MS-A0102 Differentiaali- ja integraalilaskenta 1

Koko: px
Aloita esitys sivulta:

Download "MS-A0102 Differentiaali- ja integraalilaskenta 1"

Transkriptio

1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto

2 Sisältö Derivaatta

3 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen (käyrän tangentti sekanttien raja-asentona) f ( x) x 0 x 0 +h x

4 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen (käyrän tangentti sekanttien raja-asentona) f ( x) x 0 x 0 +h x I fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus).

5

6 1.1 Derivaatan määritelmä Määritelmä 1 Oletetaan, että funktio f on määritelty jollakin välillä ]x 0, x 0 + [. Sen derivaatta pisteessä x 0 on f 0 f (x 0 + h) f (x 0 ) f (x) f (x 0 ) (x 0 )= lim = lim, h!0 h x!x0 x x 0 jos raja-arvo olemassa.

7 1.1 Derivaatan määritelmä Määritelmä 1 Oletetaan, että funktio f on määritelty jollakin välillä ]x 0, x 0 + [. Sen derivaatta pisteessä x 0 on f 0 f (x 0 + h) f (x 0 ) f (x) f (x 0 ) (x 0 )= lim = lim, h!0 h x!x0 x x 0 jos raja-arvo olemassa. Funktio on derivoituva, jos sillä on derivaatta jokaisessa määrittelyjoukon (= avoin väli) pisteessä.

8 1.1 Derivaatan määritelmä Määritelmä 1 Oletetaan, että funktio f on määritelty jollakin välillä ]x 0, x 0 + [. Sen derivaatta pisteessä x 0 on f 0 f (x 0 + h) f (x 0 ) f (x) f (x 0 ) (x 0 )= lim = lim, h!0 h x!x0 x x 0 jos raja-arvo olemassa. Funktio on derivoituva, jos sillä on derivaatta jokaisessa määrittelyjoukon (= avoin väli) pisteessä. Merkintöjä: f 0 (x 0 )=Df (x 0 )= df dx x=x0, f 0 = Df = df dx.

9

10 1.1 Korkeamman kertaluvun derivaatat Jos funktion derivaatta f 0 (x) on määritelty jollakin avoimella välillä ]x 0, x 0 + [, niin voidaan tutkia funktion f 0 erotusosamäärää pisteessä x 0.Näin saadaan toisen kertaluvun derivaatta f 00 (x 0 )=D 2 f (x 0 )= d 2 f dx 2 x=x 0. Jatkamalla samaan tapaan voidaan määritellä korkeamman kertaluvun derivaatat f 000 (x), f (4) (x),... Merkintä: C n ]a, b[ = {f : ]a, b[! R f on n kertaa derivoituva välillä ]a, b[ ja f (n) on jatkuva} Tällaisia funktioita kutsutaan n kertaa jatkuvasti derivoituviksi.

11 1.1 Linearisointi ja differentiaali Derivaatan määritelmä johtaa approksimaatioon f 0 (x 0 ) f (x) f (x 0) x x 0 () f (x) f (x 0 )+f 0 (x 0 )(x x 0 ) Oikean puoleinen lauseke on funktion f linearisointi eli differentiaali pisteessä x 0. Sille käytetään merkintää df.

12 1.1 Linearisointi ja differentiaali Derivaatan määritelmä johtaa approksimaatioon f 0 (x 0 ) f (x) f (x 0) x x 0 () f (x) f (x 0 )+f 0 (x 0 )(x x 0 ) Oikean puoleinen lauseke on funktion f linearisointi eli differentiaali pisteessä x 0. Sille käytetään merkintää df.

13 1.1 Linearisointi ja differentiaali Derivaatan määritelmä johtaa approksimaatioon f 0 (x 0 ) f (x) f (x 0) x x 0 () f (x) f (x 0 )+f 0 (x 0 )(x x 0 ) Oikean puoleinen lauseke on funktion f linearisointi eli differentiaali pisteessä x 0. Sille käytetään merkintää df. Linearisoinnin kuvaaja y = f (x 0 )+f 0 (x 0 )(x x 0 ) on funktion kuvaajan pisteeseen (x 0, f (x 0 )) asetettu tangenttisuora. Differentiaalin merkitys tulee paremmin esille vasta usean muuttujan funktioiden yhteydessä.

14 1.1 Linearisointi ja differentiaali Derivaatan määritelmä johtaa approksimaatioon f 0 (x 0 ) f (x) f (x 0) x x 0 () f (x) f (x 0 )+f 0 (x 0 )(x x 0 ) Oikean puoleinen lauseke on funktion f linearisointi eli differentiaali pisteessä x 0. Sille käytetään merkintää df. Linearisoinnin kuvaaja y = f (x 0 )+f 0 (x 0 )(x x 0 ) on funktion kuvaajan pisteeseen (x 0, f (x 0 )) asetettu tangenttisuora. Differentiaalin merkitys tulee paremmin esille vasta usean muuttujan funktioiden yhteydessä. Myöhemmin käsitellään funktion f approksimointia myös korkeamman asteen polynomien avulla (Taylor-polynomi).

15 1.1 Derivaatan fysikaalinen tulkinta I Jos x = x(t) on kappaleen yksiulotteisen liikkeen paikkakoordinaatti hetkellä t, niin sen hetkellinen nopeus on v(t) =x 0 (t) =ẋ(t). Näistä viimeinen on tavallinen merkintä fysiikassa.

16 1.1 Derivaatan fysikaalinen tulkinta I Jos x = x(t) on kappaleen yksiulotteisen liikkeen paikkakoordinaatti hetkellä t, niin sen hetkellinen nopeus on v(t) =x 0 (t) =ẋ(t). Näistä viimeinen on tavallinen merkintä fysiikassa. I Vastaavalla tavalla a(t) =v 0 (t) =x 00 (t) = x(t).. on kappaleen hetkellinen kiihtyvyys.

17 1.1 Derivaatan fysikaalinen tulkinta I Jos x = x(t) on kappaleen yksiulotteisen liikkeen paikkakoordinaatti hetkellä t, niin sen hetkellinen nopeus on v(t) =x 0 (t) =ẋ(t). Näistä viimeinen on tavallinen merkintä fysiikassa. I Vastaavalla tavalla a(t) =v 0 (t) =x 00 (t) = x(t).. on kappaleen hetkellinen kiihtyvyys. I Yleisemmin: Ajasta riippuvan funktion f (t) hetkellinen muutosnopeus on f 0 (t).

18 1.2 Laskusääntöjä I Lineaarisuus D f (x)+g(x) = f 0 (x)+g 0 (x) D cf (x) = cf 0 (x), kun c 2 R on vakio

19 1.2 Laskusääntöjä I Lineaarisuus D f (x)+g(x) = f 0 (x)+g 0 (x) D cf (x) = cf 0 (x), kun c 2 R on vakio I Tulon derivoimissääntö D f (x)g(x) = f 0 (x)g(x)+f (x)g 0 (x)

20

21 1.2 Laskusääntöjä I Lineaarisuus D f (x)+g(x) = f 0 (x)+g 0 (x) D cf (x) = cf 0 (x), kun c 2 R on vakio I Tulon derivoimissääntö D f (x)g(x) = f 0 (x)g(x)+f (x)g 0 (x) I Osamäärän derivoimissääntö f (x) D = f 0 (x)g(x) f (x)g 0 (x) g(x) g(x) 2

22 1.2 Laskusääntöjä I Lineaarisuus D f (x)+g(x) = f 0 (x)+g 0 (x) D cf (x) = cf 0 (x), kun c 2 R on vakio I Tulon derivoimissääntö D f (x)g(x) = f 0 (x)g(x)+f (x)g 0 (x) I Osamäärän derivoimissääntö f (x) D = f 0 (x)g(x) f (x)g 0 (x) g(x) g(x) 2 I Yhdistetyn funktion derivoimissääntö D f (g(x) = f 0 g(x) g 0 (x) Tälle käytetään nimitystä ketjusääntö = Chain Rule.

23 1.2 Eräitä derivaattoja I D(vakiofunktio) =0

24 1.2 Eräitä derivaattoja I D(vakiofunktio) =0 I D(x r )=rx r 1, r 6= 0

25 1.2 Eräitä derivaattoja I D(vakiofunktio) =0 I D(x r )=rx r 1, r 6= 0 I D(sin x) =cos x, D(cos x) = sin x

26 1.2 Eräitä derivaattoja I D(vakiofunktio) =0 I D(x r )=rx r 1, r 6= 0 I D(sin x) =cos x, D(cos x) = sin x I D(tan x) =1 + tan 2 x = 1 cos 2, kun x 6= /2 + n x

27 1.2 Eräitä derivaattoja I D(vakiofunktio) =0 I D(x r )=rx r 1, r 6= 0 I D(sin x) =cos x, D(cos x) = sin x I D(tan x) =1 + tan 2 x = 1 cos 2, kun x 6= /2 + n x I De x = e x, D ln x = 1/x, kun x 6= 0 (näihin palataan myöhemmin)

28 sin(x):n derivaatta Esimerkki 2 Johda funktion f (x) =sin x derivaatta kohdassa x 0. Ratkaisu: Erotusosamäärä saadaan yhteenlaskukaavan avulla muotoon sin(x 0 + h) sin(x 0 ) h = sin x 0 cos h + cos x 0 sin h sin x 0 h sin h = cos x 0 h + sin x cos h 1 0. h Koska (perustelut aikaisemmin/seuraavalla sivulla) sin h cos h 1 lim = 1 ja lim = 0, h!0 h h!0 h niin derivaataksi saadaan f 0 (x 0 )=cos x sin x 0 0 = cos x 0.

29 sin(x):n derivaatta (cont.) Raja-arvo sin h lim = 1 h!0 h johdettiin aikaisemmin geometrisesti ja suppiloperiaatteen avulla. Koska (muista sin 2 h + cos 2 h = 1) cos h 1 h = = (cos h 1)(cos h + 1) h(cos h + 1) sin h h = cos2 h 1 h(cos h + 1) sin h cos h + 1! = 0, kun h! 0, niin saadaan jälkimmäinen raja-arvo.

30 1.2 Esimerkkejä Käytännössä derivaatat voidaan laskea laskusääntöjen ja tunnettujen derivaattojen avulla:

31 1.2 Esimerkkejä Käytännössä derivaatat voidaan laskea laskusääntöjen ja tunnettujen derivaattojen avulla: I D x 3 4x = 3x 2 8x

32 1.2 Esimerkkejä Käytännössä derivaatat voidaan laskea laskusääntöjen ja tunnettujen derivaattojen avulla: I D x 3 4x = 3x 2 8x I D p 1 + 5x 2 = 1 2 (1 + 5x 2 ) 1/2 D(1 + 5x 2 )= 5x p 1 + 5x 2

33 1.2 Esimerkkejä Käytännössä derivaatat voidaan laskea laskusääntöjen ja tunnettujen derivaattojen avulla: I D x 3 4x = 3x 2 8x I D p 1 + 5x 2 = 1 2 (1 + 5x 2 ) 1/2 D(1 + 5x 2 )= I D x 2 cos(3x) = D(x 2 ) cos(3x)+x 2 D cos(3x) = 2x cos(3x)+x 2 sin(3x) D(3x) = 2x cos(3x) 3x 2 sin(3x) 5x p 1 + 5x 2

34 1.2 Esimerkkejä Käytännössä derivaatat voidaan laskea laskusääntöjen ja tunnettujen derivaattojen avulla: I D x 3 4x = 3x 2 8x I D p 1 + 5x 2 = 1 2 (1 + 5x 2 ) 1/2 D(1 + 5x 2 )= I D x 2 cos(3x) = D(x 2 ) cos(3x)+x 2 D cos(3x) = 2x cos(3x)+x 2 sin(3x) D(3x) = 2x cos(3x) 3x 2 sin(3x) I D sin(1/x) = cos(1/x)d(1/x) = cos(1/x) ( 1/x 2 ) = cos(1/x)/x 2, kun x 6= 0 5x p 1 + 5x 2

35 1.3 Yleisiä tuloksia Olkoon f :[a, b]! R. I Jos f on derivoituva pisteessä x 0 2 ]a, b[, niin se on jatkuva pisteessä x 0.

36 1.3 Yleisiä tuloksia Olkoon f :[a, b]! R. I Jos f on derivoituva pisteessä x 0 2 ]a, b[, niin se on jatkuva pisteessä x 0. Perustelu: Seuraa derivaatan määritelmästä, koska f (x 0 + h) f (x 0 ) h = f 0 (x 0 )+"(x 0, h) ) f (x 0 + h) f (x 0 )=f 0 (x 0 )h + h "(x 0, h). Tässä "(x 0, h) on raja-arvoon liittyvä virhetermi, jolle "(x 0, h)! 0, kun h! 0.

37 I (Rollen lause) Jos f on derivoituva paikallisessa ääriarvohdassa x 0 2 ]a, b[, niin f 0 (x 0 )=0. Perustelu: Erotusosamäärän toispuoleiset raja-arvot ovat erimerkkiset paikallisessa ääriarvokohdassa, esim. paikalliselle maksimille f (x 0 + h) f (x 0 ) h f (x 0 + h) f (x 0 ) h = negatiivinen positiivinen = negatiivinen negatiivinen apple 0, kun h > 0, 0, kun h < 0 ja h on niin pieni, että f (x 0 ) on maksimi välillä [x 0 h, x 0 + h].

38

39 1.3 Väliarvolause Lause 3 Jos f on jatkuva välillä [a, b] ja lisäksi derivoituva avoimella välillä ]a, b[, niin on olemassa sellainen piste c 2 ]a, b[, että f 0 (c) = f (b) b f (a), ts. f (b) f (a) =f 0 (c)(b a). a

40 1.3 Väliarvolause (cont.) y y = f ( x) a c b x

41 1.3 Väliarvolause (cont.) Väliarvolauseen todistus: Sovelletaan Rollen lausetta apufunktioon g(x) =f (x) f (b) b f (a) (x a) f (a), a joka toteuttaa g(a) =g(b) =0. Sen paikallisessa ääriarvokohdassa c 2 ]a, b[ pätee g 0 (c) =0, f (b) f (a) =f 0 (c)(b a). y janan pituus = g(x) y = f ( x) a b x

42 1.3 Väliarvolauseen seurauksia I Jos f 0 (x) =0 kaikissa avoimen välin pisteissä x, niin f on vakiofunktio tällä välillä. I Jos f 0 (x) 0 jollakin välillä, niin f on kasvava tällä välillä; jos f 0 (x) apple 0 jollakin välillä, niin f on vähenevä tällä välillä. I Jos edellisen kohdan lisäksi f 0 (x) =0 ainoastaan yksittäisissä pisteissä, niin f on aidosti kasvava/vähenevä. Esimerkki: f (x) =x 3.

43

44 1.3 L Hôpitalin sääntö Raja-arvojen laskeminen derivaatan avulla; erilaisia versioita mm. tyyppiä 0/0 tai 1/1 oleville raja-arvoille; myös toispuoleisille. Tärkein tapaus: Lause 4 Oletetaan, että f (x 0 )=g(x 0 )=0ja funktiot f, g ovat derivoituvia jollakin välillä ]x 0, x 0 + [. Jos on olemassa, niin lim x!x 0 lim x!x 0 f 0 (x) g 0 (x) f (x) g(x) = lim x!x 0 f 0 (x) g 0 (x).

45 1.3 L Hôpitalin sääntö Raja-arvojen laskeminen derivaatan avulla; erilaisia versioita mm. tyyppiä 0/0 tai 1/1 oleville raja-arvoille; myös toispuoleisille. Tärkein tapaus: Lause 4 Oletetaan, että f (x 0 )=g(x 0 )=0ja funktiot f, g ovat derivoituvia jollakin välillä ]x 0, x 0 + [. Jos on olemassa, niin lim x!x 0 lim x!x 0 f 0 (x) g 0 (x) f (x) g(x) = lim x!x 0 f 0 (x) g 0 (x).

46 Perustelu: Erikoistapauksessa g 0 (x 0 ) 6= 0 perustelu on lyhyt: f (x) g(x) = f (x) f (x 0) g(x) g(x 0 ) = f (x) f (x 0) /(x x 0 ) g(x) g(x 0 ) /(x x 0 )! f 0 (x 0 ) g 0 (x 0 ).

47 Perustelu: Erikoistapauksessa g 0 (x 0 ) 6= 0 perustelu on lyhyt: f (x) g(x) = f (x) f (x 0) g(x) g(x 0 ) = f (x) f (x 0) /(x x 0 ) g(x) g(x 0 ) /(x x 0 )! f 0 (x 0 ) g 0 (x 0 ).

48 Perustelu: Erikoistapauksessa g 0 (x 0 ) 6= 0 perustelu on lyhyt: f (x) g(x) = f (x) f (x 0) g(x) g(x 0 ) = f (x) f (x 0) /(x x 0 ) g(x) g(x 0 ) /(x x 0 )! f 0 (x 0 ) g 0 (x 0 ). Yleisessä tapauksessa tarvitaan ns. yleistettyä väliarvolausetta, jonka mukaan f (x) g(x) = f 0 (c) g 0 (c) jossakin pisteessä c 2 ]x 0, x[. Tällöin osoittajassa ja nimittäjässä on sama piste c, joten edes derivaattojen jatkuvuutta ei tarvita!

49

50 Esimerkki 5 sin(4x) Laske raja-arvo lim. x!0 x

51 Esimerkki 5 sin(4x) Laske raja-arvo lim. x!0 x Ratkaisu: Koska sin(4x)/x on muotoa 0/0 kohdassa x = 0, niin voidaan (yrittää) soveltaa L Hôpitalin sääntöä: sin(4x) 4 cos(4x) lim = lim = 4. x!0 x x!0 1 Koska derivoidulla muodolla on raja-arvo 4, niin lasku on pätevä.

52 Esimerkki 5 sin(4x) Laske raja-arvo lim. x!0 x Ratkaisu: Koska sin(4x)/x on muotoa 0/0 kohdassa x = 0, niin voidaan (yrittää) soveltaa L Hôpitalin sääntöä: sin(4x) 4 cos(4x) lim = lim = 4. x!0 x x!0 1 Koska derivoidulla muodolla on raja-arvo 4, niin lasku on pätevä. Huom. 1: Jos derivoitu raja-arvo on edelleen muotoa 0/0, niin sääntöä voidaan yrittää käyttää toisen (tai useamman) kerran.

53 Esimerkki 5 sin(4x) Laske raja-arvo lim. x!0 x Ratkaisu: Koska sin(4x)/x on muotoa 0/0 kohdassa x = 0, niin voidaan (yrittää) soveltaa L Hôpitalin sääntöä: sin(4x) 4 cos(4x) lim = lim = 4. x!0 x x!0 1 Koska derivoidulla muodolla on raja-arvo 4, niin lasku on pätevä. Huom. 1: Jos derivoitu raja-arvo on edelleen muotoa 0/0, niin sääntöä voidaan yrittää käyttää toisen (tai useamman) kerran. Huom. 2: Muoto 0/0 on aina tarkistettava: cos x lim x!0 x 6= lim x!0 sin x 1 = 0.

54 1.3 Ääriarvotehtävät Seuraavassa A R on väli. I Funktiolla f : A! R on paikallinen maksimi/minimi pisteessä x 0 2 A, jos x 0 on funktion f maksimi-/minimikohta jollakin välillä A \ [x 0, x 0 + ]. I Paikallinen ääriarvo = paikallinen maksimi tai minimi; voi esiintyä myös määrittelyvälin päätepisteessä. I Paikallinen ääriarvo voi tulla (i) derivaatan nollakohdassa (ii) määrittelyvälin päätepisteessä, tai (iii) sellaisessa kohdassa, jossa funktio ei ole derivoituva. I Jos tiedetään etukäteen, että funktiolla on maksimi/minimi, niin etsitään kaikki mahdolliset paikalliset ääriarvokohdat (vrt. edellinen), lasketaan niissä funktion arvot ja valitaan näistä suurin/pienin.

55 1.3 Ääriarvotehtävät (cont.) Esimerkki 6 Määritä funktion f :[0, 2]! R, f (x) =x 3 arvo. 6x, suurin ja pienin Ratkaisu: Derivaatan nollakohdat: f 0 (x) =3x 2 6 = 0, x = ± p 2. Koska p 2 62 [0, 2], niin lasketaan arvot f (0) =0, f ( p 2)= 4 p 2, f (2) = 4, joista voidaan valita funktion pienin arvo 4 p 2 ja suurin arvo 0.

56 1.3 Kuperuus I Kupera eli konveksi alue D R 2 : jos x, y 2 D, niin myös niiden välinen yhdysjana [x, y] D I Välillä I R määritelty funktio on kupera eli konveksi, jos sen kuvaajan yläpuolinen tasoalue on kupera; tähän riittää se että kuvaajalle piirretyt sekantit ovat aina kuvaajan yläpuolella, kaavana f (1 t)x + ty apple (1 t)f (x)+tf (y), kun x, y 2 I, t 2 [0, 1]. I Erityisesti: jos f 00 (x) 0 koko välillä, niin f on konveksi I Funktion käännepiste: kohta, jossa kuvaajalla on tangentti ja funktion kuperuussuunta vaihtuu. Esimerkiksi, jos f 00 (x) vaihtaa merkkiä. I Jos funktion f derivaatan nollakohdassa x 0 on f 00 (x 0 ) < 0, niin kyseessä on paikallinen maksimi; jos f 00 (x 0 ) > 0, niin kyseessä on paikallinen minimi. Tapauksessa f 00 (x 0 )=0 tilannetta täytyy tutkia tarkemmin.

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 13 Derivaatan määritelmä Määritelmä

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti

Lisätiedot

MS-A010X Differentiaali- ja integraalilaskenta 1

MS-A010X Differentiaali- ja integraalilaskenta 1 MS-A010X Differentiaali- ja integraalilaskenta 1 Pekka Alestalo 1 Aalto-yliopisto Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos 6.9.2017 1 Kiitokset Harri Hakulalle, Janne Korvenpäälle,

Lisätiedot

MS-A010X Differentiaali- ja integraalilaskenta 1

MS-A010X Differentiaali- ja integraalilaskenta 1 MS-A010X Differentiaali- ja integraalilaskenta 1 Pekka Alestalo 1 Aalto-yliopisto Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos 20.10.2017 1 Kiitokset Harri Hakulalle, Janne Korvenpäälle,

Lisätiedot

MS-A010X Differentiaali- ja integraalilaskenta 1

MS-A010X Differentiaali- ja integraalilaskenta 1 MS-A010X Differentiaali- ja integraalilaskenta 1 Pekka Alestalo Aalto-yliopisto 1.9.2016 Pekka Alestalo (Aalto-yliopisto) MS-A010X Differentiaali- ja integraalilaskenta 1 1.9.2016 1 / 200 Sisältö Nämä

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle / MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Ratkaisuehdotus 2. kurssikoe

Ratkaisuehdotus 2. kurssikoe Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen

Lisätiedot

Ratkaisuehdotus 2. kurssikokeeseen

Ratkaisuehdotus 2. kurssikokeeseen Ratkaisuehdotus 2. kurssikokeeseen 4.2.202 (ratkaisuehdotus päivitetty 23.0.207) Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva

Lisätiedot

MS-A010X Differentiaali- ja integraalilaskenta 1

MS-A010X Differentiaali- ja integraalilaskenta 1 MS-A010X Differentiaali- ja integraalilaskenta 1 Pekka Alestalo Aalto-yliopisto 24.10.2016 Kiitokset Riikka Kortteelle, Jarmo Maliselle ja kurssien opiskelijoille painovirheiden korjauksista. Sisältö Nämä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011

Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Kuudennen eli viimeisen viikon luennot Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuihin 2.3. ja 2.4. Esko Turunen esko.turunen@tut.fi Jatkuvuuden

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto

Lisätiedot

MS-A010X Differentiaali- ja integraalilaskenta 1

MS-A010X Differentiaali- ja integraalilaskenta 1 MS-A010X Differentiaali- ja integraalilaskenta 1 Pekka Alestalo Aalto-yliopisto 24.10.2016 Kiitokset Riikka Kortteelle, Jarmo Maliselle ja kurssien opiskelijoille painovirheiden korjauksista. Sisältö Nämä

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan

Lisätiedot

MS-A010X Differentiaali- ja integraalilaskenta 1

MS-A010X Differentiaali- ja integraalilaskenta 1 MS-A010X Differentiaali- ja integraalilaskenta 1 Pekka Alestalo Aalto-yliopisto 20.10.2017 Kiitokset Harri Hakulalle, Janne Korvenpäälle, Riikka Kortteelle, Jarmo Maliselle ja kurssien opiskelijoille painovirheiden

Lisätiedot

MS-A010X Di erentiaali- ja integraalilaskenta 1

MS-A010X Di erentiaali- ja integraalilaskenta 1 MS-A010X Di erentiaali- ja integraalilaskenta 1 Pekka Alestalo Aalto-yliopisto 24.10.2016 Kiitokset Riikka Kortteelle, Jarmo Maliselle ja kurssien opiskelijoille painovirheiden korjauksista. Sisältö Nämä

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Matematiikan peruskurssi (MATY020) Harjoitus 7 to Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat

Lisätiedot

763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 2012

763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 2012 763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 01 1 Sisältö: 1 Differentiaalilaskentaa Integraalilaskentaa 3 Vektorit 4 Potenssisarjoja 5 Kompleksiluvut 6 Differentiaaliyhtälöistä

Lisätiedot

MATP153 Approbatur 1B Harjoitus 6 Maanantai

MATP153 Approbatur 1B Harjoitus 6 Maanantai . (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 2 Funktion derivaatta 2.1 Määritelmiä ja perusominaisuuksia 1. Määritä suoraan derivaatan määritelmää käyttäen f (0), kun (a) + 1, (b) (2 + ) sin(3). 2. Olkoon

Lisätiedot

MATP153 Approbatur 1B Harjoitus 5 Maanantai

MATP153 Approbatur 1B Harjoitus 5 Maanantai MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä

Lisätiedot

Toispuoleiset raja-arvot

Toispuoleiset raja-arvot Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 10. Kurssikerta Petrus Mikkola 22.11.2016 Tämän kerran asiat Globaali ääriarvo Konveksisuus Käännepiste L Hôpitalin sääntö Newtonin menetelmä Derivaatta ja monotonisuus

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7, HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,

Lisätiedot

3 Derivoituvan funktion ominaisuuksia

3 Derivoituvan funktion ominaisuuksia ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 3 Derivoituvan funktion ominaisuuksia 31 l Hospitalin sääntö 1 Määritä 2 5 4 2 + 2 7 12 + 11, e 1 2, (c) tan sin 2 Määritä 2012 3 704 + 2 6 30 13 10 + 7, 3 2017

Lisätiedot

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2. MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo.

1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo. Matematiikan ja tilastotieteen laitos Differentiaalilaskenta, syksy 01 Lisätetävät Ratkaisut 1. Määritä funktion f : [ 1, 3], suurin ja pienin arvo. f (x)= x 3 3x, Ratkaisu. Funktio f on jatkuva suljetulla

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

k-kantaisen eksponenttifunktion ominaisuuksia

k-kantaisen eksponenttifunktion ominaisuuksia 3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio

Lisätiedot

1.1. YHDISTETTY FUNKTIO

1.1. YHDISTETTY FUNKTIO 1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Mapu 1. Laskuharjoitus 3, Tehtävä 1 Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0

Lisätiedot

Diskreetti derivaatta

Diskreetti derivaatta Diskreetti derivaatta LuK-tutkielma Saara Sadinmaa 43571 Matemaattisten tieteiden koulutusohjelma Oulun yliopisto Syksy 017 Sisältö Johdanto 1 Peruskäsitteitä 3 Ominaisuuksia 4 3 Esimerkkejä 8 4 Potenssifunktioita

Lisätiedot

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

Matriisit ja optimointi kauppatieteilijöille

Matriisit ja optimointi kauppatieteilijöille Matriisit ja optimointi kauppatieteilijöille Harjoitus 4, kevät 2019 1. a) f(x) = x 3 6x 2 + 9x + 1, 3 x 3 Funktio f(x) on jatkuva ja derivoituva. Funktio f(x) saavuttaa suurimman ja pienimmän arvonsa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot Harri Hakula Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2018 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)

Lisätiedot

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ Matematiikan tilastotieteen laitos Differentiaalilaskenta, syksy 2015 Lisätehtävät 1 Ratkaisut 1. Olkoon f :, x+1, x 1, f (x)= x+3, x>1 Piirrä funktion kuvaa välillä [ 1, 3]. (a) Tutki ra-arvon (ε, δ)-määritelmän

Lisätiedot

Viikon aiheet. Funktion lineaarinen approksimointi

Viikon aiheet. Funktion lineaarinen approksimointi Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +

Lisätiedot

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali 6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla

Lisätiedot

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 14..016 Kertaus K1. a) b) x 18 ( x 9) ( x ) ( x+ ) lim = lim = lim x+ x+ ( x + ) x x x = lim (x 6) = ( ) 6 = 1 x x + 6 ( ) + 6 0 lim = =

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Matematiikkaa kauppatieteilijöille

Matematiikkaa kauppatieteilijöille Matematiikkaa kauppatieteilijöille Harjoitus 7, syksy 2016 1. Funktio f(x) = x 2x 2 + 4 on jatkuva ja derivoituva kaikilla x R. Nyt funktio f(x) on aidosti alaspäin kupera kun f (x) > 0 ja aidosti ylöspäin

Lisätiedot

MATP153 Approbatur 1B Harjoitus 4 Maanantai

MATP153 Approbatur 1B Harjoitus 4 Maanantai MATP53 Approbatur B Harjoitus 4 Maanantai 3..05. Halutaan määritellä funktio f siten, että f() =. Missä pisteissä + funktio voidaan määritellä tällä lausekkeella? Missä pisteissä funktio on näin määriteltynä

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

sin(x2 + y 2 ) x 2 + y 2

sin(x2 + y 2 ) x 2 + y 2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 2017 Harjoitus 2 Ratkaisuedotukset 2.1. Tutki funktion g : R 2 R, g(0, 0) = 0, jatkuvuutta. g(x, y) = sin(x2 + y 2 ) x 2 + y 2, kun (x,

Lisätiedot

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K. a) Polynomi P() = 3 + 8 on jaollinen polynomilla Q() = 3, jos = 3 on polynomin P nollakohta, eli P(3) = 0. P(3) = 3 3 3 + 8 3 = 54 08 + 54 = 0. Polynomi P on jaollinen polynomilla Q. b) Jaetaan

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta

Lisätiedot

Matematiikan tukikurssi: kurssikerta 12

Matematiikan tukikurssi: kurssikerta 12 Matematiikan tukikurssi: kurssikerta 2 Tenttiin valmentavia harjoituksia Huomio. Tähän tulee lisää ratkaisuja sitä mukaan kun ehin niitä kirjoittaa. Kurssilla käyään läpi tehtävistä niin monta kuin mahollista.

Lisätiedot

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen. 4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268. KERTAUSHARJOITUKSIA. Rationaalifunktio 66. a) b) + + + = + + = 9 9 5) ( ) ( ) 9 5 9 5 9 5 5 9 5 = = ( ) = 6 + 9 5 6 5 5 Vastaus: a) 67. a) b) a a) a 9 b) a+ a a = = a + a + a a + a a + a a ( a ) + = a

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0. Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (

Lisätiedot