuruisen äiriöjännitteen 1 m:n mataa Miä on ytentäimpedanssin

Lisätiedot

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström Näyäalueanalyysi Jouhaisselä Tuore Kulvaoselä tuulipuisto 29032012 Annua Engströ Näyäalueanalyysin uodostainen Näeäalueanalyysilla saadaan yleisuva siitä, ihin tuulivoialat äytettyjen lähtötietojen perusteella

Lisätiedot

Kun voima F on painovoimasta eli, missä m on massa ja g on putoamiskiihtyvyys 9.81 m/s 2, voidaan paineelle p kirjoittaa:

Kun voima F on painovoimasta eli, missä m on massa ja g on putoamiskiihtyvyys 9.81 m/s 2, voidaan paineelle p kirjoittaa: 1 PAINE Kaasujen ja nesteiden paineen mittaus on yksi yleisimmistä prosessiteollisuuden mittauskohteista. Prosesseja on valvottava, jotta niiden vaatimat olosuhteet, kuten paine, lämpötila ja konsentraatiot

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen

Lisätiedot

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2.

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2. Luu 7: Oiosulusuojaus 7. OIKOLKOJA 7.. Yleistä Vero laitteide mitoittamisessa, oiosulusuojause suuittelussa ja turvallise äytö suuittelussa o tuettava oiosuluvirrat eri tilateissa ja eri osissa veroa.

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

Sähköstatiikka ja magnetismi Kondensaattorit ja kapasitanssi

Sähköstatiikka ja magnetismi Kondensaattorit ja kapasitanssi Sähköstatiikka ja magnetismi Konensaattorit ja kapasitanssi ntti Haarto 1.5.13 Yleistä Konensaattori toimii virtapiirissä sähköisen potentiaalin varastona Kapasitanssi on konensaattorin varauksen Q ja

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

Sukunimi: Etunimi: Henkilötunnus:

Sukunimi: Etunimi: Henkilötunnus: K1. Onko väittämä oikein vai väärin. Oikeasta väittämästä saa 0,5 pistettä. Vastaamatta jättämisestä tai väärästä vastauksesta ei vähennetä pisteitä. (yhteensä 10 p) Oikein Väärin 1. Kaikki metallit johtavat

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Harjoitustehtävät Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt Järjestelmien lineaarisuus: Järjestelmä on lineaarinen, jos T u u T u T u, jossa ja

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä hysica 6 OETTAJAN OAS 1. painos 1(16) : Luku 1 1. c) 1 0,51 A c) 0,6 A 1 0,55 A 0,6 A. b) V B 4,0 V c) U BC,0 V b) 4,0 V c),0 V 3. a) Kichhoffin. 1 + 3 1 3 4 0,06 A 0,06 A 0 V. b) Alin lamppu syttyy. Kokonaisvita

Lisätiedot

Naulalevylausunto LL13 naulalevylle

Naulalevylausunto LL13 naulalevylle LAUSUNTO NRO VTT-S-3259-12 1 (4) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 151 Lahti 27.4.212 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 11, 244 VTT Puh. 2 722 5566, Fax. 2 722 73

Lisätiedot

3 x ja 4. A2. Mikä on sen ympyräsektorin säde, jonka ympärysmitta on 12 ja pinta-ala mahdollisimman

3 x ja 4. A2. Mikä on sen ympyräsektorin säde, jonka ympärysmitta on 12 ja pinta-ala mahdollisimman HTKK, TTKK, LTKK, OY, ÅA/Insinööriosastot alintauulustelujen matematiian oe 900 Sarja A A Lase äyrien y, (Tara vastaus) y, ja rajaaman äärellisen alueen inta-ala A Miä on sen ymyräsetorin säde, jona ymärysmitta

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3: Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään

Lisätiedot

AE10S suurikapasiteettinen ilmanpoistin nestejärjestelmiin Asennus- ja huolto-ohje

AE10S suurikapasiteettinen ilmanpoistin nestejärjestelmiin Asennus- ja huolto-ohje 1492050/1 IM-P149-13 ST Issue 1 AE10S suurikapasiteettinen ilmanpoistin nestejärjestelmiin Asennus- ja huolto-ohje 1. Turvallisuusohjeet 2. Yleinen tuoteinformaatio 3. Asennus 4. Käyttöönotto 5. Toiminta

Lisätiedot

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt Physica 9 1. painos 1(7) : 12.1 a) Lämpö on siirtyvää energiaa, joka siirtyy kappaleesta (systeemistä) toiseen lämpötilaeron vuoksi. b) Lämpöenergia on kappaleeseen (systeemiin) sitoutunutta energiaa.

Lisätiedot

Manuaalivaihteisto. With start stop Iskutilavuus (cm3) 2298 2298 2298 2298 2298 2298 2298 Ruiskutustapa. Direct Common Rail

Manuaalivaihteisto. With start stop Iskutilavuus (cm3) 2298 2298 2298 2298 2298 2298 2298 Ruiskutustapa. Direct Common Rail MOOTTORIT MOOTTORI Manuaalivaihteisto Manuaalivaihteisto Robottivaihteisto Moottorin mallimerkintä 110dCi 125dCi 150dCi 110dCi 135dCi 165dCi 150dCi Päästönormi Euro 5 Euro 5 Euro 5 Euro 5 Euro 5 Euro 5

Lisätiedot

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

PULLEAT VAAHTOKARKIT

PULLEAT VAAHTOKARKIT PULLEAT VAAHTOKARKIT KOHDERYHMÄ: Työ soveltuu alakouluun kurssille aineet ympärillämme ja yläkouluun kurssille ilma ja vesi. KESTO: Työ kestää n.30-60min MOTIVAATIO: Työssä on tarkoitus saada positiivista

Lisätiedot

Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE

Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE Ene-58.4139 LVI-tekniikan mittaukset ILMAN TILAVUUSVIRRAN MITTAUS TYÖOHJE Aalto yliopisto LVI-tekniikka 2013 SISÄLLYSLUETTELO TILAVUUSVIRRAN MITTAUS...2 1 HARJOITUSTYÖN TAVOITTEET...2 2 MITTAUSJÄRJESTELY

Lisätiedot

AALTO-OPAS H-BEND VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Juhana Kankainen j82081 Teemu Lahti l82636 Henrik Tarkkanen l84319

AALTO-OPAS H-BEND VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Juhana Kankainen j82081 Teemu Lahti l82636 Henrik Tarkkanen l84319 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Juhana Kanainen j8081 Teemu Lahti l8636 Henri Taranen l84319 SATE010 Dynaaminen enttäteoria AALTO-OPAS H-BEND Sivumäärä: 1 Jätetty tarastettavasi:

Lisätiedot

Malli IC15Hx50/1P IC8Tx40 PED Luokka. Ensiö Toisio Ensiö Toisio Ensiö Toisio Virtaus. dm³/s 0,484 0,451 0,158 0,364 Lämpötilat

Malli IC15Hx50/1P IC8Tx40 PED Luokka. Ensiö Toisio Ensiö Toisio Ensiö Toisio Virtaus. dm³/s 0,484 0,451 0,158 0,364 Lämpötilat 0.09.204 Lvi -koodi 536043 L232 645360438 Kohde: Unis 50-2RF-O (Patterilämmitys) Yksikkö IC5Hx50/P IC8Tx40 90 45 0,484 0,45 0, 0,364 ºC-ºC 70-25 0-5-45 40-70 9 5, MPa,6,6,6,6 Rakenneaine EN0028/7-.440.440.440.440.440.440

Lisätiedot

OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI

OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Mitkä kuutiot on taiteltu kuvassa

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely.

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. 1144/2011 7 Liite 1 Vauutustenisistä riseistä johtuvien suureiden lasemista varten äytettävä vauutuslajiryhmittely. Vauutuslajiryhmä Vauutusluoat Ensivauutus 1 Laisääteinen tapaturma 1 (laisääteinen) 2

Lisätiedot

3 Eksponentiaalinen malli

3 Eksponentiaalinen malli Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Naulalevylausunto LL13 Combi naulalevylle

Naulalevylausunto LL13 Combi naulalevylle LAUSUNTO NRO VTT-S-0361-1 1 (5) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 15100 Lahti 7.4.01 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 1001, 0044 VTT Puh. 00 7 5566, ax. 00 7 7003

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

Kojemeteorologia (53695) Laskuharjoitus 1

Kojemeteorologia (53695) Laskuharjoitus 1 Kojemeteorologia (53695) Laskuharjoitus 1 Risto Taipale 20.9.2013 1 Tehtävä 1 Erään lämpömittarin vertailu kalibrointistandardiin antoi keskimääräiseksi eroksi standardista 0,98 C ja eron keskihajonnaksi

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

Joensuun yliopisto Kemian valintakoe/3.6.2009

Joensuun yliopisto Kemian valintakoe/3.6.2009 Joesuu yliopisto Kemia valitakoe/.6.009 Mallivastaukset 1. Selitä lyhyesti (korkeitaa kolme riviä), a) elektroegatiivisuus b) elektroiaffiiteetti c) amfolyytti d) diffuusio e) Le Chatelieri periaate. a)

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2016 Nimi: Henkilötunnus: VASTAUSOHJEET 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan klo

Lisätiedot

FOSFORIPITOISUUS PESUAINEESSA

FOSFORIPITOISUUS PESUAINEESSA FOSFORIPITOISUUS PESUAINEESSA KOHDERYHMÄ: Työ soveltuu yläkouluun kurssille elollinen luonto ja yhteiskunta. Lukiossa työ soveltuu parhaiten kurssille KE4. KESTO: Työ kestää n.1-2h MOTIVAATIO: Vaatteita

Lisätiedot

Luento 10. Virtaventtiilit Vastusventtiilit Virransäätöventtiilit Virranjakoventtiilit. BK60A0100 Hydraulitekniikka

Luento 10. Virtaventtiilit Vastusventtiilit Virransäätöventtiilit Virranjakoventtiilit. BK60A0100 Hydraulitekniikka Luento 10 Virtaventtiilit Vastusventtiilit Virransäätöventtiilit Virranjakoventtiilit BK60A0100 Hydraulitekniikka 1 Yleistä Toimilaitteen liikenopeus määräytyy sen syrjäytystilavuuden ja sille tuotavan

Lisätiedot

Jäykistävän seinän kestävyys

Jäykistävän seinän kestävyys Esimeri Jäyistävän seinän estävyys 1.0 Kuormitus Jäyistävän seinän ominaisuormat on esitetty alla olevassa uvassa. Laselman ysinertaistamisesi tarastellaan seinästä vain iuna-auon vasemman puoleista osaa,

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2011

MAOL-Pisteitysohjeet Fysiikka kevät 2011 MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

XA-sarja, paineilmahydrauliset jalkapumput

XA-sarja, paineilmahydrauliset jalkapumput XA-, paineilmahydrauliset jalkapumput Kuvassa: XA 11G Tuottavuus & ergonomia Lisävarusteena saatava painemittari Integroitu mittari, jossa painelukema (bar, psi ja MPa). 4/3-ohjausventtiili Kaksitoimisten

Lisätiedot

Putken korjaus ja huolto

Putken korjaus ja huolto Putken korjaus ja huolto Laaja valikoima samalta toimittajalta. Ainutlaatuisen kestävät rakenteet. Nopeaa ja luotettavaa suorituskykyä. Tyyppi Mallien määrä Sivu Koepainepumput 2 9.2 Putkenjäädyttimet

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

3 Avaruusgeometria. Lieriö. 324. a) V = 30 20 12 = 7 200 (cm 3 ) 7 200 cm 3 = 7,2 dm 3 = 7,2 l. b) V = A p h = 30 15 = 450 (cm 3 )

3 Avaruusgeometria. Lieriö. 324. a) V = 30 20 12 = 7 200 (cm 3 ) 7 200 cm 3 = 7,2 dm 3 = 7,2 l. b) V = A p h = 30 15 = 450 (cm 3 ) Avaruusgeometria Lieriö 4. a) 0 0 1 7 00 (cm ) 7 00 cm 7, dm 7, l b) A p h 0 15 450 (cm ) 5. Kuution särmän pituus on a 1, cm. a) a 1, 1,78 1,7 (cm ) b) A 6a 6 1, 8,64 8,6 (cm ) 16 6. r d 8 (cm) A p h

Lisätiedot

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti

Lisätiedot

VOIMALAITOSTEKNIIKKA 2016. MAMK YAMK Tuomo Pimiä

VOIMALAITOSTEKNIIKKA 2016. MAMK YAMK Tuomo Pimiä VOIMALAITOSTEKNIIKKA 2016 MAMK YAMK Tuomo Pimiä Pääsäätöpiirit Luonnonkierto- ja pakkokiertokattilan säädöt eivät juurikaan poikkea toistaan prosessin samankaltaisuuden vuoksi. Pääsäätöpiireihin kuuluvaksi

Lisätiedot

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset

www.mafyvalmennus.fi YO-harjoituskoe B / fysiikka Mallivastaukset YO-harjoituskoe B / fysiikka Mallivastaukset 1. a) Laskuvarjohyppääjän pudotessa häneen vaikuttaa kaksi putoamisliikkeen kannalta merkittävää voimaa: painovoima ja ilmanvastusvoima. Painovoima on likimain

Lisätiedot

Vinkkejä opettajille ja odotetut tulokset SIVU 1

Vinkkejä opettajille ja odotetut tulokset SIVU 1 Vinkkejä opettajille ja odotetut tulokset SIVU 1 Konteksti palautetaan oppilaiden mieliin käymällä Osan 1 johdanto uudelleen läpi. Kysymysten 1 ja 2 tarkoituksena on arvioida ovatko oppilaat ymmärtäneet

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot