Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen

Koko: px
Aloita esitys sivulta:

Download "Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen"

Transkriptio

1 Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen Muista. Ryhmän G aliryhmä H on normaali aliryhmä, jos ah = Ha kaikilla a G. Toisin sanoen, kaikki vasemmat ja oikeat sivuluokat ovat samat. Voidaan myös näyttää, että tämä ehto on ekvivalenttinen sen kanssa, että normaali aliryhmä on suljettu minkä tahansa Gn elementin konjugoinnin suhteen. Elementin x konjugointi elementillä g G voidaan esittää kuvauksella c g (x) = gxg 1. a) Tutkitaan dihedraaliryhmää G = D 4 = a, b = {e, a, b, a 2, a 3, ab, a 2 b, a 3 b}, jossa pätee a 4 = e, b 2 = e, ab = ba 3, ba = a 3 b. Tämä ryhmä on tunnetusti neliön symmetriaryhmä, jossa voidaan ajatella a:n olevan 90 asteen kierto ja b:n olevan peilaus. Valitaan H = b = {e, b}, jolloin eli H ei ole G:n normaali aliryhmä. ah = {a, ab} = {a, ba 3 } {a, ba} = Ha, b) Selvästi #G = 8 ja #H = 2. Kaikki erilaiset H:n sivuluokat ovat eh = {e, b}, ah = {a, ab}, a 2 H = {a 2, a 2 b}, and a 3 H = {a 3, a 3 b}, joten indeksi [G : H] on 4. Lagrangen lauseen mukaan mikä selvästi pitää paikkansa. #G = [G : H]#H, Muista. Olkoon (G, ) sekä (G, ) ryhmiä. Kuvausta f : G G kutsutaan homomorfismiksi jos f(a b) = f(a) f(b) kaikille a, b G). Jos on olemassa homomorfismi G:n ja G :n välillä, ne ovat silloin homomorfiset. Bijektiivistä homomorfismia kutsutaan isomorfismiksi. Olkoon A, B GL n (R) = {A R n n : det(a) 0}. Käyttämällä tunnettua determinanteille pätevää yhtälöä det(ab) = det(a) det(b) saadaan f(ab) = det(ab) = det(a) det(b) = f(a)f(b), 1of 6 1of 6 1of 6

2 joten f on homomorfismi. Lisäksi, koska kaikki determinantit ovat nollasta poikkeavia, homomorfismin kuva kuuluu joukkoon R = R \ {0}. Homomorfismin ydin määritellään maalijoukon neutraalin alkion alkukuvana, eli ker f = f 1 ({e}) = {g G : f(g) = e}. Joukon R neutraali alkio on 1 sillä tässä käytetään laskutoimituksena tavallista kertolaskua. Siis ker f = f 1 ({1}) = {A R n n : det A = 1} =: SL n (R). Tälle joukolle käytetään kirjallisuudessa merkintää SL n (R), ja siitä käytetään nimeä special linear group with real entries. 3. a) Olkoon H mielivaltainen, ryhmän (R, ) aliryhmä jolla on kertaluku 2. Aliryhmänä sen on pakko sisältää neutraalialkio 1 sekä jokin toinen alkio a. Tällöin H = {1, a}. Selvästi a:n on oltava itsensä vasta-alkio, koska muuten joukossa olisi kolmas alkio a 1. Tästä saadaan ehto a 2 = 1. Reaalisia ratkaisuja on vain kaksi, a = 1 and a = 1, mutta valittiin a 1, joten a = 1 on ainoa ratkaisu ja joukko on ainoa kertaluvun 2 aliryhmä. H = {1, 1} Kyllä, H on normaali aliryhmä sillä (R, ) aabelinen ryhmä, ja jokainen aabelisen ryhmän aliryhmä on normaali. Aliryhmän H sivuluokat koostuvat jostain elementistä sekä sen additiivisesta käänteisalkiosta, eli ah = Ha = {a, a}, a R. b) Eräs esimerkki voisi olla f = x 2 ja G = R + = {a R : a > 0}. Tämä on homomorfismi, sillä f(ab) = (ab) 2 = a 2 b 2 = f(a)f(b), a, b R, ja ydin on H koska x 2 = 1 x = ± of 6 2of 6 2of 6

3 Muista. Normaalin aliryhmän kriteeri: Olkoon H ryhmän G aliryhmä. Tällöin H G jos ja vain jos gxg 1 H kaikilla g G ja kaikilla x H. Käytetään todistuksessa normaalin aliryhmän kriteeriä. Valitaan mielivaltainen x H K ja g G. Koska x on H:n alkio ja H on normaali aliryhmä, tiedetään että gxg 1 H normaalin aliryhmän kriteerin perusteella. Toisaalta x on myös K:n alkio. K on myös normaali, joten vastaavasti gxg 1 K. Yhdistämällä nämä kaksi tulosta saadaan gxg 1 H K ja normaalin aliryhmän kriteerin perusteella H K on ryhmän G normaali aliryhmä. a) Osoitetaan hieman yleisempi väite; kahden aliryhmän unioni ei välttämättä ole aliryhmä. Olkoon G = D 4, H = a ja K = b, jolloin H K = {e, b, a, a 2, a 3 }, mutta ab ei kuulu unioniin. Joukko H K ei ole vakaa laskutoimituksen suhteen, joten se ei ole aliryhmä. Kysytty tulos seuraa, koska normaali aliryhmä on aliryhmä. 5. Ei seuraa. Olkoon G = D 4, K = a 2, b ja H = b. Yritetään ensin näyttää, että K G ja H K, ja käyttää tehtävän 1 tulosta, jossa todettiin H G. Käyttäen ensimmäisessä tehtävässä johdettuja lausekkeita huomataan, että a 2 b = a(ab) = (ab)a 3 = ba 6 = ba 2, joten a 2 kommutoi alkion b kanssa. Siis b a 2, b = a 2, b b. Sitten huomaamalla, että a 2 ba = a 5 b = ab saadaan a a 2, b = {a, a 3, ab, a 3 b} = {a, a 3, ba, a 2 ba} = a 2, b a. Kaikki muut tapaukset voidaan tutkia samalla tavalla, joten saadaan K G. Lauseke H K seuraa siitä, että a 2 kommutoi alkion b kanssa. Näytettiin siis, että H K ja K G, mutta tehtävästä 1 tiedetään, että H G. 6. Todistetaan ensin pari hyödyllistä lemmaa Lemma. Olkoon h, h S n. Alkiot h ja h ovat konjugaatteja jos ja vain jos niillä on sama syklirakenne. Proof. ( ) Olkoon alkiolla h syklirakenne (a 1 a 2...a n ) ja ghg 1 = h jollain g. Nimetään a i :n kuva g(a i ) = b i. Tällöin h b i = ghg 1 b i = gh(a i ) = g(a i+1 ) = b i+1, h b n =... = b 1, joten h :lla on samanpituinen sykli. Kun tehdään sama h:lle, saadan että syklit ovat samat. 3of 6 3of 6 3of 6

4 ( ) Oletetaan että h:lla ja h :lla on sama syklirakenne, eli, h = (a 1 a 2...a m )(b 1 b 2...b n )..., h = (c 1 c 2...c m )(d 1 d 2...d n ). Valitaan g S n siten että ga i = c i, gb i = d i jne., jolloin h = ghg 1. Tämä nähdään helposti valitsemalla x i ja y i täsmälleen samassa kohdassa h:ssa ja h :ssa vastaavasti, siten että gx i = y i, jolloin ghg 1 y i = ghx i = gx i+1 = y i+1 = h y. Lemma. Olkoon A n alternoiva ryhmä, eli ryhmä joka koostuu pelkästään ryhmän S n parillisista permutaatioista. Oletetaan C:n olevan konjugaattiluokka ryhmässä S n. Tällöin aliryhmässä A n on kaksi mahdollisuutta i. C on myös konjugaattiluokka ryhmässä A n, ii. C jakautuu kahteen ryhmän A n konjugaattiluokkaan. Jälkimmäinen tapahtuu jos ja vain jos C:n edustaja on tulo kahdesta parittomasta syklistä, joilla on eri pituudet. Huomaa että tässä lasketaan myös pisteet, jotka eivät muutu permutaatiossa. Nämä ovat 1-pituisia syklejä. Proof. Aloitetaan näyttämällä, että konjugaattiluokka C jakautuu aliryhmässä A n jos ja vain jos ei ole h S n \ A n joka kommutoi luokan C edustajan kanssa. Oletetaan ensiksi että konjugaattiluokalle C ja sen edustajalle c on olemassa h S n \ A n siten että ch = hc. Valitaan mielivaltainen g S n \ A n, jolloin gcg 1 = gchh 1 g 1 = (gh)c(gh) 1, jossa gh A 5 parittomien permutaatioiden tulona. Tämän jälkeen oletetaan, että C ei jakaudu, eli mitkä tahansa kaksi elementtiä c 1, c 2 C voidaan kirjoittaa muotoon c 1 = a 1 c 2 a. Mutta silloin voidaan valita c 1 ja c 2 siten että c 1 = gc 2 g 1, missä g S n \ A n. Tällöin mutta nyt ag S 5 \ A 5. a 1 c 2 a = gc 2 g 1 c 2 ag = agc 2, Tämä voidaan nyt yhdistää alkuperäiseen lemmaan. Oletetaan, että alkiolla c on sykliesityksessä parillisen kokoinen sykli. Jokainen sykliesityksen syklit sisältää erilliset alkiot, joten sykliesityksen eri syklit kommutoivat keskenään. Mutta huomaa, että tällaisen syklin kertaluku on pariton, siis c kommutoi jonkun h S 5 \ A n kanssa. 4of 6 4of 6 4of 6

5 Jos alkiolla c on kaksi, saman pituista ja parittoman kokoista sykliä olkoon nämä (a 1...a n ) ja (b 1...b n ) silloin permutaatio h = (a 1 b 1 )...(a n b n ) on paritonta kertalukua, ja hc = ch. Oletetaan nyt, että c = c 1...c r sisältää parittomat syklit c i, joissa jokaisella on eri pituus l i. Olkoon g S n mikä tahansa elementti, joka kommutoi alkion c kanssa. Tällöin g kiinnittää kaikki c i jolloin g = c α c αr r, joillekin α 1,..., α r Z. Siis g on parillista kertalukua, sillä se on parillisten syklien tulo. Tästä seuraa, että g A 5, eli ei ole alkiota joukossa S n \ A n joka kommutoisi alkion c kanssa. i. Käyttäen ensimmäistä lemma, saadaan seuraava lista ryhmän S 5 konjugaatioluokista, sekä niiden kertaluvuista. Huomaa, että kaikissa tapauksissa Konjugaattiluokka Edustaja Kertaluku C 1 (a) 1 C 2 (ab) 10 C 3 (abc) 20 C 4 (abcd) 30 C 5 (abcde) 24 C 6 (ab)(cd) 15 C 7 (abc)(de) 20 a b c d e. Esimerkkinä voidaan laskea luokan C 6 kertaluku. Kiinnitetty alkio voidaan valita 5 eri tavalla, minkä jälkeen voidaan valita (cd) yhteensä ( 4 2) = 6 eri vaihtoehdosta. Koska pistevieraat vaihdot kommutoivat, (esimerkiksi (12)(34) = (34)(12)), tässä laskettiinkin sama alkio kahteen kertaan kun (cd) = (12) ja (cd) = (34). Siispä on jaettava kahdella, ja lopuksi saadaan #C 6 = 15. ii. Normaalit aliryhmät ovat konjugaattiluokkien unioneita. Lagrangen lauseen mukaan, kaikki mahdolliset ryhmän S 5 aliryhmien kertaluvut ovat 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120. Yhdistämällä eri konjugaattiluokkien kertaluvut, nähdään että vain aliryhmät kokoa 1, 40, 60 ja 120 voivat olla konjugaattiluokkien unioneita. Toisin sanoen, jos H 1 on normaali aliryhmä ryhmässä G, sen kertaluku on yksi edellisistä. 5of 6 5of 6 5of 6

6 Jos #H 1 = 40, niin H 1 = C 1 C 5 C 6, mutta tämä joukko ei ole suljettu laskutoimituksen suhteen, sillä (12)(45)(12345) = (143) H 1. Jos valitaan #H 1 = 60, niin H 1 = C 1 C 5 C 6 C 7 tai H 1 = A 5 = C 1 C 3 C 5 C 6. Ensimmäinen ei onnistu, sillä sekään ei ole suljettu laskutoimituksen suhteen. Jälkimmäinen on aliryhmä, jota kutsutaan alternoivaksi ryhmäksi, ja se sisältää kaikki parillisen kertaluvun permutaatiot. Jos #H 1 = 1 tai #H 1 = 120, päädytään triviaaliin tapaukseen, jossa H 1 = {e} ja H 1 = S 5 vastaavasti. iii. Käyttäen toista lemmaa nähdään, että ainoa konjugaattiluokka, joka jakautuu ryhmässä A 5 on C 5. Tällöin saadaan seuraavan taulukon mukaiset konjugaattiluokat. Kuten osassa ii., tarkastetaan Lagrangen lauseen avulla mitä Konjugaattiluokka Edustaja Kertaluku C 1 (a) 1 C 2 (abc) 20 C 3 (ab)(cd) 15 C 4 (abcde) 12 C 5 (abcde) 12 kertalukuja kukin aliryhmä voi saada, ja mitä kertalukuja konjugaattiluokkien unionit voivat saada. Ainoa kelpaava aliryhmä on triviaali aliryhmä H 2 = {1}, joten A 5 on yksinkertainen. iv. Ainoat mahdolliset ketjut ovat H 2 G sekä H 2 H 1 G. Ensimmäinen ei kelpaa, koska G/H 2 G ei ole aabelinen. Toinenkaan ei kelpaa, sillä H 1 /H 2 H 1 ei myöskään ole aabelinen. Esimerkiksi Tämä päättää todistuksen. (123)(234) (234)(123). 6of 6 6of 6 6of 6

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

H = H(12) = {id, (12)},

H = H(12) = {id, (12)}, 7. Normaali aliryhmä ja tekijäryhmä Tarkastelemme luvun aluksi ryhmän ja sen aliryhmien suhdetta. Olkoon G ryhmä ja olkoon H G. Alkiong G vasen sivuluokka (aliryhmän H suhteen) on gh = {gh : h H} ja sen

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

Lisää ryhmästä A 5 1 / 28. Lisää ryhmästä

Lisää ryhmästä A 5 1 / 28. Lisää ryhmästä 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 1 / 28 14A.1 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Tehtävä: Määrää ryhmän karakteritaulu,

Lisätiedot

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto Algebra I Jokke Häsä ja Johanna Rämö Matematiikan ja tilastotieteen laitos Helsingin yliopisto Kevät 2011 Sisältö 1 Laskutoimitukset 6 1.1 Työkalu: Joukot ja kuvaukset..................... 6 1.1.1 Joukko..............................

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

Cauchyn ja Sylowin lauseista

Cauchyn ja Sylowin lauseista Cauchyn ja Sylowin lauseista Pro gradu-tutkielma Jukka Kuru Matemaattisten tieteiden laitos Oulun yliopisto 2014 Sisältö Johdanto 2 1 Peruskäsitteet 4 1.1 Funktion käsitteitä........................ 4

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella

Lisätiedot

Permutaatioista alternoivaan ryhmään

Permutaatioista alternoivaan ryhmään Permutaatioista alternoivaan ryhmään Pro Gradu-tutkielma Sini-Susanna Fetula Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2014 Sisältö 1 Johdanto 2 2 Esitietoja 3 3 Permutaatioista. 6 3.1 Symmetrinen

Lisätiedot

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Matematiikka Sakke Suomalainen Helsingin matematiikkalukio Ohjaaja: Ville Tilvis 29. marraskuuta 2010 Tiivistelmä Harppi ja viivain

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen

Lisätiedot

Algebra II. Syksy 2004 Pentti Haukkanen

Algebra II. Syksy 2004 Pentti Haukkanen Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista

Lisätiedot

Algebra, 1. demot, 18.1.2012

Algebra, 1. demot, 18.1.2012 Algebra, 1. demot, 18.1.2012 1. Mielivaltaisen joukon X potenssijoukko eli kaikkien osajoukkojen joukko P(X) määritellään asettamalla P(X) = {A A X}. Päteekö ehto X P(X) a) aina, b) ei koskaan tai c) joskus?

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.

Lisätiedot

Tarkistusmerkkijärjestelmistä algebrallisissa ryhmissä. Jukka Jylänki jukkajyl@mail.student.oulu.

Tarkistusmerkkijärjestelmistä algebrallisissa ryhmissä. Jukka Jylänki jukkajyl@mail.student.oulu. Tarkistusmerkkijärjestelmistä algebrallisissa ryhmissä Jukka Jylänki jukkajyl@mail.student.oulu. Matemaattisten tieteiden laitos Oulun yliopisto 2011 Sisältö 1 Johdanto 3 2 Perusteita 4 3 Tarkisteyhtälö

Lisätiedot

TOPOLOGISET RYHMÄT. I Topologisten ryhmien yleistä teoriaa

TOPOLOGISET RYHMÄT. I Topologisten ryhmien yleistä teoriaa Heikki Junnila TOPOLOGISET RYHMÄT I Topologisten ryhmien yleistä teoriaa 1. Määritelmä, perusominaisuuksia..... 1 2. Aliryhmät ja tekijäryhmät. Jatkuvat homomorfismit. Tulot..... 13 3. Yhtenäisyys ja epäyhtenäisyys

Lisätiedot

Algebran ja lukuteorian harjoitustehtävien ratkaisut

Algebran ja lukuteorian harjoitustehtävien ratkaisut Algebran ja lukuteorian harjoitustehtävien ratkaisut Versio 1.0 (27.1.2006 Turun yliopisto Lukuteoria 1. a Tarkistetaan ekvivalenssirelaation ehdot. on refleksiivinen, sillä identiteettikuvaus, id : C

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

Kansainväliset matematiikkaolympialaiset 2008

Kansainväliset matematiikkaolympialaiset 2008 Kansainväliset matematiikkaolympialaiset 2008 Tehtävät ja ratkaisuhahmotelmat 1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Luonnolliset vs. muodolliset kielet

Luonnolliset vs. muodolliset kielet Luonnolliset vs. muodolliset kielet Luonnollisia kieliä ovat esim. 1. englanti, 2. suomi, 3. ranska. Muodollisia kieliä ovat esim. 1. lauselogiikan kieli (ilmaisut p, p q jne.), 2. C++, FORTRAN, 3. bittijonokokoelma

Lisätiedot

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia LUKU II HOMOLOGIA-ALGEBRAA 1. Joukko-oppia Matematiikalle on tyypillistä erilaisten objektien tarkastelu. Tarkastelu kohdistuu objektien tai näiden muodostamien joukkojen välisiin suhteisiin, mutta objektien

Lisätiedot

Lukujoukot luonnollisista luvuista reaalilukuihin

Lukujoukot luonnollisista luvuista reaalilukuihin Lukujoukot luonnollisista luvuista reaalilukuihin Pro gradu -tutkielma Esa Pulkka 517378 Itä-Suomen Yliopisto Fysiikan ja matematiikan laitos 26. maaliskuuta 2012 Sisältö 1 Johdanto 1 2 Luonnolliset luvut

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

Topologia Syksy 2010 Harjoitus 9

Topologia Syksy 2010 Harjoitus 9 Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

2.2 Neliöjuuri ja sitä koskevat laskusäännöt

2.2 Neliöjuuri ja sitä koskevat laskusäännöt . Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Matematiikan olympiavalmennus

Matematiikan olympiavalmennus Matematiikan olympiavalmennus Syyskuun 2014 vaativammat valmennustehtävät, ratkaisuja 1. Onko olemassa ehdot a + b + c = d ja 1 ab + 1 ac + 1 bc = 1 ad + 1 bd + 1 cd toteuttavia reaalilukuja a, b, c, d?

Lisätiedot

Ryhmäteoria. Markku Koppinen Turun yliopisto

Ryhmäteoria. Markku Koppinen Turun yliopisto Ryhmäteoria Markku Koppinen Turun yliopisto 6. toukokuuta 2011 Alkusanat Tämä ryhmäteorian kurssi käsittelee enimmäkseen ryhmien esitysteoriaa, mutta kuten tulemme näkemään, esitysteoria liittyy niin läheisesti

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Palmikkoryhmät kryptografiassa

Palmikkoryhmät kryptografiassa Palmikkoryhmät kryptografiassa Jarkko Peltomäki 27. marraskuuta 2010 Palmikkoryhmät ovat epäkommutatiivisia äärettömiä ryhmiä. Niillä on monimutkainen rakenne, mutta toisaalta niillä on geometrinen tulkinta

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain Jaollisuustestejä (matematiikan mestariluokka, 7.11.2009, ohjattujen harjoitusten lopputuloslappu) Huom! Nämä eivät tietenkään ole ainoita jaollisuussääntöjä; ovatpahan vain hyödyllisiä ja ainakin osittain

Lisätiedot

2 ALGEBRA I. Sisällysluettelo

2 ALGEBRA I. Sisällysluettelo ALGEBRA I 1 2 ALGEBRA I Sisällysluettelo 1. Relaatio ja funktio 3 1.1. Karteesinen tulo 3 1.2. Relaatio ja funktio 3 1.3. Ekvivalenssirelaatio 9 2. Lukuteoriaa 11 2.1. Jaollisuusrelaatio 11 2.2. Suurin

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Heikki Junnila VERKOT JOUKOISTA JA RELAATIOISTA

Heikki Junnila VERKOT JOUKOISTA JA RELAATIOISTA Heikki Junnila VERKOT LUKU I JOUKOISTA JA RELAATIOISTA 1. Joukkojen symmetrinen erotus.....................................1 2. Relaation sisältämät kuvaukset.................................... 7 Harjoitustehtäviä................................................

Lisätiedot

Kompleksiluvut ja kvaterniot kiertoina

Kompleksiluvut ja kvaterniot kiertoina Kompleksiluvut ja kvaterniot kiertoina Heikki Polvinen Matematiikan pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 0 Tiivistelmä: Heikki Polvinen, Kompleksiluvut

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma Polynomimatriisit Antti Lindberg Matematiikan pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kesä 2014 Tiivistelmä: Antti Lindberg, Polynomimatriisit, Matematiikan pro

Lisätiedot

Kerta 2. Kerta 2 Kerta 3 Kerta 4 Kerta 5. 1. Toteuta Pythonilla seuraava ohjelma:

Kerta 2. Kerta 2 Kerta 3 Kerta 4 Kerta 5. 1. Toteuta Pythonilla seuraava ohjelma: Kerta 2 Kerta 3 Kerta 4 Kerta 5 Kerta 2 1. Toteuta Pythonilla seuraava ohjelma: 2. Tulosta Pythonilla seuraavat luvut allekkain a. 0 10 (eli, näyttää tältä: 0 1 2 3 4 5 6 7 8 9 10 b. 0 100 c. 50 100 3.

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Muodolliset kieliopit

Muodolliset kieliopit Muodolliset kieliopit Luonnollisen kielen lauseenmuodostuksessa esiintyy luonnollisia säännönmukaisuuksia. Esimerkiksi, on jokseenkin mielekästä väittää, että luonnollisen kielen lauseet koostuvat nk.

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

Proäärelliset ryhmät ja kuntalaajennukset

Proäärelliset ryhmät ja kuntalaajennukset Proäärelliset ryhmät ja kuntalaajennukset Matti Åstrand Helsinki 25.5.2009 Pro gradu -tutkielma HELSINGIN YLIOPISTO Matematiikan ja tilastotieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY

Lisätiedot

(Monisteen Esimerkki 2.6.8) Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään

(Monisteen Esimerkki 2.6.8) Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään Monisteen Esimerkki 2.6.8 Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään I c = {px R pc = 0}. Osoitetaan, että I c on renkaan R ihanne. Ratkaisu: Vakiofunktio 0 R I c joten I c.

Lisätiedot

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

Taulukot. Jukka Harju, Jukka Juslin 2006 1

Taulukot. Jukka Harju, Jukka Juslin 2006 1 Taulukot Jukka Harju, Jukka Juslin 2006 1 Taulukot Taulukot ovat olioita, jotka auttavat organisoimaan suuria määriä tietoa. Käsittelylistalla on: Taulukon tekeminen ja käyttö Rajojen tarkastus ja kapasiteetti

Lisätiedot

Permutaatioryhmien soveltaminen GAP-ohjelmiston avulla

Permutaatioryhmien soveltaminen GAP-ohjelmiston avulla Permutaatioryhmien soveltaminen GAP-ohjelmiston avulla Pro Gradu-tutkielma Teemu Veikanmaa (1465084) Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2013 Sisältö 1 Permutaatioryhmät 4 1.1 Ryhmäteorian

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta

Lisätiedot

Geometriaa kuvauksin. Siirto eli translaatio

Geometriaa kuvauksin. Siirto eli translaatio Geometriaa kuvauksin Siirto eli translaatio Janan AB kuva on jana A B ja ABB A on suunnikas. Suora kuvautuu itsensä kanssa yhdensuuntaiseksi suoraksi. Kulmat säilyvät. Kuva ja alkukuva ovat yhtenevät.

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi 5.3 Kartio Kun suora liikkuu avaruudessa niin, että yksi sen piste pysyy paikoillaan ja suoran jokin toinen piste kiertää jossakin tasossa jonkin suljetun käyrän palaten lähtöpaikkaansa, syntyy kaksiosainen

Lisätiedot

Derivaatan sovelluksia

Derivaatan sovelluksia Derivaatan sovelluksia Derivaatta muutosnopeuden mittarina Tehdään monisteen esimerkistä 5 hiukan mutkikkaampi versio Olete- taan, että meillä on mpräpohjaisen kartion muotoinen astia, johon virtaa vettä

Lisätiedot

DISKREETTIÄ MATEMATIIKKAA.

DISKREETTIÄ MATEMATIIKKAA. Heikki Junnila DISKREETTIÄ MATEMATIIKKAA. LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset..... 3 2. Luonnolliset luvut. Induktio.... 9 3. Äärelliset joukot.... 14 4. Joukon ositukset.

Lisätiedot

Kuusi haastavaa tehtävää: Euroopan tyttöjen matematiikkaolympialaiset Luxemburgissa 8. 14.4.2013

Kuusi haastavaa tehtävää: Euroopan tyttöjen matematiikkaolympialaiset Luxemburgissa 8. 14.4.2013 Solmu 3/03 Kuusi haastavaa tehtävää: Euroopan tyttöjen matematiikkaolympialaiset Luxemburgissa 8. 4.4.03 Esa V. Vesalainen Matematiikan ja tilastotieteen laitos, Helsingin yliopisto Luxemburgissa järjestettiin

Lisätiedot

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,

Lisätiedot

ALGEBRA. Tauno Metsänkylä. K f. id K

ALGEBRA. Tauno Metsänkylä. K f. id K ALGEBRA Tauno Metsänkylä K f τ K f τ 1 K(α 1 ) K(α 1 ) K id K K SISÄLTÖ 1 Sisältö 1 MODULI 4 1.1 Moduli; alimoduli................................ 4 1.2 Modulihomomorfia; tekijämoduli.......................

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

Äärettömistä joukoista

Äärettömistä joukoista Äärettömistä joukoista Markku Halmetoja Mistä tietäisit, että sinulla on yhtä paljon sormia ja varpaita, jos et osaisi laskea niitä? Tiettyä voimisteluliikettä tehdessäsi huomaisit, että jokaista sormea

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot