Ryhmäteoria. Markku Koppinen Turun yliopisto

Koko: px
Aloita esitys sivulta:

Download "Ryhmäteoria. Markku Koppinen Turun yliopisto"

Transkriptio

1 Ryhmäteoria Markku Koppinen Turun yliopisto

2 6. toukokuuta 2011 Alkusanat Tämä ryhmäteorian kurssi käsittelee enimmäkseen ryhmien esitysteoriaa, mutta kuten tulemme näkemään, esitysteoria liittyy niin läheisesti ryhmien rakenneteoriaan, ettei niitä kahta voi erottaa. Usein puhutaankin rakenne- ja esitysteoriasta. Kurssin sisältö on lähinnä kirjasta 1. J.-P. Serre: Linear representations of nite groups (1977) ensimmäinen kolmannes. Muita lähteitä ja hyvää jatkolukemistoa ovat seuraavat: 2. W. Adkins, S. T. Weintraub: Algebra: an approach via module theory (1992). 3. J. L. Alperin, R. B. Bell: Groups and representations (1995). 4. C. W. Curtis, I. Reiner: Representation theory of nite groups and associative algebras (1962). 5. B. Huppert: Endliche Gruppen I (1967). 6. I. M. Isaacs: Character theory of nite groups (1976). 7. W. R. Scott: Group theory (1964). 8. J. J. Rotman: The theory of groups (1965). Monistetta on muutettu vuoden 2008 monisteesta karsimalla asioita, joita ei kuitenkaan ehdittäisi kunnolla käsitellä. Tarkoitus on oppia sekä ryhmien laskennallisia puolia (karakterit) että jonkin verran taustalla olevaa teoriaakin. Kurssilla tarvitaan perustietoina Lineaarialgebra ja Algebran peruskurssit I ja II (luvussa 1 on ryhmistä hiukan kertaustakin). Modulien tunteminen on hyödyksi (Algebran kurssi) muttei välttämätöntä. Lineaarialgebran ja Algebran peruskurssien I ja II pohjaltakin tätä kurssia pystyy seuraamaan, kunhan varautuu siihen, että taso saattaa tuntua kovemmalta kuin noilla kursseilla. i

3 Sisältö 1 Ryhmäteorian peruskäsitteitä Ryhmä, aliryhmä, isomora Sivuluokat, tekijäryhmä, isomoratuloksia Ryhmien suora tulo Ryhmien puolisuora tulo Konjugaattiluokat ja sentralisoijat Ryhmän operointi joukossa Ryhmien esitysteorian perusteita Ryhmän esitys, matriisiesitys ja moduli Johdatteleva esimerkki Ryhmän matriisiesitys Ryhmän lineaarinen esitys Lineaarisen esityksen matriisimuoto Ryhmän moduli Aliesitys ja alimoduli Alimoduli Aliesitys Isomorsmit ja homomorsmit Modulien isomora Esitysten isomora Matriisiesitysten isomora Modulihomomorsmit Suora summa Maschken lause Schurin lemma Sovellus keskuksen alkioihin Schurin relaatiot Tensoritulo Vektoriavaruuksien tensoritulo Modulien ja esitysten tensoritulo ii

4 SISÄLTÖ iii Matriisiesitysten tensoritulo Duaaliesitys ja duaalimoduli Karakterit Ominaisarvoista ja jäljestä Esityksen karakteri Suoran summan, tensoritulon ja duaaliesityksen karakterit Karakterien ortogonaalisuus Luokkafunktioavaruus Karakteritaulu Modulin kanoninen hajotelma Suoran tulon esitykset Karakteriryhmä. Abelin ryhmän esitykset Permutaatioesityksistä Restriktio ja induktio Esityksen ja karakterin restriktio Indusoitu karakteri Indusoitu moduli Restriktio normaaliin aliryhmään Indusoidun modulin konstruktio Ryhmäalgebra Assosiatiivinen algebra Määritelmä ja esimerkkejä Algebroja koskevia perusasioita Algebran modulit ja esitykset Algebran idempotenteista ja suorasummahajotelmista Ryhmäalgebra Ryhmän ja ryhmäalgebran esitysten yhteys Ryhmäalgebran idempotenteista Ryhmäalgebran rakenne Ryhmäalgebran keskus ja keskusidempotentit Abelin ryhmän ryhmäalgebra

5 Luku 1 Ryhmäteorian peruskäsitteitä Tämä luku on osittain Algebran peruskurssien kertausta. 1.1 Ryhmä, aliryhmä, isomora Määritelmä Joukkoa G, jossa on määritelty binäärioperaatio (kuvaus G G G, merkitään (a, b) ab), sanotaan ryhmäksi, jos (ab)c = a(bc) a, b, c G (assosiatiivisuus), on sellainen alkio 1 = 1 G G, että 1a = a1 = a a G kun a G, niin on sellainen a 1 G, että a 1 a = aa 1 = 1 Jos lisäksi ab = ba a, b, c G (kommutatiivisuus), niin G on kommutatiivinen ryhmä eli Abelin ryhmä. (neutraalialkio), (käänteisalkio). Neutraalialkiota kutsutaan myös ykkösalkioksi. Abelin ryhmiä merkitään usein additiivisesti, ja silloin puhutaan nolla-alkiosta ja vasta-alkioista. Esimerkki R ja C ovat yhteenlaskun suhteen ryhmiä, neutraalialkiona 0 ja alkion a käänteisalkiona eli vasta-alkiona a. R = R \ {0} ja C = C \ {0} ovat kertolaskun suhteen ryhmiä, ykkösalkiona luku 1 ja alkion a 0 käänteisalkiona käänteisluku a 1 = 1/a. Esimerkki (Yleinen lineaarinen ryhmä) Käytetään kompleksisten n n-matriisien joukolle merkintää M n (C) = {(a ij ) n n a ij C i, j}. Säännöllisten n n-matriisien joukko GL n (C) = {A M n (C) det(a) 0} on ryhmä matriisikertolaskun suhteen, ykkösalkiona identiteettimatriisi I. Sitä kutsutaan yleiseksi lineaariseksi (matriisi)ryhmäksi (yli C:n). 1

6 LUKU 1. RYHMÄTEORIAN PERUSKÄSITTEITÄ 2 Esimerkki Samoin määritellään ryhmä GL n (K) yli mielivaltaisen kunnan K. Jos K on äärellinen (esimerkiksi K = Z p = Z/pZ, p alkuluku), niin GL n (K) on äärellinen ryhmä. Esimerkki (Symmetrinen ryhmä) Joukon J n = {1, 2,..., n} permutaatioiden joukko S n = {α : J n J n α on bijektio} on ryhmä kuvaustulon (kuvausten yhdistämisen) suhteen, ykkösalkiona identiteettikuvaus. Sanotaan, että S n on n:n alkion symmetrinen ryhmä (#S n = n!). Yleisemmin määritellään mielivaltaisen joukon X symmetrinen ryhmä Σ(X) = {f : X X f on bijektio (eli X:n permutaatio)}. Esimerkki Kerrataan symmetristä ( ryhmää S n Algebran ) peruskurssista II. Permutaatiolle α S n käytetään merkintää n α = k 1 k 2... k n, kun α(j) = kj (j = 1,..., n). Toinen tärkeä merkintätapa ( on sykliesitys, ) jossa α kirjoitetaan erillisten syklien tulona; esimerkiksi S 6 :ssa α = kirjoitetaan myös α = (1 4 2)(3 6)(5) tai α = (1 4 2)(3 6) (1-syklit eli kiintopisteet jätetään yleensä merkitsemättä). Algebran peruskurssissa II määriteltiin permutaation α merkki sign(α); sen voi laskea sykliesityksestä, sillä sign on ryhmähomomorsmi S n {1, 1} (määritelmä ) ja r-syklin merkki on ( 1) r 1 ; esimerkiksi, kun α = (1 4 2)(3 6), niin sign(α) = ( 1) 3 1 ( 1) 2 1 = 1. Permutaatio on parillinen, jos sen merkki on +1. Määritelmä Ryhmän G osajoukko H on aliryhmä, jos se on ryhmä G:n ryhmäoperaation restriktion suhteen; tällöin merkitään H G. Olkoon = H G. Tunnetusti H G jos ja vain jos ab H a, b H, a 1 H a H ja 1 G H, eli ekvivalentisti, jos ja vain jos ab 1 H a, b H. Kun H on äärellinen, ehto voidaan yksinkertaistaa muotoon ab H a, b H. Ryhmän G osajoukko S generoi aliryhmän S = S H G H. (1.1) Helposti nähdään, että S on kaikkien tulojen s ±1 1 s ±1 k (s i S) joukko (tyhjä tulo on 1). Merkitään lyhyesti a = {a} ja yleisemmin a 1,..., a m = {a 1,..., a m }. Alkion a G kertaluku on ord(a) = # a. Algebran peruskurssista muistetaan, että jos ord(a) = n <, niin ord(a k ) = n/ syt(n, k). Esimerkki (Erityinen lineaarinen ryhmä) Yleisellä lineaarisella ryhmällä GL n (C) on aliryhmänä erityinen lineaarinen ryhmä SL n (C) = {A M n (C) det(a) = 1}.

7 LUKU 1. RYHMÄTEORIAN PERUSKÄSITTEITÄ 3 Esimerkki (Alternoiva ryhmä) Symmetrisellä ryhmällä S n on aliryhmänä alternoiva ryhmä A n = {α S n sign(α) = +1}. Esimerkki Tason R 2 isometria on bijektio R 2 R 2, joka säilyttää pisteiden etäisyydet. Tason isometrioita on vain neljää tyyppiä: translaatiot, kierrot, peilaukset ja siirtopeilaukset (Geometrian kurssi). Tason isometriat muodostavat ryhmän. Se on peilausten generoima. Esimerkiksi kierto pisteen O ympäri kulman α verran saadaan kahden peilauksen tulona, joiden akselit kulkevat pisteen O kautta ja muodostavat kulman α/2. Tason isometrioiden ryhmällä on useita mielenkiintoisia aliryhmiä. Eräs on niiden isometrioiden joukko, jotka pitävät O:n paikallaan. Nämä isometriat ovat O-keskiset kierrot ja peilaukset, joiden akseli kulkee O:n kautta. Määritelmä Kuvaus f : G 1 G 2 ryhmien G 1 ja G 2 välillä on (ryhmä)homomor- smi, jos f(ab) = f(a)f(b) a, b G 1. Bijektiivinen homomorsmi on isomorsmi. Jos on olemassa isomorsmi G 1 G 2, niin G 1 ja G 2 ovat isomorset, merkitään G 1 G 2. Esimerkki (Syklinen ryhmä) Ryhmä on syklinen, jos se on yhden alkion generoima. Samaa kertalukua olevat sykliset ryhmät ovat isomorset. Merkitään C n :llä yleistä syklistä ryhmää, jonka kertaluku on n (n = 1, 2,... tai n = ). Esimerkki Ryhmässä C alkio ζ = ζ n = e 2πi/n on eräs n:s ykkösenjuuri eli ζ n = 1. Se generoi aliryhmän {1, ζ, ζ 2,..., ζ n 1 } C n. Esimerkki (Kleinin neliryhmä) Neljän alkion epäisomorsia ryhmiä on kaksi, nimittäin syklinen ryhmä C 4 = a, a 4 = 1, ja Kleinin neliryhmä V 4 = {1, a, b, ab}, a 2 = b 2 = 1, ab = ba. Esimerkki (Diedriryhmä) Tulemme usein käyttämään esimerkeissä diedriryhmää D n (n 3). Se on ryhmä, joka toteuttaa ehdot D n = a, b, a n = 1, b 2 = 1, bab = a 1, #D n = 2n. (1.2) Toisin sanoen D n :llä on generoijat a, b, jotka toteuttavat relaatiot a n = 1, b 2 = 1 ja bab = a 1, ja jossa on 2n alkiota. Seuraa, että D n = {1, a, a 2,..., a n 1, b, ab, a 2 b,..., a n 1 b} ja että tässä listatut alkiot ovat eri alkioita; siis jokaisella D n :n alkiolla g on yksikäsitteinen esitys muodossa g = a i b j (i {0,..., n 1}, b {0, 1}). Voidaan osoittaa, että ehdot (1.2) määräävät D n :n isomoraa vaille yksikäsitteisesti. Esimerkissä nähdään, että ryhmä D n on olemassa, konstruoimalla eräs sellainen konkreettisesti. (Huom. Joissakin kirjoissa ryhmää D n merkitään D 2n :llä.) Esimerkki Diedriryhmä D n (n 3) voidaan konstruoida säännöllisen n-kulmion peittoryhmänä eli symmetriaryhmänä, siis niiden tason isometrioiden ryhmänä, jotka kuvaavat monikulmion itselleen. Voidaan osoittaa, että ryhmän generoimiseen riittää yksi kierto

8 LUKU 1. RYHMÄTEORIAN PERUSKÄSITTEITÄ 4 ja yksi peilaus; esimerkiksi, kun. r = kierto O keskuksena kulman 2π/n verran vastapäivään, s = peilaus monikulmion symmetria-akselin l suhteen, niin r n = 1, s 2 = 1, srs = r 1. Lisäksi kuvaukset r i s j (0 i... l O n 1, 0 j 1) ovat kaikki erisuuria. Seuraa, että ko. symmeriaryhmä on r, s D n. 1.2 Sivuluokat, tekijäryhmä, isomoratuloksia Jatkossa G tarkoittaa aina ryhmää. Toistaiseksi G saa olla ääretönkin. Olkoon H G. Alkion a G vasen sivuluokka on ah = {ah h H}. Kun a, b G, niin ah = bh a bh b 1 a H. Lisäksi aina joko ah = bh tai ah bh =. Valitsemalla vasempien sivuluokkien edustajisto D (otetaan yksi alkio kustakin eri sivuluokasta) saadaan G:n partitio G = d D dh. Vastaava on voimassa oikeille sivuluokille. Aliryhmän H indeksi G:ssä [G : H] on vasempien sivuluokkien lukumäärä, joka on sama kuin oikeiden sivuluokkien lukumäärä. Kun #G <, niin [G : H] = #G/#H (Lagrangen lause). Siis #H jakaa #G:n. Esimerkki Jos #G on alkuluku p, niin G C p. Nimittäin, kun a G, a 1, niin # a jakaa p:n; siis # a = p, joten a = G. Esimerkki Ryhmän D n = a, b (merkinnät kuten aikaisemmin) vasen sivuluokkahajotelma aliryhmän a suhteen on D n = a b a. Aliryhmä H G on normaali, merkitään H G, jos an = Na a G. Tunnetusti tämä on ekvivalentti sen kanssa, että ana 1 N a G (aliryhmän normaalisuuskriteeri). Esimerkki Jos [G : H] = 2, niin sivuluokkahajotelmat ovat G = H ah ja G = H Ha, missä a G \ H. Tällöin ah = G \ H = Ha, ja siis H on normaali aliryhmä. Esimerkki Ryhmän D n = a, b aliryhmä a on normaali. Sen sijaan b = {1, b} ei ole normaali, koska esimerkiksi aba 1 = ba 2 b (n 3). Esimerkki A n S n. Esimerkki Symmetrisessä ryhmässä S 4 on syklirakenteeltaan (eli tyypiltään) viidenlaisia alkioita: 1, (ij), (ij)(kl), (ijk), (ijkl) missä i, j, k, l {1, 2, 3, 4} ovat erisuuria; merkit ovat vastaavasti +1, 1, +1, +1, 1. Näin ollen A 4 :n muodostavat muotoa 1, (ij)(kl), (ijk) olevat alkiot. Merkitään K 4 = {1, (12)(34), (13)(24), (14)(23)}, T = {1, (123), (132)}. Osoitetaan, että nämä ovat A 4 :n aliryhmiä ja että K 4 S 4 mutta T A 4.

9 LUKU 1. RYHMÄTEORIAN PERUSKÄSITTEITÄ 5 Kun N G, sivuluokkien joukosta tulee ryhmä, tekijäryhmä G/N, kun määritellään tulo: (an)(bn) = abn. (Normaalisuusoletusta tarvitaan, että tulo olisi hyvin määritelty.) Kuvaus π : G G/N, π(a) = an a G, on ryhmähomomorsmi; sitä sanotaan kanoniseksi projektioksi tai kanoniseksi homomorsmiksi. Esimerkki S n /A n C 2 kun n 2. Esimerkki A 4 /K 4 C 3. Esimerkki SL n (C) GL n (C). Kun A GL n (C), sivuluokka A SL n (C) koostuu niistä matriiseista, joiden determinantti on = det(a). Ryhmähomomorsmin f : G G ydin Ker(f) = {a G f(a) = 1} on G:n normaali aliryhmä ja kuva Im(f) on G :n aliryhmä, ja on voimassa G/ Ker(f) Im(f) (homomoralause). Isomorsmi F : G/ Ker(f) Im(f) on F (a Ker(f)) = f(a) a G. f G. G.. π.... G/ Ker(f). Im(f) F Esimerkki Homomoralause antaa isomomorsmit GL n (C)/SL n (C) C (f = det) ja S n /A n C 2 (f = sign; n 2). Kun H G ja K G, merkitään HK = {hk h H, k K}. Tämä ei yleensä ole aliryhmä. Jos kuitenkin esimerkiksi K G, niin (hk)(h k ) = (h(kh k 1 ))(kk ) HK ja samoin saadaan (hk) 1 HK, joten HK G; itse asiassa HK = KH = H K. Kun H G ja K G, niin H/(H K) HK/K (suunnikassääntö).. H G HK.. H K Todistus tapahtuu soveltamalla homomoralausetta kuvaukseen H HK/K, h hk. Kun f : G G on ryhmähomomorsmi ja Ker(f) H G, niin G/H f(g)/f(h); todistetaan soveltamalla homomoralausetta kuvaukseen G f(g)/f(h), a f(a)f(h). Kun H G ja K G sekä K H, niin edellisestä saadaan ottamalla f = π : G G/K G/H (G/K)/(H/K) Seuraavat seikat on helppo todeta oikeiksi: (tekijäryhmien isomoralaki). Jos f : G 1 G 2 ja g : G 2 G 3 ovat ryhmähomomorsmeja, niin g f : G 1 G 3 on ryhmähomomorsmi. Se on isomorsmi, jos f ja g ovat isomorsmeja. Ryhmäisomorsmin käänteiskuvaus on ryhmäisomorsmi.. K

10 LUKU 1. RYHMÄTEORIAN PERUSKÄSITTEITÄ 6 Isomorsmeja G G sanotaan G:n automorsmeiksi. Yo. ominaisuuksista seuraa, että G:n automorsmit muodostavat ryhmän, tulona kuvausten yhdistäminen (Σ(G):n aliryhmä). Sitä kutsutaan G:n automorsmiryhmäksi ja merkitään Aut(G). Esimerkki Eräs ryhmän C n = a automorsmi on a i a i (i = 0,..., n 1). Tarkalleen kaikki homomorsmit C n C n ovat kuvaukset f 1,..., f n, missä f k (a i ) = a ik (i, k = 1,..., n). Huomaa, että homomorsmi määräytyy jo generoijan a kuvasta, ja f k :lle se on f k (a) = a k. Automorsmit C n C n ovat ne f k :t, joilla syt(n, k) = 1. Nimittäin, koska Im(f) = f(c) = c k, niin f k on bijektio jos ja vain jos se on surjektio, jos ja vain jos ord(c k ) = n, jos ja vain jos syt(n, k) = 1. Olkoon a G. Osoitetaan, että kuvaus i a : G G, joka määritellään i a (x) = axa 1 x G, (1.3) on G:n automorsmi. Ensinnäkin se on ryhmähomomorsmi G G, sillä i a (xy) = axya 1 = axa 1 aya 1 = i a (x)i a (y). Toiseksi sillä i a1 (i a2 (x)) = a 1 a 2 xa 1 2 a 1 1 = i a1 a 2 (x). Erityisesti i a1 i a2 = i a1a 2 (a 1, a 2 G), (1.4) i a i a 1 = i aa 1 = i 1 = id G, i a 1i a = id G, (1.5) joten i a 1 on i a :n käänteiskuvaus, i a 1 = i 1 a. Siis i a on bijektio. Näin ollen i a Aut(G). Kuvauksia i a kutsutaan G:n sisäisiksi automorsmeiksi. Yhtälö (1.4) merkitsee, että kuvaus G Aut(G), a i a a G, (1.6) on ryhmähomomorsmi. Sen kuva on Aut(G):n aliryhmä, merkitään ja sen ydintä sanotaan G:n keskukseksi Z(G); siis Inn(G) = { i a a G } Aut(G), (1.7) Z(G) = { a G i a = id G } = { a G ax = xa x G }. (1.8) Keskus on normaali aliryhmä. Homomoralauseen mukaan Esimerkki Inn(G) Aut(G). G/Z(G) Inn(G). (1.9) Esimerkki a) Z(GL n (C)) = {ai a C }. b) Z(SL n (C)) =?

11 LUKU 1. RYHMÄTEORIAN PERUSKÄSITTEITÄ Ryhmien suora tulo Määritelmä Olkoot A ja B ryhmiä. Niiden (ulkoinen) suora tulo on karteesinen tulo A B = {(a, b) a A, b B} varustettuna tulolla (a, b)(a, b ) = (aa, bb ) (a, a A, b, b B). (1.10) On helppo nähdä, että A B on ryhmä, ykkösalkiona (1 A, 1 B ) ja alkion (a, b) käänteisalkiona (a 1, b 1 ). Suoraan tuloon liittyy projektiokuvaukset p A : A B A ja p B : A B B sekä upotukset i A : A A B ja i B : B A B, { p A (a, b) = a, p B (a, b) = b, { i A (a) = (a, 1), i B (b) = (1, b). Nämä ovat ryhmähomomorsmeja, p A ja p B ovat surjektioita ja i A ja i B injektioita. Lisäksi p A i A = id A ja p B i B = id B. Kun A ja B on merkitty additiivisesti, puhutaan suorasta summasta ja merkitään A B. A.. i A p A.. A B Esimerkki R 2 = R R (additiivisten ryhmien R ja R suora summa). Esimerkki Ryhmän C 2 = a ulkoinen suora tulo itsensä kanssa on C 2 C 2 = {(1, 1), (1, a), (a, 1), (a, a)}, missä (1, 1) on ykkösalkio ja muiden alkioiden tulot ovat (1, a)(1, a) = (1, 1), (1, a)(a, 1) = (a, a), (1, a)(a, a) = (a, 1), ja niin edelleen. Osoittautuu, että C 2 C 2 V 4. Määritelmä Ryhmä G on aliryhmiensä H ja K (sisäinen) suora tulo, merkitään G = H K, kun seuraavat kolme ehtoa on voimassa: G = HK, H K = {1}, hk = kh h H, k K. (1.11) Määritelmän ehdoille on seuraavat hyödylliset, ekvivalentit muodot: Olkoon H G ja K G. Silloin kahdelle ensimmäiselle ehdolle saadaan ekvivalentti ehto: { G = HK { jokaisella G:n alkiolla a on yksikäsitteinen esitys muodossa a = hk, h H, k K. H K = {1} (1.12) Kun nämä ehdot ovat voimassa, niin kolmannelle ehdolle on seuraava ekvivalentti ehto: hk = kh h H, k K H G ja K G. (1.13) On helppo todeta, että kun G = H K, niin G/H K ja G/K H. Ulkoisella suoralla tulolla A B on aliryhmät i A (A) A ja i B (B) B, ja A B on näiden aliryhmien sisäinen suora tulo, siis (A B)ulkoinen = (i A (A) i B (B))sisäinen. Kääntäen, jos G on aliryhmiensä sisäinen suora tulo, G = (H K)sisäinen, niin kuvaus hk (h, k) (h H, k K) on ryhmäisomorsmi G:stä ulkoiseen suoraan tuloon (H K)ulkoinen; siis G = (H K)sisäinen (H K)ulkoinen. Kun samaistetaan isomorset ryhmät, niin ulkoinen ja sisäinen suora tulo voidaan siis samaistaa.. p B i B.. B

12 LUKU 1. RYHMÄTEORIAN PERUSKÄSITTEITÄ 8 Esimerkki Todettiin, että C 2 C 2 V 4 (ulkoinen suora tulo). Seuraa, että V 4 voidaan myös hajottaa kahden aliryhmänsä C 2 sisäiseksi suoraksi tuloksi. Todellakin, ryhmällä V 4 = {1, a, b, ab} on aliryhmät a, b C 2, ja saadaan V 4 = a b (sisäinen suora tulo). Muitakin suoratulohajotelmia V 4 :llä on: V 4 = a ab = b ab. Huomaa, että #(H K) = (#H)(#K). Esimerkki Ryhmää S 3 ei voi hajottaa epätriviaalilla tavalla suoraksi tuloksi. Nimittäin #S 3 = 6, mutta kertalukuja 2 ja 3 olevia aliryhmiä on vain C 2 ja C 3, ja C 2 C 3 on kommutatiivinen eikä siis isomornen S 3 :n kanssa. Esimerkki C 6 = a = a 2 a 3 C 3 C 2. Esimerkki D 6 = a, b = a 2, b a 3 D 3 C 2 (a ja b kuten aikaisemmin). Huomautus Yleisemmin määritellään, että ryhmä G on aliryhmiensä G 1,..., G n suora tulo, jos jokaisella G:n alkiolla on yksikäsitteinen esitys muodossa a 1 a n (a i G i i) ja jos eri G i :den alkiot kommutoivat keskenään (jälkimmäisen ehdon voi korvata ehdolla G i G i). 1.4 Ryhmien puolisuora tulo Määritelmä Ryhmä G on aliryhmiensä H ja K (sisäinen) puolisuora tulo (semidirect product), merkitään G = H K, kun H G, G = HK, H K = {1}. (1.14) Ekvivalenssin (1.12) mukaan G = H K tarkalleen silloin kun H G ja kun jokaisella G:n alkiolla a on yksikäsitteinen esitys muodossa a = hk (h H, k K). (1.15) Olkoon G = H K. Toisin kuin suorassa tulossa H:n alkiot eivät yleensä kommutoi K:n alkioiden kanssa. Sen sijaan alkioiden järjestyksen vaihto tapahtuu säännöllä: h H, k K = kh = h k, missä h = khk 1 H, (1.16) ja yleisesti, kun h 1, h 2 H ja k 1, k 2 K, niin (h 1 k 1 )(h 2 k 2 ) = h 1 k 1 h 2 k 2 = (h 1 (k 1 h 2 k 1 1 ))(k 1k 2 ) = (h 1 h 2)(k 1 k 2 ), (1.17) missä h 2 = k 1 h 2 k 1 1 H. Esimerkki D n = a, b = a b (a ja b kuten aikaisemmin). Esimerkki S n = A n (12) (n 2).

13 LUKU 1. RYHMÄTEORIAN PERUSKÄSITTEITÄ 9 Esimerkki Osoitetaan, että esimerkissä on A 4 = K 4 T. Lause Olkoon G = H K. Jokainen ryhmähomomorsmi f : K L voidaan laajentaa ryhmähomomorsmiksi F : G L. Todistus. Määritellään F (hk) = f(k), kun h H, k K. Tämä on hyvinmääritelty kuvaus, koska G:n alkioiden esitykset muodossa hk ovat yksikäsitteiset, ja ryhmähomomorsmi, koska F ((h 1 k 1 )(h 2 k 2 )) = F ((h 1 h 2)(k 1 k 2 )) = f(k 1 k 2 ) = f(k 1 )f(k 2 ) = F (h 1 k 1 )F (h 2 k 2 ), missä h i H, k i K ja h 2 = k 1 h 2 k1 1 H. Lisäksi F on f:n laajennus, sillä F (k) = f(k) kun k K. 1.5 Konjugaattiluokat ja sentralisoijat Ryhmän G alkiot a ja b ovat konjugoituja, eli a ja b ovat konjugaattialkioita, jos b = cac 1 jollain alkiolla c G (toisin sanoen, jos b = i c (a); sisäistä automorsmia i c kutsutaankin myös c:llä konjugoinniksi). Alkion a G konjugaattiluokka on [a] = { cac 1 c G } = { i c (a) c G }. (1.18) Lause Kun a, b G, niin [a] = [b] tai [a] [b] =. Lisäksi G = a G [a]. Siis, kun kustakin konjugaattiluokasta valitaan edustajaksi yksi alkio a i (i I), G:lle saadaan partitio G = i I [a i]. Todistus. Koska a = 1a1 1 [a], niin G = a G [a]. Olkoon a, b G ja [a] [b]. Silloin on sellaiset c 1, c 2 G, että c 1 ac 1 1 = c 2 bc 1 2, josta b = (c 1 2 c 1)a(c 1 2 c 1) 1. Kun c G, niin cbc 1 = (cc 1 2 c 1)a(cc 1 2 c 1) 1 [a], joten [b] [a]. Samoin saadaan [a] [b]. Esimerkki Abelin ryhmässä [a] = {a} a. Huomautus ) Z(G) = {a G [a] = {a}}. 2) Kun a ja b ovat konjugoituja, niin ord(a) = ord(b). 3) Aliryhmä H G on normaali jos ja vain jos se koostuu kokonaisista G:n konjugaattiluokista. Esimerkki Tarkastellaan symmetristä ryhmää S n. Algebran peruskurssissa II osoitettiin, että α, β S n ovat konjugoituja jos ja vain jos ne ovat samaa tyyppiä (niiden sykliesityksien syklit samanpituisia). Kerrataan tämän perustelu: Olkoon α:n sykliesitys α = α 1 α k (α i :t erillisiä syklejä). Kun γ S n, niin γαγ 1 = (γα 1 γ 1 ) (γα k γ 1 ), ja jos α i = (a 1... a r ) on eräs sykleistä, niin γα i γ 1 = (γ(a 1 )... γ(a r )) on samanpituinen sykli. Siis α ja γαγ 1 ovat samaa tyyppiä. Toisaalta, jos α ja β ovat samaa tyyppiä, löydetään γ S n, joka vaihtaa α:n sykliesityksen syklit β:n sykliesityksen sykleiksi. Silloin β = γαγ 1. Näin ollen S n :n konjugaattiluokka koostuu kaikista samaa tyyppiä olevista permutaatioista. Esimerkiksi S 3 :n konjugaattiluokat ovat {1}, {(12), (13), (23)}, {(123), (321}),

14 LUKU 1. RYHMÄTEORIAN PERUSKÄSITTEITÄ 10 ja edustajiksi voidaan ottaa 1, (12), (123). Esimerkiksi [(123)] = {(123), (321}). Esimerkki a) Ryhmän S 4 konjugaattiluokat ovat [1], [(12)], [(12)(34)], [(123)], [(1234)], joiden kertaluvut ovat 1, 6, 3, 8, 6. Esimerkiksi [(123)] koostuu kaikista 3-sykleistä; siis [(123)] = {(123), (243), (142), (134), (132), (143), (234), (124)}. b) Ryhmän A 4 konjugaattiluokat ovat [1], [(12)(34)], [(123)], [(132)], joiden kertaluvut ovat 1, 3, 4, 4. Esimerkiksi [(123)] = {(123), (243), (142), (134)} ja [(132)] = {(132), (143), (234), (124)}. Huomaa, etteivät (123) ja (132) ole konjugoituja A 4 :ssä. c) Miten S 4 :n ja A 4 :n konjugaattiluokat suhtautuvat toisiinsa? Merkitään alkioiden α konjugaattiluokkia [α] S4 ja [α] A4 (jälkimmäinen on määritelty vain kun α A 4 ). Jos α, β A 4 ovat konjugoituja A 4 :ssä, niin triviaalisti ne ovat konjugoituja S 4 :ssä. (Nimittäin β = γαγ 1, γ A 4, ja γ S 4.) Siis [α] A4 [α] S4 kun α A 4. Edellisestä nähdään myös, että jos α A 4, niin [α] S4 = [α 1 ] A4 [α r ] A4 joillain alkioilla α i A 4. Jos α / A 4 niin [α] S4 A 4 =. (Tässä tarvitaan, että A 4 S 4.) Laskemalla todetaan: [1] S4 = [1] A4 = {1}, [(12)] S4 ei leikkaa A 4 :ää, [(12)(34)] S4 = [(12)(34)] A4, [(123)] S4 = [(123)] A4 [(132)] A4, [(1234)] S4 ei leikkaa A 4 :ää. Esimerkki Etsitään ryhmän D 4 konjugaattiluokat. Kun H G, merkitään G/H:lla H:n vasempien sivuluokkien joukkoa silloinkin kun H ei ole normaali aliryhmä. Siis G/H on joukko G/H = {ah a G} (ei ehkä ryhmä). Myös G/H = {dh d D} kun D on ko. sivuluokkien edustajisto. Määritelmä Alkion x G sentralisoija on C G (x) = {a G ax = xa}. Siis keskus on Z(G) = x G C G(x). Helposti todetaan, että C G (x):t ovat aliryhmiä. Lause Olkoon x G. Kuvaus G G, a axa 1 a G, indusoi bijektion C G (x):n vasempien sivuluokkien joukon ja konjugaattiluokan [x] välille. Tarkemmin sanoen kuvaus on bijektio. G/C G (x) [x], ac G (x) axa 1, (1.19)

15 LUKU 1. RYHMÄTEORIAN PERUSKÄSITTEITÄ 11 Todistus. Merkitään f:llä kuvausta G G, f(a) = axa 1. Koska Im(f) = [x], on vain osoitettava, että f(a) = f(b) ac G (x) = bc G (x). Saadaan f(a) = f(b) axa 1 = bxb 1 (b 1 a)x = x(b 1 a) b 1 a C G (x) ac G (x) = bc G (x). Seuraus Kun G on äärellinen, #[x] = [G : C G (x)]; erityisesti #[x] jakaa #G:n. Esimerkki Tapauksessa G = S 3 ja α = (12) saadaan [S 3 : C S3 (α)] = #[α] = 3 (esimerkki 1.5.4), joten #C S3 (α) = 6 3 = 2. Toisaalta 1, α C S 3 (α). Siis C S3 (α) = {1, α}. 1.6 Ryhmän operointi joukossa Määritelmä Olkoon G ryhmä ja X joukko, X. Sanotaan, että G operoi joukossa X, jos on annettuna ryhmähomomorsmi σ : G Σ(X). Käytämme myös merkintää σ(a)(x) = a x (a G, x X). (1.20) Se, että σ on ryhmähomomorsmi, tarkoittaa, että σ(ab) = σ(a)σ(b) a, b G. Tästä ehdosta seuraa tunnetusti σ(1) = id X. Toista merkintää käyttäen nämä kuuluvat ab x = a (b x) a, b G, x X, 1 x = x x X. (1.21) Lisäksi σ(a 1 ) = σ(a) 1, eli kuvaukset x a x ja x a 1 x ovat toistensa käänteiskuvauksia X X. Esimerkki ) Ryhmä G operoi joukossa X = G vasemmalta kertomalla: a x = ax a, x G. 2) G operoi aliryhmänsä H vasempien sivuluokkien joukossa G/H säännöllä a xh = axh a, x G. 3) G operoi joukossa X = G konjugoimalla: a x = axa 1 a, x G. Tällöin σ(a) = i a. 4) G operoi aliryhmiensä joukossa konjugoimalla: a K = aka 1 a G, K G. 5) Automorsmiryhmä Aut(G) operoi G:ssä. Se operoi myös G:n konjugaattiluokkien joukossa. 6) Ryhmä S n operoi joukossa {1,..., n} määritelmänsä mukaisesti, samoin siis sen aliryhmät, esimerkiksi A n. Pykälässä 1.5 konjugaattiluokat ja sentralisoijat syntyivät G:n konjugointioperoinnista G:ssä (esimerkki 1.6.2: 3)). Määrittelemme nyt vastaavat käsitteet yleiselle operoinnille. Oletetaan, että ryhmä G operoi joukossa X. Alkion x X rata (orbit) on [x] = { a x a G } = { σ(a)(x) a G }. (1.22) Lause yleistyy helposti: Ensinnäkin x = 1 x [x], joten X = x X [x]. Toiseksi, kun x, y X ja [x] [y], niin [x] = [y]. Nimittäin, valitsemalla z [x] [y] saadaan

16 LUKU 1. RYHMÄTEORIAN PERUSKÄSITTEITÄ 12 z = c 1 x = c 2 y, siis c 1 2 c 1 x = y, joten kun c G, niin c y = cc 1 2 c 1 x [x]. Siis [y] [x], ja koska samoin saadaan [x] [y], niin [x] = [y]. Näin ollen: Kun ryhmä G operoi joukossa X, niin radat [x] muodostavat X:n partition. Pisteen x X stabilisoija G:n operoinnissa on G:n aliryhmä (harj.) G x = { a G a x = x }. (1.23) Esimerkki Kun operointina on G:n konjugointi G:ssä (esimerkki 1.6.2: 3)), radat ovat konjugaattiluokat ja stabilisoijat ovat sentralisoijat. Lause Operoikoon ryhmä G joukossa X ja olkoon x X. Kun a, b G, niin a x = b x jos ja vain jos bg x = ag x. Todistus. a x = b x a 1 b x = x a 1 b G x bg x = ag x. Seuraus Kuvaus G/G x [x], ag x a x, on bijektio. Seuraus Kun G ja X ovat äärellisiä, #[x] = [G : G x ]; erityisesti #[x] jakaa #G:n. Esimerkki Tarkastellaan ryhmän S 3 operointia joukossa X = {1, 2, 3, 4}, missä S 3 :n alkiot operoivat alkioihin 1, 2, 3 kuten tavallisesti ja pitävät alkion 4 paikallaan. Silloin x = 1 = [x] = {1, 2, 3}, G x = {1, (23)}, [S 3 : (S 3 ) x ] = 6 2 = 3 = #[x], x = 4 = [x] = {4}, G x = S 3, [S 3 : (S 3 ) x ] = 1 = #[x]. Esimerkki Kun K G, joukot aka 1 = {aka 1 k K} ovat G:n aliryhmiä; niitä sanotaan K:n konjugaattialiryhmiksi. Tämä antaa G:lle operoinnin aliryhmiensä joukossa: a K = aka 1 kun a G ja K G. Aliryhmän H rata on H:n konjugaattialiryhmien joukko, ja H:n stabilisoija on H:n normalisoija N G (H) = {a G aha 1 = H}. Seurauksen mukaan H:n konjugaattialiryhmien lukumäärä on [G : N G (H)], kun G on äärellinen. Sanotaan, että x X on operoinnin kiintopiste, jos [x] = {x} eli jos a x = x a G. Esimerkki Esimerkin operoinnin kiintopisteet ovat normaalit aliryhmät. Myöhemmin tarvitsemme seuraavia merkintöjä: Kun a G, niin X a = {x X a x = x}. Kun H G, niin X H = {x X a x = x a H} = Erikoistapauksena H = G saadaan kiintopisteiden joukko X G = {x X a x = x a G}. a H X a.

17 Luku 2 Ryhmien esitysteorian perusteita Jatkossa G tarkoittaa aina äärellistä ryhmää, ellei toisin mainita. Käsittelemme vain äärellisasteisia esityksiä ja rajoitumme esityksiin yli kompleksilukukunnan C, vaikka suuri osa teoriasta pätee yleisemminkin. 2.1 Ryhmän esitys, matriisiesitys ja moduli Tässä pykälässä määritellään ryhmien esitysteorian peruskäsite, ja se tehdään peräti kolmella eri tavalla, kolmesta eri näkökulmasta: määritellään 1) ryhmän esitys, 2) ryhmän matriisiesitys, 3) ryhmän moduli. Nämä ovat sikäli ekvivalentit, että esitysteoria voidaan muotoilla käyttäen niistä mitä tahansa yhtä; ne ovat ikään kuin kolme eri kieltä saman asian esittämiseen. Kaikki kolme ovat kuitenkin hyödyllisiä, koska tilanteesta riippuu, mikä niistä on mukavin käyttää tai mikä antaa selvimmän kuvan Johdatteleva esimerkki Tarkastellaan diedriryhmää D 4 = a, b, a 4 = b 2 = 1, bab = a 1. Se on kahdeksan alkion ryhmä, joukkona D 4 = {1, a, a 2, a 3, b, ab, a 2 b, a 3 b}. ( ) ( ja 0 1 B = 1 0 ) Suoraan laskemalla nähdään, että 2 2-matriisit A = totetuttavat samat relaatiot A 4 = B 2 = I ja BAB = A 1. Tästä seuraa, että niiden generoima aliryhmä ryhmässä GL 2 (C) on A, B = {1, A, A 2, A 3, B, AB, A 2 B, A 3 B}. Ryhmä A, B sisältää esimerkiksi matriisin A 3 BA 2, mutta sehän on = A 3 BABBABB = A 3 A 1 A 1 B = AB. Lisäksi laskemalla nämä kahdeksan matriisia nähdään, että ne ovat eri matriiseja. Tästä on helppo päätellä, että kuvaus R : D 4 GL 2 (C), joka määritellään R(a i b j ) = A i B j (i = 0, 1, 2, 3, j = 0, 1), on ryhmähomomorsmi ja siis antaa D 4 Im(R) = 13

18 LUKU 2. RYHMIEN ESITYSTEORIAN PERUSTEITA 14 A, B GL 2 (C). Näin D 4 tulee esitetyksi konkreettisena ( matriisiryhmänä. ) Esimerkiksi alkiota a 2 b saadaan vastaamaan matriisi R(a 2 b) = A B = 1 0. Tämä kuvaus R : D 4 GL 2 (C) on eräs ryhmän D 4 matriisiesitys; matriisit R(a i b j ) ovat esitysmatriiseja. (Katso määritelmä jäljempänä.) Toinen näkökulma samaan tilanteeseen: Merkitään C 2 = {( xy ) x, y C } ; tämä on 2-ulotteinen vektoriavaruus yli C:n tavalliseen tapaan. Lineaarialgebran kurssista muistetaan, että säännölliset matriisit M 2 (C) vastaavat bijektiivisiä lineaarikuvauksia C 2 C 2. Tarkemmin: matriisi ( ) a b c d antaa kuvauksen C 2 C 2, ( ) ( ) ( ) x a b xy y c d (matriisitulo). Koska edellä saatiin D 4 kuvattua matriisiryhmänä, niin jokainen sen alkio määrää kuvauksen C 2 C 2. Tarkemmin: Merkitään matriisin R(a i b j ) = A i B j määräämää ( ) lineaarikuvausta ρ(a i b j ) : C 2 C 2. Toisin sanoen ρ(a i b j )(v) = A i B j v, missä xy v =. Silloin ρ(a) ja ρ(b) ovat seuraavia kuvauksia C 2 C 2 : (( )) ( ) ( ) ( ) ( ) ( ) xy xy xy 0 1 xy y ρ(a) = R(a) = A = 1 0 = x, (( )) ( ) ( ) ( ) ( ) ( ) xy xy xy 0 1 xy yx ρ(b) = R(b) = B = 1 0 =. Samoin saadaan kaikki kahdeksan lineaarikuvausta ρ(a i b j ); esimerkiksi (( )) ( ) ( ) ρ(a 2 xy b) = R(a 2 xy b) = A 2 xy B = ( ) ( ) 0 1 xy 1 0 = ( ) x y. Tämä antaa ryhmähomomorsmin ρ : D 4 GL(C 2 ), missä GL(C 2 ) tarkoittaa C 2 :n bijektiivisten lineaarikuvausten ryhmää (määritelmä alla). Saadaan, että D 4 Im(ρ) GL 2 (C 2 ), ja Im(ρ) on kahdeksan lineaarikuvauksen ryhmä. Näin D 4 on esitetty eräänä lineaarikuvausten muodostamana ryhmänä. Kuvaus ρ : D 4 GL(C 2 ) on eräs ryhmän D 4 lineaarinen esitys; C 2 on vastaava esitysavaruus. (Katso määritelmä ) Vielä kolmaskin näkökulma: Avaruus C 2 on eräs ryhmän D 4 moduli, jossa D 4 operoi säännöllä a i b j v = A i B j v (määritelmä ) Ryhmän matriisiesitys Muistetaan yleinen lineaarinen ryhmä (esimerkki 1.1.3) GL n (C) = {A M n (C) det(a) 0}. Määritelmä Olkoon G ryhmä. Sen n-asteinen matriisiesitys on ryhmähomomorsmi R : G GL n (C). Jos R on injektio, esitys on uskollinen (faithful). Esimerkki Edellä löydetty R : D 4 GL 2 (C) on D 4 :n 2-asteinen matriisiesitys. Se on uskollinen. Määrittelemällä R 0 : D 4 GL 2 (C), R 0 (a i b j ) = I i, j, saadaan D 4 :n triviaali 2-asteinen matriisiesitys. Se ei tietenkään ole uskollinen.

19 LUKU 2. RYHMIEN ESITYSTEORIAN PERUSTEITA 15 Esimerkki Tarkastellaan ryhmää C 2 = a = {1, a}, a 2 = 1. Sillä on ainakin seuraavat kolme 2-asteista matriisiesitystä R, R, R : C 2 GL 2 (C): R(1) = I, ( ) 0 1 R(a) = ; 1 0 R (1) = I, ( ) R 1 0 (a) = ; 0 1 R (1) = I, ( ) R 1 0 (a) =. 2 1 (Tarkista, että nämä toteuttavat homomoraehdon. Oikeastaan ainoat epätriviaalit tarkistettavat ehdot ovat R(a) 2 = I = R (a) 2 = R (a) 2.) Ne ovat kaikki uskollisia, ja C 2 :lle saadaan kolme esitystä matriisiryhmänä: C 2 {( ), ( )} {( ) 1 0, 0 1 ( )} {( ) 1 0, 0 1 ( )} Jos matriisiesitys R : G GL n (C) on uskollinen, niin G Im(R) GL n (C). Yleisesti R:n ei tarvitse olla injektio, ja saadaan vain G/ Ker(R) Im(R) GL n (C) (homomoralause); siis yleisesti Im(R) on vain G:n homomornen kuva Ryhmän lineaarinen esitys Olkoon V vektoriavaruus yli kunnan C, dim V <. Kuvaus τ : V V on lineaarinen, jos τ(rv + sw) = rτ(v) + sτ(w) kun r, s C, v, w V. Eräs tällainen on identiteettikuvaus id V. Määritelmä Yleinen lineaarinen ryhmä on ryhmä GL(V ) = {τ : V V τ on bijektiivinen lineaarikuvaus }, ryhmäoperaationa kuvaustulo eli kuvausten yhdistäminen; V on jokin äärellisulotteinen vektoriavaruus yli C:n. (Vertaa esimerkkiin ) On helppo osoittaa, että GL(V ) todella on ryhmä (Σ(V ):n aliryhmä); ykkösalkio on id V. Määritelmä Olkoon V äärellisulotteinen vektoriavaruus yli C:n. Ryhmähomomorsmi ρ : G GL(V ) on ryhmän G esitys avaruudessa V. Dimensio n = dim V on esityksen aste (eli esitys on n-asteinen) ja V on esitysavaruus. Näitä esityksiä kutsutaan myös G:n lineaarisiksi esityksiksi. Vaatimus, että ρ on ryhmähomomorsmi, merkitsee tarkalleen, että ρ(gh) = ρ(g)ρ(h) kun g, h G; homomorsmi toteuttaa lisäksi ρ(1 G ) = id V ja ρ(g 1 ) = ρ(g) 1 (käänteiskuvaus). Huomaa, ettei vaadita, että esitys ρ olisi injektiivinen. Siis ei seuraa G Im(ρ) (kuten pykälän esimerkissä kävi), vaan yleisesti Im(ρ) on vain G:n homomornen kuva, Im(ρ) G/ Ker(ρ). Esitystä ρ sanotaan uskolliseksi, jos ρ on injektio; tällöin G Im(ρ) GL(V ).

20 LUKU 2. RYHMIEN ESITYSTEORIAN PERUSTEITA 16 Esimerkki Tarkastellaan ryhmää C 2 = a = {1, a}, a 2 = 1. Olkoon V = C 2. Määritellään ρ : C 2 GL(C 2 ), ρ(1) = id, ( ( x y ρ(a) = y) x) x, y C. Tämä on C 2 :n esitys, sillä on helppo tarkistaa, että ρ(gh) = ρ(g)ρ(h) kun g, h C 2. (Oikeastaan ainoa epätriviaali tarkistettava ehto on ρ(a 2 ) = ρ(a) 2.) Samalle ryhmälle saadaan samassa avaruudessa paljon muitakin esityksiä, esimerkiksi ρ : C 2 GL(C 2 ): tai ρ : C 2 GL(C 2 ): ρ (1) = id, ρ (1) = id, ( ( ρ x x (a) = y) y) ( ( ) ρ x x (a) = y) 2x y x, y C, x, y C. Esimerkki (Nollaesitys) Jos n = 0, niin V = {0} ja GL(V ) = {id V }. Siis G:n ainoa 0-asteinen esitys on kuvaus ρ : G {id}, ρ(g) = id g G. Tämä on G:n nollaesitys. Esimerkki (Triviaalit esitykset) Ryhmällä G on jokaisessa avaruudessa V triviaali esitys, joka määritellään ρ : G GL(V ), ρ(g) = id V g G. Triviaalia 1-asteista esitystä sanotaan ykkösesitykseksi (unit representation). Esimerkki (1-asteiset esitykset) Olkoon ρ : G GL(V ) 1-asteinen esitys. Siis dim V = 1. Silloin jokainen ρ(g) : V V merkitsee kertomista jollain skalaarilla 0; toisin sanoen, kun skalaaria merkitään γ(g):llä, ρ(g)(v) = γ(g)v g G, v V. (2.1) Koska ρ(gh) = ρ(g)ρ(h), niin γ(gh) = γ(g)γ(h) kun g, h G. Siis γ on ryhmähomomorsmi G C (missä C on C:n multiplikatiivinen ryhmä C \ {0}). Kääntäen, jos on annettuna ryhmähomomorsmi γ : G C, niin määrittelemällä ρ yhtälöllä (2.1) saadaan G:n esitys 1-ulotteisessa avaruudessa V. Todetaan siis, että G:n 1-asteiset esitykset vastaavat ryhmähomomorsmeja G C. (Vastaavuus ei ole yksikäsitteinen, sikäli että 1-ulotteisia avaruuksia on äärettömän paljon.) Esimerkki (C 2 :n 1-asteiset esitykset) Ryhmällä C 2 = a = {1, a} on kaksi ryhmähomomorsmia γ 0, γ 1 : C 2 C, nimittäin γ 0 (1) = γ 0 (a) = 1 (triviaali homomorsmi) ja γ 1 (1) = 1, γ 1 (a) = 1. Näin ollen C 2 :lla on kaksi 1-asteista esitystä ρ 0, ρ 1 : C 2 GL(C). (Tässä esitysavaruudeksi on merkitty C). Ne ovat: ρ 0 (1)(x) = ρ 0 (a)(x) = x x C, sekä ρ 1 (1)(x) = x ja ρ 1 (a)(x) = x x C. Olkoon γ : G C ryhmähomomorsmi. Merkitään n = #G. Kun g G, niin g n = 1, joten γ(g) n = 1; siis γ(g) C on n:s ykkösenjuuri. Tunnetusti tämä merkitsee, että γ(g) = e 2πim/n jollain m:llä, 0 m < n. Muistetaan, että e 2πim/n = (e 2πi/n ) m = cos(2πm/n) + i sin(2πm/n).

Esko Turunen MAT Algebra1(s)

Esko Turunen MAT Algebra1(s) Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H

Lisätiedot

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen anton.mallasto@aalto.fi. 1. 2. Muista. Ryhmän G aliryhmä H on normaali aliryhmä, jos ah = Ha kaikilla a G. Toisin

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Algebra I, Harjoitus 6, , Ratkaisut

Algebra I, Harjoitus 6, , Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

GROUPS AND THEIR REPRESENTATIONS - FIFTH PILE. Olemme jo (harjoituksissa!) löytäneet Lien ryhmälle SL 2 (R) seuraavat redusoitumattomat esitykset:

GROUPS AND THEIR REPRESENTATIONS - FIFTH PILE. Olemme jo (harjoituksissa!) löytäneet Lien ryhmälle SL 2 (R) seuraavat redusoitumattomat esitykset: GROUPS AND THEIR REPRESENTATIONS - FIFTH PILE KAREN E. SMITH 32. Ryhmän SL 2 (R) esitykset Example 32.1. Palautamme mieleen, että { x y SL 2 (R) = A = det A = xw yz = 1} ja z w { a b sl 2 (R) = A = Tr

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää

1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää Ryhmäteoreettinen näkökulma Rubikin kuutioon Matematiikan ja tilastotieteen laitos Syksy 2010 Harjoitus 2 Ratkaisuehdotus 1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää D 8 = { id,

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo

Lisätiedot

Symmetrisistä ryhmistä symmetriaryhmiin

Symmetrisistä ryhmistä symmetriaryhmiin Symmetrisistä ryhmistä symmetriaryhmiin 16. marraskuuta 2006 1 Symmetrisistä ryhmistä... Bijektiivistä kuvausta {1,..., n} {1,..., n} kutsutaan n-permutaatioksi. Merkitään n-permutaatioden joukkoa S n.

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

Syklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016

Syklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016 Syklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016 Sisältö Johdanto 2 1 Ryhmäteoriaa 4 1.1 Ryhmän määritelmä....................... 4 1.2 Kertaluku.............................

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta. ALGEBRA II 27 on homomorfismi. Ensinnäkin G(a + b) a + b G(a)+G(b) (f), G(ab) ab G(a)G(b) G(a) G(b) (f), ja koska kongruenssien vasempien ja oikeiden puolten asteet ovat pienempiä kuin f:n aste, niin homomorfiaehdot

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Lineaarikuvaukset. 12. joulukuuta F (A r ) = F (A r ) r .(3) F (s) = s. (4) Skalaareille kannattaa määritellä lisäksi seuraavat tulot:

Lineaarikuvaukset. 12. joulukuuta F (A r ) = F (A r ) r .(3) F (s) = s. (4) Skalaareille kannattaa määritellä lisäksi seuraavat tulot: Lineaarikuvaukset 12. joulukuuta 2005 1 Yleistys multivektoreille Olkoon F lineaarikuvaus vektoriavaruudessa. Yleistetään F luonnollisella tavalla terille F (a 1 a n ) = F (a 1 ) F (a n ), (1) sekä terien

Lisätiedot

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen 802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

MAT Algebra 1(s)

MAT Algebra 1(s) 8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle. Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Ryhmäteoriaa. 2. Ryhmän toiminta

Ryhmäteoriaa. 2. Ryhmän toiminta Ryhmäteoriaa 2. Ryhmän toiminta Permutaatiot kuvaavat jonkin perusjoukon alkioita toisikseen. Eräät permutaatiot jättävät joitain alkioita paikalleen, toiset liikuttavat kaikkia joukon alkioita. Kaikki

Lisätiedot

TIIVISTELMÄ OPINNÄYTETYÖSTÄ (liite FM-tutkielmaan) Luonnontieteellinen tiedekunta

TIIVISTELMÄ OPINNÄYTETYÖSTÄ (liite FM-tutkielmaan) Luonnontieteellinen tiedekunta Oulun yliopisto TIIVISTELMÄ OPINNÄYTETYÖSTÄ (liite FM-tutkielmaan) Luonnontieteellinen tiedekunta Maisterintutkinnon kypsyysnäyte Laitos: Matemaattisten tieteiden laitos Tekijä (Sukunimi ja etunimet) Isopahkala

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä

Lisätiedot

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia Algebra 1, harjoitus 9, 11.-12.11.2014. 1. Olkoon G ryhmä ja H G normaali aliryhmä. Tiedetään, että tällöin xhx 1 H kaikilla x G. Osoita, että itse asiassa xhx 1 = H kaikilla x G. Ratkaisu: Yritetään osoittaa,

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Tekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät.

Tekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. 3 Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa osiin. Ideana on, että voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin kokonaisuuksina, ja jättää

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2 3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2 Olen valinnut kunkin luvun teemaksi yhden ryhmän. Ensimmäisen luvun teema on pienin epätriviaali ryhmä, eli ryhmä, jossa on kaksi alkiota. Merkitsen

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

Konformigeometriaa. 5. maaliskuuta 2006

Konformigeometriaa. 5. maaliskuuta 2006 Konformigeometriaa 5. maaliskuuta 006 1 Sisältö 1 Konformigeometria 1.1 Viivan esitys stereograasena projektiona............ 1. Euklidisen avaruuden konformaalinen malli........... 4 Konformikuvaukset

Lisätiedot

Matriisialgebra harjoitukset, syksy 2016

Matriisialgebra harjoitukset, syksy 2016 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 7 Onko kuvaus F : R R, F(x 1,x = (x 1 +x,5x 1, x 1 +6x lineaarinen kuvaus? Jos on, niin määrää sen matriisi luonnollisen kannan suhteen Jos ei ole, niin

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen Algebran perusteet Harjoitus 4, ratkaisut kevät 2016 1 a) Koska 105 = 5 21 = 3 5 7 ja 44 = 2 2 11, niin syt(44, 105) = 1 Lisäksi ϕ(105) = ϕ(3 5 7) = (3 1)(5 1)(7 1) = 2 4 6 = 48, joten Eulerin teoreeman

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus

Lisätiedot

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Relaatioista 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Esimerkkejä Kokonaisluvut x ja y voivat olla keskenään mm.

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

(xa) = (x) (a) = (x)0 = 0

(xa) = (x) (a) = (x)0 = 0 11. Ideaalit ja tekijärenkaat Rengashomomorfismi : R! R 0 on erityisesti ryhmähomomorfismi :(R, +)! (R 0, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

5.6 Yhdistetty kuvaus

5.6 Yhdistetty kuvaus 5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset.

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162 Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2

Lisätiedot

(2n 1) = n 2

(2n 1) = n 2 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Tekijäryhmän määrittelemistä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. gh = {gh h H}.

Tekijäryhmän määrittelemistä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. gh = {gh h H}. Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa suuriin, helpommin käsiteltäviin osiin. Tämän jälkeen voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R. 11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ

Lisätiedot

Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua)

Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua) Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua) 10.12.2012 Tehtävä 1. Osoita, että tuloryhmän R np R sp indeksi Rubikin paikkaryhmässä R p on täsmälleen kaksi. (Tarkkaan

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua) Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Laskutoimitusten operaattorinormeista

Laskutoimitusten operaattorinormeista Laskutoimitusten operaattorinormeista Rami Luisto 27. tammikuuta 2012 Tiivistelmä Tässä kirjoitelmassa määrittelemme vektoriavaruuksien väliselle lineaarikuvaukselle normin ja laskemme sen eksplisiittisesti

Lisätiedot

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin

Lisätiedot

Tehtävä 4 : 2. b a+1 (mod 3)

Tehtävä 4 : 2. b a+1 (mod 3) Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen Algebran ja lukuteorian harjoitustehtäviä Versio 1.0 (27.1.2006) Turun yliopisto Lukuteoria 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen joukolla: a) C D

Lisätiedot

Toisin sanoen kyseessä on reaalitason vektoreiden relaatio. v w v =k w jollakink R\{0}.

Toisin sanoen kyseessä on reaalitason vektoreiden relaatio. v w v =k w jollakink R\{0}. Algebra I Matematiikan ja tilastotieteen laitos Harjoitus 7 Ratkaisuehdotus (5 sivua) JR 1. Määritellään reaalilukuparien relaatio seuraavasti: (x,y) (x,y ) x =kx jay=ky jollakink R\{0}. Toisin sanoen

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on 0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset

Lisätiedot

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista 1. Olkoot (E, ) ja (F, ) epätyhjiä järjestettyjä joukkoja. Määritellään joukossa E F relaatio L seuraavasti: [ (x, y)l(x, y ) ] [ (x < x )

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

Lineaarialgebra. Osa 2. Turun yliopisto. Markku Koppinen

Lineaarialgebra. Osa 2. Turun yliopisto. Markku Koppinen Lineaarialgebra Osa 2 Turun yliopisto Markku Koppinen Sisältö 1 Koordinaattivektorit ja kannan vaihdot 1 11 Koordinaattivektorit 1 12 Kannan vaihdot 2 2 Lineaarikuvaukset 6 21 Kuvauksista 6 22 Lineaarikuvaukset

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot