Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT
|
|
- Oskari Jääskeläinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä. Olkoon O parittomien kokonaislukujen joukko. O- soita, että (O, ) on ryhmän (Z, ) aliryhmä. Ratkaisu. Käydään ryhmän ehdot läpi yksi kerrallaan. (G0): Laskutoimitus on kokonaisluvuille määritelty laskutoimitus, joten ehto toteutuu triviaalisti. Tämä on myös helppo nähdä siitä, että kolmen kokonaisluvun summa on myös kokonaisluku. (G1): Harjoituksen 2 tehtävässä 1 osoitettiin, että annettu laskutoimitus on liitännäinen. (G2): Harjoituksen 2 tehtävässä 1 osoitettiin myös, että annetun laskutoimituksen neutraalialkio on 5. (G3): Olkoon x Z. Alkio y Z on alkion x käänteisalkio, mikäli yhtälö x y = y x = 5 toteutuu. Koska harjoituksen 2 tehtävässä 1 osoitettiin, että laskutoimitus on myös vaihdannainen, yhtälön x y = 5 toteutuminen riittää. Tämä on yhtäpitävää sen kanssa, että x + y + 5 = 5 x + y = 10 y = x 10. Siten alkion x Z käänteisalkio on x 10. Koska pari (Z, ) toteuttaa ehdot (G0)-(G3), se on ryhmä. Harjoituksen 2 tehtävässä 1 osoitettiin, että myös ehto (G4) toteutuu, joten kyseessä on Abelin ryhmä. Osoitetaan nyt käymällä aliryhmän ehdot läpi yksitellen, että parittomien kokonaislukujen joukko O Z varustettuna laskutoimituksella on ryhmän (Z, ) aliryhmä. 1
2 (H1): Olkoon a, b O. Koska a ja b ovat parittomia kokonaislukuja, on olemassa sellaiset kokonaisluvut x, y Z, että a = 2x+1 ja b = 2y+1. Tällöin joten a b O. a b = a + b + 5 = (2x + 1) + (2y + 1) + 5 = 2x + 2y + 7 = 2x + 2y = 2(x + y + 3) + 1, (H2): Laskutoimituksen neutraalialkio 5 on pariton kokonaisluku, eli 5 O. (H3): Olkoon a O. Aiemmin osoitettiin, että alkion a käänteisalkio a 10. Koska a on pariton kokonaisluku, on olemassa sellainen kokonaisluku x Z, että a = 2x + 1. Tällöin a 10 = (2x + 1) 10 = 2x 10 1 = 2( x 5) 1, joten a 10 O. Siten koska pari (H, ) toteuttaa ehdot (H1)-(H3), se on ryhmän (Z, ) aliryhmä. 2. Olkoon G = {E, O}, missä E on parillisten kokonaislukujen joukko, ja O on parittomien kokonaislukujen joukko. Joukolle G voidaan määritellä laskutoimitus seuraavasti: Oletetaan, että X, Y G. Valitaan jotkin alkiot x X ja y Y. Nyt X Y on se joukko, johon summa x+y kuuluu. (Tässä kyse on tavallisesta kokonaislukujen yhteenlaskusta.) Kirjoita laskutoimituksen laskutoimitustaulu ja osoita, että (G, ) on ryhmä. Huomio: Ei ole itsestään selvää, että laskutoimitus voidaan määritellän niin kuin se on määritelty. Asiaa käsitellään lisää myöhemmin. Ratkaisu. Kahden alkion joukolle määritetyn laskutoimituksen laskutaulu on helppo kirjoittaa. Koska kahden parillisen kokonaisluvun summa on 2
3 aina parillinen, kahden parittoman kokonaisluvun summa on aina parillinen ja parillisen ja parittoman kokonaisluvun summa on aina pariton, laskutauluksi saadaan E O E E O O O E Siten huomataan, että laskutoimitus tosiaan on hyvin määritelty laskutoimitus joukossa G. Laskutaulusta voidaan nyt lukea, että E on laskutoimituksen neutraalialkio ja alkio O on oma käänteisalkionsa.. On siis vielä osoitettava, että laskutoimitus on liitännäinen. Tämä voidaan tehdä mekaanisesti tarkistamalla kaikki erilaiset yhdistelmät X (Y Z), X, Y, Z G (erilaisia yhdistelmiä on yhteensä kahdeksan kappaletta), mutta on helpompaa palauttaa kysymys takaisin kokonaislukujen (tuttuihin) ominaisuuksiin, sillä kurssimateriaalin nojalla (Z, +) on ryhmä. Olkoon X, Y, Z G ja x X, y Y ja z Z joitakin alkioita. Tällöin Y Z on se alkio, johon luku y + z kuuluu, ja edelleen X (Y Z) on se alkio, johon luku x + (y + z) kuuluu. Vastaavasti (X Y ) Z on se alkio, johon luku (x+y)+z kuuluu. Koska (Z, +) on ryhmä, laskutoimitus + on liitännäinen ja on voimassa x + (y + z) = (x + y) + z. Siten X (Y Z) on se alkio, johon luku (x+y)+z kuuluu, ja (X Y ) Z on se alkio, johon luku x + (y + z) kuuluu. Edelleen X (Y Z) = (X Y ) Z, joten laskutoimitus on liitännäinen ja (G, ) on ryhmä. 3. Olkoon G ryhmä. Osoita, että karteesinen tulo G G on ryhmä, kun laskutoimitus määritellään seuraavasti: (a, b) (c, d) = (ac, bd). (Sanotaan, että karteesisen tulon laskutomitus on tällöin määritelty komponenteittain tai pisteittäin.) Olkoon H ryhmän G aliryhmä. Näytä, että H H on ryhmän G G aliryhmä. Ratkaisu. Käydään ryhmän ehdot läpi yksi kerrallaan. 3
4 (G0): Olkoon (a, b), (c, d) G G. Koska G on ryhmä, niin ac, bd G. Siten (a, b) (c, d) = (ac, bd) G G, joten G G on suljettu annetun laskutoimituksen suhteen. (G1): Olkoon (a, b), (c, d), (f, g) G G. Koska G on ryhmä, niin on voimassa a(cf) = (ac)f ja b(dg) = (bd)g. Käyttäen tätä tietoa hyväksi huomataan nyt, että (a, b) ((c, d) (f, g)) = (a, b) (cf, dg) = (a(cf), b(dg)) = ((ac)f, (bd)g) = (ac, bd) (f, g) joten annettu laskutoimitus on liitännäinen. = ((a, b) (c, d)) (f, g), (G2): Olkoon e G ryhmän G neutraalialkio ja olkoon (a, b) G G. Nyt on voimassa (e, e) (a, b) = (ea, eb) = (a, b) = (ae, be) = (a, b) (e, e), joten (e, e) G G on annetun laskutoimituksen neutraalialkio. (G3): Olkoon (a, b) G G. Koska G on ryhmä, niin on olemassa käänteisalkiot a 1, b 1 G ja siten (a 1, b 1 ) G G. Tämä on alkion (a, b) G G käänteisalkio, sillä (a, b) (a 1, b 1 ) = (aa 1, bb 1 ) = (e, e) = (a 1 a, b 1 b) = (a 1, b 1 ) (a, b). Koska pari (G G, ) toteuttaa ehdot (G0)-(G3), se on ryhmä. Olkoon nyt H ryhmän G aliryhmä, eli H toteuttaa aliryhmän ehdot (H1)- (H3). Osoitetaan ehto kerrallaan, että myös H H toteuttaa ehdot (H1)- (H3). 4
5 (H1): Olkoon (a, b), (c, d) H H. Koska a, b, c, d H, niin ac, bd H ja (a, b) (c, d) = (ac, bd) H H. (H2): Koska H on ryhmän G aliryhmä, niin G:n neutraalialkio e kuuluu joukkoon H. Siten (e, e) H H. (H3): Olkoon (a, b) H H. Koska a, b H, niin myös a 1, b 1 H, eli (a, b) 1 = (a 1, b 1 ) H H. Siten pari (H H, ) on ryhmän (G G, ) aliryhmä. Edellinen olisi voitu osoittaa myös käyttäen aliryhmäkriteeriä, eli lausetta Koska H G, niin H on epätyhjä ja H G, joten myös H H on epätyhjä ja se on joukon G G osajoukko. Riittää siis osoittaa, että kaikilla (a, b), (c, d) H H on voimassa (a, b) (c, d) 1 H H. Olkoon siis (a, b), (c, d) H H. Koska H toteuttaa aliryhmäkriteerin, niin ac 1, bd 1 H. Siten puolestaan (a, b) (c, d) 1 = (a, b) (c 1, d 1 ) = (ac 1, bd 1 ) H H, joten H H G G. 4. Määritellään ja f : N N, f(n) = 2011n g : R R, f(x) = x. Ovatko kuvaukset f ja g injektioita, surjektioita tai bijektioita? Olkoot A = {0, 1, 2, 3, 4, 5} ja B = { 10, 9,..., 9, 10}. Määritä f[a], f [B], g[b] ja g [A]. Ratkaisu. Kuvaus f on injektio, sillä ehdosta f(m) = f(n) seuraa 2011m = 2011n m = n, 5
6 eli mitkään kaksi alkiota eivät kuvaudu samalle alkiolle. Kuvaus f puolestaan ei ole surjektio, sillä mikään luonnollinen luku ei kuvaudu esimerkiksi alkiolle 1: f(m) = m = 1 m = / N. Koska kuvaus f ei ole surjektio, se ei voi olla myöskään bijektio. Kuvaus g ei ole injektio sillä esimerkiksi sekä 1 että -1 kuvautuvat luvulle 1. Se ei ole myöskään surjektio, sillä yksikään reaaliluku ei kuvaudu negatiiviseksi luvuksi. Koska kuvaus g ei ole injektio eikä surjektio, se ei myöskään voi olla bijektio. Kuvajoukko f[a] saadaan määritettyä ottamalla kuva jokaisesta alkiosta erikseen: f[a] = {f(0), f(1), f(2), f(3), f(4), f(5)} = {0, 2011, 4022, 6033, 8044, 10055}. Määritetään alkukuvajoukko f [B] viimeiseksi. Kuvajoukko g[b] saadaan määritettyä ottamalla kuva jokaisesta alkiosta erikseen. Huomataan, että kaikille x R on voimassa g(x) = g( x), joten g[b] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Alkukuvan määritelmän nojalla alkio x R kuuluu joukon A alkukuvaan g [A], jos g(x) A. Huomataan, että kun a R, niin g(x) = a x = a x = ±a, joten joukon A alkukuvaan kuuluvat joukon A alkiot ja niiden vasta-alkiot, eli g [A] = { 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5}. Otettaessa alkukuva joukosta C kuvauksen h : X Y suhteen joukon C täytyy määritelmän nojalla sisältyä maaliavaruuteen Y. Kuvaus f on kuitenkin luonnollisilta luvuilta luonnollisille luvuille ja joukko B ei ole luonnollisten lukujen osajoukko! Tällöin alkukuvasta puhuminen ei ole mielekästä, mutta määritetään joukon B alkukuva kuvauksen f : N Z, jolle on voimassa f(n) = f(n) = 2011n. 6
7 Tällöin joukko B sisältyy maaliavaruuteen ja alkukuvajoukkoon f [B] kuuluu ne alkiot n N, joille on voimassa f(n) B. Siten tarkasteluun täytyy ottaa ne joukon B positiiviset alkiot, jotka ovat jaollisia luvulla Tällaisia alkioita löytyy vain yksi, eli 0. Koska kuvaus f on injektio, myös kuvaus f on injektio. Koska lisäksi f(0) = 0, niin f [B] = {0}. 5. Todista seuraavat väitteet huolellisesti ja hyvällä suomen kielellä. Implikaatio- ja ekvivalenssinuolten käyttö on kiellettyä. Muista, että kaksi joukkoa osoitetaan samoiksi todistamalla, että ne ovat toistensa osajoukkoja. Oletetaan, että f : A B on kuvaus ja C, D B. Osoita, että a) f[f [D]] D b) f [C D] = f [C] f [D]. Ratkaisu. a) Olkoon x f[f [D]]. Kuvajoukon määritelmän nojalla nyt on olemassa sellainen y f [D], että f(y) = x. Alkukuvan määritelmän nojalla joukkoon f [D] kuuluu ne alkiot, joiden kuva-alkiot kuuluvat joukkoon D. Koska y f [D], niin f(y) D. Siten f(y) = x D, eli f[f [D]] D. b) Osoitetaan sisältyvyydet kumpaankin suuntaan. Olkoon x f [C D]. Alkukuvan määritelmän nojalla nyt f(x) C D, eli alkio f(x) kuuluu joukkoon C tai joukkoon D. Tästä puolestaan seuraa, että alkio x kuuluu joukkoon f [C] tai f [D], joten x kuuluu joukkoon f [C] f [D]. Siten f [C D] f [C] f [D]. Olkoon x f [C] f [D], eli x kuuluu joukkoon f [C] tai f [D]. Alkukuvan määritelmän nojalla alkio f(x) kuuluu nyt joukkoon C tai D, eli f(x) C D. Edelleen määritelmän nojalla, alkio x kuuluu nyt joukon C D alkukuvaan, eli x f [C D]. Siten f [C] f [D] f [C D]. 7
8 6. Määritellään f : Z Q \ {0}, f(n) = ( 1) n. Määritä Imf ja f [{1}]. Onko Imf ryhmän (Q \ {0}, ) aliryhmä? Onko f [{1}] ryhmän (Z, +) aliryhmä? Ratkaisu. Jos n on parillinen, niin f(n) = 1, ja jos n on pariton, niin f(n) = 1. Siten Im(f) = {1, 1}. Alkukuvan määritelmän nojalla joukkoon f [{1}] kuuluvat ne alkiot n Z, jotka kuvautuvat alkiolle 1. Koska f(n) = 1 vain jos n on parillinen, niin yksiön {1} alkukuva on parilliset kokonaisluvut, joiden muodostamaa joukkoa merkitään usein 2Z:lla. Siten f [{1}] = {2n : n Z} = 2Z. Osoitetaan nyt, että joukko {1, 1} varustettuna rationaalilukujen kertolaskulla on ryhmän (Q \ {0}, ) aliryhmä osoittamalla, että ({1, 1}, ) toteuttaa ryhmän ehdot. Kahden alkion laskutaulu on helppo kirjoittaa: Tästä nähdään, että joukko {1, 1} on vakaa laskutoimituksen suhteen, 1 on laskutoimituksen neutraalialkio ja 1 on oma käänteisalkionsa. Koska puolestaan (Q \ {0}, ) on ryhmä, laskutoimitus on liitännäinen, joten ({1, 1}, ) toteuttaa ryhmän ehdot. Siten lauseen nojalla ({1, 1}, ) on ryhmän (Q\{0}, ) aliryhmä. Huomataan, että kyseessä on sama ryhmä kuin tehtävässä kaksi, sillä kaksialkioisia ryhmiä on olemassa täsmälleen yksi. Joukko 2Z varustettuna tavallisella kokonaislukujen yhteenlaskulla on ryhmän (Z, +) aliryhmä: (H1): Olkoon x, y 2Z. Tällöin on olemassa sellaiset m, n Z, että x = 2m ja y = 2n, joten (H2): Koska 0 = 2 0, niin 0 2Z. x + y = 2m + 2n = 2(m + n) 2Z.. 8
9 (H3): Olkoon x 2Z. Tällöin on olemassa sellainen m Z, että x = 2m. Tällöin alkion x vasta-alkio on x = 2m, joka on myös parillinen kokonaisluku. Siten 2Z Z. Edellinen olisi voitu osoittaa myös käyttäen aliryhmäkriteeriä. Olkoon x, y 2Z. Tällöin x = 2m ja y = 2n joillakin m, n Z ja alkion y vasta-alkio on y. Koska x + ( y) = x y = 2m 2n = 2(m n) 2Z, niin aliryhmäkriteerin nojalla 2Z on ryhmän Z aliryhmä. 9
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä
Lisätiedota b 1 c b n c n
Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =
LisätiedotAlgebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
LisätiedotKuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara
Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]
LisätiedotMatematiikan tukikurssi, kurssikerta 1
Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon
Lisätiedotkaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja
Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,
LisätiedotTekijäryhmät ja homomorsmit
Tekijäryhmät ja homomorsmit LuK-tutkielma Henna Isokääntä 1953004 henna.isokaanta@gmail.com Matemaattiset tieteet Oulun yliopisto Kevät 2019 Sisältö Johdanto 1 1 Tekijäryhmät 1 2 Homomorsmit 3 Lähdeluettelo
LisätiedotDihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013
Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo
LisätiedotKurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on
Lisätiedot6. Tekijäryhmät ja aliryhmät
6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää
Lisätiedot1. Esitä rekursiivinen määritelmä lukujonolle
Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)
Lisätiedota k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx
x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa
LisätiedotEsko Turunen Luku 3. Ryhmät
3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,
Lisätiedotx > y : y < x x y : x < y tai x = y x y : x > y tai x = y.
ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,
Lisätiedot[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko
3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin
Lisätiedotrenkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x
8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
LisätiedotKaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.
Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden
LisätiedotAlgebra I, Harjoitus 6, , Ratkaisut
Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b
LisätiedotMAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen
MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen
Lisätiedotjonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä
4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2014 Tero Vedenjuoksu Sisältö 1 Johdanto 3 2 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................
Lisätiedot{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja
5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.
LisätiedotKarteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21
säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1
LisätiedotDiskreetin matematiikan perusteet Malliratkaisut 2 / vko 38
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan
LisätiedotALGEBRA KEVÄT 2013 JOUNI PARKKONEN
ALGEBRA KEVÄT 2013 JOUNI PARKKONEN Algebra käsittelee laskemista. Osin tämä tarkoittaa numeroilla laskemista lukualueissa N, Z, Q, R, C laskutoimituksilla + ja ja niiden käänteisoperaatioilla ja / siinä
LisätiedotMatematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,
LisätiedotAlgebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto
Algebra I Jokke Häsä ja Johanna Rämö Matematiikan ja tilastotieteen laitos Helsingin yliopisto Kevät 2011 Sisältö 1 Laskutoimitukset 6 1.1 Työkalu: Joukot ja kuvaukset..................... 6 1.1.1 Joukko..............................
LisätiedotMiten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus
LisätiedotVastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan
LisätiedotLaitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014
Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis-luonnontieteellinen tiedekunta Laitos/Institution Department Matematiikan ja tilastotieteen laitos Tekijä/Författare Author Anna-Mari Pulkkinen Työn
Lisätiedot2017 = = = = = = 26 1
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu
LisätiedotLuonnollisten lukujen ja kokonaislukujen määritteleminen
Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 01 Tero Vedenjuoksu Sisältö 1 Johdanto 3 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................
LisätiedotHN = {hn h H, n N} on G:n aliryhmä.
Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa
LisätiedotEsitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:
MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön
LisätiedotMAT Algebra 1(s)
8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
LisätiedotMatematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut
Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus, malliratkaisut 1.-5.9.009 1. Muodosta joukot A B, A B ja A\B sekä laske niiden alkioiden lukumäärät (mikäli kyseessä on äärellinen
LisätiedotOnko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?
Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
LisätiedotRelaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.
Relaatioista 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Esimerkkejä Kokonaisluvut x ja y voivat olla keskenään mm.
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen
LisätiedotAbstraktin algebran rakenteista sekä näiden välisistä morfismeista
Abstraktin algebran rakenteista sekä näiden välisistä morfismeista Pro gradu -tutkielma Kari Kostama Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2014 Sisältö Johdanto 2 1 Kahden alkion laskutoimitus
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LisätiedotIlkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi
Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot
LisätiedotAlgebra I, harjoitus 8,
Algebra I, harjoitus 8, 4.-5.11.2014. 1. Olkoon G ryhmä ja H sen normaali aliryhmä. Todista, että tällöin G/H on ryhmä, kun määritellään laskutoimitus joukossa G/H asettamalla aina, kun x, y G (lauseen
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon
LisätiedotJokaisen parittoman kokonaisluvun toinen potenssi on pariton.
3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)
Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
Lisätiedot(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,
Lisätiedot802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita
802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 25 Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset
LisätiedotMAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen
MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset.
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LisätiedotDiskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg
Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. (24.3-25.3) Jeremias Berg 1. Olkoot A 1 = {1, 2, 3}, A 2 = {A 1, 5, 6}, A 3 = {A 2, A 1, 7}, D = {A 1, A 2, A 3 } Kirjoita auki seuraavat joukot:
Lisätiedoton Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään
5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}
LisätiedotMatematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden
LisätiedotAlgebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia
Algebra 1, harjoitus 9, 11.-12.11.2014. 1. Olkoon G ryhmä ja H G normaali aliryhmä. Tiedetään, että tällöin xhx 1 H kaikilla x G. Osoita, että itse asiassa xhx 1 = H kaikilla x G. Ratkaisu: Yritetään osoittaa,
LisätiedotMATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai
MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.
Lisätiedot1 Lukujen jaollisuudesta
Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun
LisätiedotMikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen
Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen anton.mallasto@aalto.fi. 1. 2. Muista. Ryhmän G aliryhmä H on normaali aliryhmä, jos ah = Ha kaikilla a G. Toisin
LisätiedotEsko Turunen MAT Algebra1(s)
Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H
Lisätiedot802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen
802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotDiskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista
Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista 1. Olkoot (E, ) ja (F, ) epätyhjiä järjestettyjä joukkoja. Määritellään joukossa E F relaatio L seuraavasti: [ (x, y)l(x, y ) ] [ (x < x )
Lisätiedot802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä
802354A Algebran perusteet Luentorunko Kevät 2018 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................
Lisätiedot(2n 1) = n 2
3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa
LisätiedotToisin sanoen kyseessä on reaalitason vektoreiden relaatio. v w v =k w jollakink R\{0}.
Algebra I Matematiikan ja tilastotieteen laitos Harjoitus 7 Ratkaisuehdotus (5 sivua) JR 1. Määritellään reaalilukuparien relaatio seuraavasti: (x,y) (x,y ) x =kx jay=ky jollakink R\{0}. Toisin sanoen
LisätiedotMatematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
LisätiedotJohdatus yliopistomatematiikkaan. JYM, Syksy /197
Johdatus yliopistomatematiikkaan JYM, Syksy 2014 1/197 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava
LisätiedotSanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2.
Sanomme, että kuvaus f : X Y on injektio, jos x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Siis kuvaus on injektio, jos eri alkiot kuvautuvat eri alkioille eli maalijoukon jokainen alkio
Lisätiedot802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä
802354A Algebran perusteet Luentorunko Kevät 2017 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................
Lisätiedota ord 13 (a)
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod
Lisätiedot1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää
Ryhmäteoreettinen näkökulma Rubikin kuutioon Matematiikan ja tilastotieteen laitos Syksy 2010 Harjoitus 2 Ratkaisuehdotus 1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää D 8 = { id,
LisätiedotAlgebran perusteet. 44 ϕ(105) = (105). Näin ollen
Algebran perusteet Harjoitus 4, ratkaisut kevät 2016 1 a) Koska 105 = 5 21 = 3 5 7 ja 44 = 2 2 11, niin syt(44, 105) = 1 Lisäksi ϕ(105) = ϕ(3 5 7) = (3 1)(5 1)(7 1) = 2 4 6 = 48, joten Eulerin teoreeman
LisätiedotKvasiryhmistä ja niiden sovelluksista
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Suvi Pasanen Kvasiryhmistä ja niiden sovelluksista Informaatiotieteiden yksikkö Matematiikka Maaliskuu 2016 Tampereen yliopisto Informaatiotieteiden yksikkö PASANEN,
LisätiedotTekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät.
3 Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa osiin. Ideana on, että voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin kokonaisuuksina, ja jättää
LisätiedotLiite 2. Ryhmien ja kuntien perusteet
Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja
Lisätiedota) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon
Matematiikan johdantokurssi, syksy 08 Harjoitus 3, ratkaisuista. Kokonaisluvut määriteltiin luonnollisten lukujen avulla ekvivalenssiluokkina [a, b], jotka määrää (jo demoissa ekvivalenssirelaatioksi osoitettu)
LisätiedotTopologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,
Topologia Syksy 2010 Harjoitus 4 (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, i=1 A i = R 1, ja f : R 1 R 1 ei ole jatkuva. Lause
LisätiedotRatkaisut vuosien tehtäviin
Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2
LisätiedotJohdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20
Osamääräkunta LuK-tutkielma Lauri Aalto Opiskelijanumero: 2379263 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 1 Käsitteitä ja merkintöjä 3 2 Osamääräkunnan muodostaminen
Lisätiedot5.6 Yhdistetty kuvaus
5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty
LisätiedotJoukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet
TKK () Ilkka Mellin (2004) 1 Joukko-oppi Liite: Joukko-oppi TKK () Ilkka Mellin (2004) 2 Joukko-oppi: Mitä opimme? Tämän liitteen tavoitteena on esitellä joukko-opin peruskäsitteet ja - operaatiot laajuudessa,
LisätiedotJohdatus matemaattiseen päättelyyn (5 op)
Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi
Lisätiedota 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.
Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a
LisätiedotMatematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä
LisätiedotVieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.
Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
LisätiedotFunktioista. Esimerkki 1
Funktio eli kuvaus on matematiikan keskeisimpiä käsitteitä. Seuraavaksi tarkastellaan funktioita ja todistetaan niiden ominaisuuksia. Määritelmä 1 Olkoot A ja B. Kuvaus eli funktio f : A B on sääntö, joka
LisätiedotTehtävä 1. Näytä, että tason avoimessa yksikköpallossa
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2018 Harjoitus 2 Ratkaisuehdotukset Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa määritelty kuvaus B(0, 1) := x R 2 : x
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Marko Leinonen Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2018 1 Merkintöjä ja määritelmiä Luonnollisten lukujen joukko N on joukko ja kokonaislukujen
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
Lisätiedot