Johdatus reaalifunktioihin P, 5op
|
|
- Ilona Kirsi Halttunen
- 5 vuotta sitten
- Katselukertoja:
Transkriptio
1 Johdatus reaalifunktioihin P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta / 55
2 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti osaa laskea raja-arvoja Pekka Salmi FUNK 1. lokakuuta / 55
3 Raja-arvon epämääräinen määritelmä Funktiolla f on pisteessä x 0 raja-arvonaan luku a, jos muuttujan arvojen lähestyessä arvoa x 0 funktion f arvot lähestyvät lukua a. Lähestymisen tulee olla sellaista, että tulemalla tarpeeksi lähelle lukua x 0 saadaan funktion f arvot niin lähelle lukua a kuin suinkin halutaan. (WSOY, Pitkä matematiikka 7: Derivaatta) Pekka Salmi FUNK 1. lokakuuta / 55
4 Esimerkki a 1 x x 0 Pekka Salmi FUNK 1. lokakuuta / 55
5 Oskiloiva raja-arvo ( x sin 1 x ) 0.05 ( 1 ) lim x sin = 0 x 0 x Pekka Salmi FUNK 1. lokakuuta / 55
6 Esimerkki Tutkitaan funktion f (x) = 3x 1 käyttäytymistä pisteen x = 1 läheisyydessä. (Huomaa että f (1) = 2.) Olkoon ɛ > 0 virhetermi. Määrää ne x:n arvot joilla kun ɛ = 0,1. f (x) 2 < ɛ Pekka Salmi FUNK 1. lokakuuta / 55
7 Raja-arvon määritelmä Olkoon f reaalifunktio joka on määritelty (ainakin) joukossa ]x 0 r, x 0 + r[ \ {x 0 } jollain r > 0. Funktiolla on raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun 0 < x x 0 < δ. Toisin sanoen kun f :n arvoja tarkastellaan tarpeeksi lähellä pistettä x 0 (muttei pisteessä x 0!), niin ne kaikki saadaan mielivaltaisen lähelle lukua a. Funktion f raja-arvoa pisteessä x 0 merkitään lim f (x). x x 0 Huomaa että funktion f arvolla pisteessä x 0 ei ole mitään merkitystä raja-arvon määritelmässä, eikä funktiota f ole välttämättä edes määritelty pisteessä x 0. Pekka Salmi FUNK 1. lokakuuta / 55
8 Esimerkki 1 1 ɛ = 0.3 ɛ 1 1 x δ δ = 0.2 Pekka Salmi FUNK 1. lokakuuta / 55
9 Esimerkki, osa 2 Sama δ ei toimi kun lukua ɛ pienennetään: 1 ɛ = 0.15 ɛ 1 1 x δ δ = 0.2 Pekka Salmi FUNK 1. lokakuuta / 55
10 Esimerkki, osa 3 Luku δ voidaan kuitenkin valita vielä pienemmäksi... 1 ɛ = 0.15 ɛ 1 1 x δ δ = 0.1 Pekka Salmi FUNK 1. lokakuuta / 55
11 Laskuesimerkki Laske funktion raja-arvo pisteessä 2. f (x) = x 2 x 2 + x 6 Pekka Salmi FUNK 1. lokakuuta / 55
12 Raja-arvoa ei ole olemassa f (x) lim f (x) = 1 mutta lim f (x) = 2 x 2 x 2+ Pekka Salmi FUNK 1. lokakuuta / 55
13 Raja-arvoa ei ole olemassa 2 1 sin(1/x) Funktio ( 1 ) f (x) = sin x x 0 oskiloi voimakkaasti pisteen 0 läheisyydessä, joten raja-arvoa ei ole olemassa. ( 1 ) lim sin x 0 x Pekka Salmi FUNK 1. lokakuuta / 55
14 Raja-arvon ominaisuuksia Lemma Kaikilla a, b, x 0 R pätee lim x x0 ax + b = ax 0 + b. Lause (Raja-arvon laskusääntöjä) Olkoot f ja g funktioita joilla on raja-arvot pisteessä x 0 ja olkoon c R vakio. Tällöin 1 lim x x0 ( f (x) + g(x) ) = ( limx x0 f (x) ) + ( lim x x0 g(x) ) 2 lim x x0 cf (x) = c lim x x0 f (x) 3 lim x x0 f (x) = lim x x0 f (x) 4 lim x x0 ( f (x)g(x) ) = ( limx x0 f (x) )( lim x x0 g(x) ) 5 lim x x0 f (x) g(x) = limx x 0 f (x) lim x x0 g(x) olettaen että lim x x 0 g(x) 0. Pekka Salmi FUNK 1. lokakuuta / 55
15 Rationaalifunktioiden raja-arvot Edellä olevista laskusäännöistä ja lemmasta seuraa että polynomeille P ja Q pätee P(x) lim P(x) = P(x 0 ) ja lim x x 0 x x 0 Q(x) = P(x 0) Q(x 0 ) kun Q(x 0 ) 0. Toisin sanoen polynomi- ja rationaalifunktiot ovat jatkuvia... Esimerkki lim x 2 x + 2 x 2 + 6x + 8 = lim x 2 x + 2 (x + 2)(x + 4) = lim x 2 1 x + 4 = 1 2 Pekka Salmi FUNK 1. lokakuuta / 55
16 Funktion jatkuvuus pisteessä Olkoon f reaalifunktio, joka on määritelty ainakin joukossa ]x 0 r, x 0 + r[ jollain r > 0. Funktio f on jatkuva pisteessä x 0 mikäli f (x 0 ) = lim x x 0 f (x). Siis f on jatkuva pisteessä x 0 jos f :n arvo pisteessä x 0 on sama kuin f :n raja-arvo pisteessä x 0. Toisin sanoen f on jatkuva pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) f (x 0 ) < ɛ aina kun x x 0 < δ. Pekka Salmi FUNK 1. lokakuuta / 55
17 Jatkuva funktio Olkoon f : M R missä M R. Funktio f on jatkuva (kokonaisuudessaan) jos f on jatkuva jokaisessa määritysalueensa M pisteessä. Pekka Salmi FUNK 1. lokakuuta / 55
18 1/x 1 x Pekka Salmi FUNK 1. lokakuuta / 55
19 Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 1. lokakuuta / 55
20 Yhdistetyn funktion raja-arvo Lause Oletetaan että raja-arvo lim x x0 f (x) =: y 0 on olemassa ja että funktio g on jatkuva pisteessä y 0. Tällöin yhdistetyllä funktiolla g f on olemassa raja-arvo pisteessä x 0 ja lim (g f )(x) = g( lim f (x)) = g(y 0 ). x x 0 x x 0 Erityisesti jos f on jatkuva pisteessä x 0 ja g on jatkuva pisteessä f (x 0 ) niin g f on jatkuva pisteessä x 0. Huomautus: jos f on jatkuva, niin y 0 = f (x 0 ) ja täten g(y 0 ) = (g f )(x 0 ). Pekka Salmi FUNK 1. lokakuuta / 55
21 Alkeisfunktiot ovat jatkuvia Alkeisfunktiot ovat jatkuvia määrittelyalueellaan: polynomifunktiot rationaalifunktiot juurifunktiot trigonometriset funktiot eksponenttifunktiot logaritmifunktiot hyperboliset funktiot näiden äärelliset yhdistelmät (summat, tulot, osamäärät, yhdistetyt funktiot). Pekka Salmi FUNK 1. lokakuuta / 55
22 Alkeisfunktioiden äärelliset yhdistelmät ovat jatkuvia Esimerkki Funktio sin(x 2 ) + e x on jatkuva. Pekka Salmi FUNK 1. lokakuuta / 55
23 Puristuslause eli suppiloperiaate Seuraavan lauseen avulla voi laskea useita raja-arvoja. Lause Olkoot f, g ja h funktioita joille päätee 1 f (x) g(x) h(x) aina kun 0 < x x 0 < r 2 lim x x0 f (x) = lim x x0 h(x) =: a. Tällöin funktiolla g on raja-arvo pisteessä x 0 ja lim g(x) = a. x x 0 Pekka Salmi FUNK 1. lokakuuta / 55
24 Puristuslauseen sovellus Esimerkki Tutkitaan raja-arvoa sin x lim x 0 x. (0, 1) (0, 0) sin x x tan x Kun 0 < x < π/2, sin x < x < tan x. Pekka Salmi FUNK 1. lokakuuta / 55
25 Raja-arvo äärettömyydessä Olkoon f reaalifunktio, joka on määritelty ainakin joukossa [M, + [ jollain M R. Luku a R on funktion f raja-arvo äärettömyydessä + mikäli kaikilla ɛ > 0 löytyy sellainen R > 0 että f (x) a < ɛ aina kun x > R. Vastaavasti a R on funktion f : ], M] R raja-arvo äärettömyydessä mikäli kaikilla ɛ > 0 löytyy sellainen R < 0 että Merkitään näitä raja-arvoja ( = + ). f (x) a < ɛ aina kun x < R. lim f (x) ja lim f (x). x + x Pekka Salmi FUNK 1. lokakuuta / 55
26 Asymptoottiesimerkki Tutkitaan funktion raja-arvoja äärettömyydessä. f (x) = 2x + 1 x 1 2x+1 x 1 Pekka Salmi FUNK 1. lokakuuta / 55
27 Asymptootit Suoraa y = c kutsutaan funktion f horisontaaliseksi asymptootiksi jos lim f (x) = c tai lim f (x) = c. x x + Vastaavasti suoraa x = c kutsutaan funktion f vertikaaliseksi asymptootiksi jos lim f (x) = + tai lim f (x) = tai x c x c lim f (x) = + tai lim f (x) =. x c+ x c+ Pekka Salmi FUNK 1. lokakuuta / 55
28 Äärettömät raja-arvot Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on + mikäli kaikilla R > 0 löytyy sellainen δ > 0 että f (x) > R aina kun 0 < x x 0 < δ. Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on mikäli kaikilla R < 0 löytyy sellainen δ > 0 että Näitä merkitään f (x) < R aina kun 0 < x x 0 < δ. lim f (x) = + ja lim f (x) =. x x 0 + x x 0 + Vasemmanpuoleiset raja-arvot määritellään käyttämällä f :n arvoja x 0 :n vasemmalla puolella (eli 0 < x x 0 < δ korvataan lausekkeella 0 < x 0 x < δ). Näitä merkitään lim x x0 f (x). Pekka Salmi FUNK 1. lokakuuta / 55
29 Jatkuvien funktioiden väliarvolause Lause Olkoon f : [a, b] R jatkuva. Tällöin funktio f saa kaikki arvot, jotka ovat lukujen f (a) ja f (b) välissä. Pekka Salmi FUNK 1. lokakuuta / 55
30 Derivaatan määritelmä Olkoon f funktio joka on määritelty (ainakin) välillä ]x 0 r, x 0 + r[ jollain r > 0. Tällöin f on derivoituva pisteessä x 0 jos raja-arvo f (x 0 ) := lim x x 0 f (x) f (x 0 ) x x 0 on olemassa. Tällöin lukua f (x 0 ) kutsutaan funktion f derivaataksi pisteessä x 0. Pekka Salmi FUNK 1. lokakuuta / 55
31 Geometrinen tulkinta Erotusosamäärä f (x) f (x 0 ) x x 0 on pisteiden (x 0, f (x 0 )) ja (x, f (x)) kautta kulkevan suoran kulmakerroin. Kun x x 0, niin erotusosamäärän raja-arvona saadaan f :n kuvaajan pisteeseen (x 0, f (x 0 )) piirretyn tangentin kulmakerroin. f (3) f (1) (1, f (1)) 3 1 (3, f (3)) f (x) = 1 x Derivaatta kertoo kuvaajan jyrkkyyden kyseisessä pisteessä. Pekka Salmi FUNK 1. lokakuuta / 55
32 Fysikaalinen tulkinta Olkoon f kappaleen paikka ajanhetkellä x. Tällöin erotusosamäärä f (x) f (x 0 ) x x 0 on kappaleen keskimääräinen nopeus välillä [x 0, x] (tai [x, x 0 ] jos x 0 > x). Kun x x 0, niin erotusosamäärän raja-arvona saadaan kappaleen nopeus ajanhetkellä x 0. Pekka Salmi FUNK 1. lokakuuta / 55
33 Funktion derivaattafunktio Funktio f on derivoituva välillä ]a, b[ mikäli se on derivoituva jokaisessa pisteessä x 0 ]a, b[. Tällöin f voidaan ajatella funktioksi ]a, b[ R. Aiempi kaava voidaan kirjoittaa toiseen muotoon (asettamalla x 0 = x ja x x 0 = h): f f (x + h) f (x) (x) = lim. h 0 h Tämän kaavan hyöty on siinä, että nyt f on helpompi mieltää kuvaukseksi, jonka muuttuja on x. Pekka Salmi FUNK 1. lokakuuta / 55
34 Huomautuksia Vaihtoehtoisia merkintöjä: f (x 0 ) = (Df )(x 0 ) = df dx (x 0). Jos funktio f on derivoituva pisteessä x 0, niin f on myös jatkuva pisteessä x 0. Pekka Salmi FUNK 1. lokakuuta / 55
35 Esimerkkejä Esimerkki Laske funktion f (x) = c derivaatta (c vakio). Esimerkki Laske funktion f (x) = cx derivaatta (c vakio). Esimerkki Laske funktion f (x) = x 2 derivaatta. Pekka Salmi FUNK 1. lokakuuta / 55
36 Esimerkkejä Esimerkki Tutki funktion f (x) = x derivoituvuutta pisteessä 0. Esimerkki Tutki funktion ( 1 ) x sin kun x 0 f (x) = x 0 kun x = 0 derivoituvuutta pisteessä 0. Esimerkki Tutki funktion ( 1 ) x 2 sin kun x 0 f (x) = x 0 kun x = 0 derivoituvuutta pisteessä 0. Pekka Salmi FUNK 1. lokakuuta / 55
37 Derivaatta origossa? ( x sin 1 x ) ( x 2 sin 1 x ) Pekka Salmi FUNK 1. lokakuuta / 55
38 Derivaatan laskusääntöjä Lause Olkoot f ja g funktioita jotka ovat derivoituvia pisteessä x ja c R vakio. Tällöin 1 (f + g) (x) = f (x) + g (x) 2 (cf ) (x) = cf (x) 3 (fg) (x) = f (x)g(x) + f (x)g (x) ( f ) (x) f (x)g(x) f (x)g (x) 4 = g g(x) 2. Pekka Salmi FUNK 1. lokakuuta / 55
39 Alkeisfunktioiden derivaattoja Seuraavaan listaan on kerätty alkeisfunktioiden derivaattoja (x on muuttuja). 1 Dc = 0 kun c R on vakio (eli vakiofunktion derivaatta on 0) 2 Dx = 1 3 Dx n = nx n 1 kun n N 4 D x = 1 2 x 5 Dx r = rx r 1 kun r R (tämä kattaa edelliset säännöt) 6 De x = e x 7 D log x = 1 x 8 Da x = a x log a kun a > 0 Pekka Salmi FUNK 1. lokakuuta / 55
40 Alkeisfunktioiden derivaattoja 2 9 D sin x = cos x 10 D cos x = sin x 11 D tan x = 1 cos 2 x = 1 + tan2 x 12 D cot x = 1 sin 2 x = 1 cot2 x 13 D arcsin x = 1 1 x 2 14 D arccos x = 1 1 x 2 15 D arctan x = x 2 Pekka Salmi FUNK 1. lokakuuta / 55
41 Ketjusääntö Lause Olkoon f derivoituva pisteessä x 0 ja g derivoituva pisteessä f (x 0 ). Tällöin (g f )(x) = g(f (x)) on derivoituva pisteessä x 0 ja (g f ) (x 0 ) = g (f (x 0 ))f (x 0 ). Esimerkki Olkoon g(x) = sin x ja f (x) = x 2. Tällöin g f (x) = sin(x 2 ) ja (g f ) (x) = cos(x 2 ) (2x). Pekka Salmi FUNK 1. lokakuuta / 55
42 Käänteisfunktion derivaatta Lause Olkoon f jatkuvasti derivoituva (eli derivaatta f on jatkuva funktio) ja f (x 0 ) 0. Tällöin funktiolla f on olemassa derivoituva käänteisfunktio f 1 pisteen y 0 = f (x 0 ) ympäristössä ja (f 1 ) (y 0 ) = 1 f (x 0 ). Pekka Salmi FUNK 1. lokakuuta / 55
43 Arkustangentin derivaatta Esimerkki Olkoon f (x) = tan x jolloin f 1 (y) = arctan y. Kaavan mukaan D arctan y = Nyt y = f (x) = tan x joten 1 D tan x = tan 2 x. D arctan y = y 2. Pekka Salmi FUNK 1. lokakuuta / 55
44 Ääriarvot Funktiolla f : M R (M R) on maksimi kohdassa x 0 mikäli f (x) f (x 0 ) kaikilla x M. Toisaalta funktiolla f on paikallinen maksimi kohdassa x 0 mikäli on olemassa sellainen r > 0 että f (x) f (x 0 ) kaikilla x M joilla x x 0 < r. Vastaavasti f :llä on minimi kohdassa x 0 mikäli f (x) f (x 0 ) kaikilla x M ja f :llä on paikallinen minimi kohdassa x 0 mikäli on olemassa sellainen r > 0 että f (x) f (x 0 ) kaikilla x M joilla x x 0 < r. Pekka Salmi FUNK 1. lokakuuta / 55
45 Kriittiset pisteet Lause Jos funktiolla f : ]a, b[ R on paikallinen maksimi tai minimi kohdassa x 0 ]a, b[, missä f on derivoituva, niin f (x 0 ) = 0. (x/2 1) Funktion f derivaatan nollakohtia kutsutaan kriittisiksi pisteiksi. Kriittinen piste voi olla joko 1 paikallinen maksimikohta 2 paikallinen minimikohta 3 satulapiste (= kriittinen piste joka ei ole paikallinen ääriarvokohta). Pekka Salmi FUNK 1. lokakuuta / 55
46 Esimerkkejä Esimerkki Etsi funktion f (x) = x 3 x 2 1 kriittiset pisteet ja tutki niiden laatu. 3 x 3 3 x 2 1 x 3 Esimerkki Funktiolla f (x) = x 3 on satulapiste kohdassa x = 0. Pekka Salmi FUNK 1. lokakuuta / 55
47 Dierentiaalilaskennan väliarvolause Lause (Väliarvolause) Olkoon f jatkuva välillä [a, b] ja derivoituva välillä ]a, b[. Tällöin on olemassa sellainen c ]a, b[, että f (b) f (a) = f (c)(b a). Tulkinta: Tarkasteluvälillä hetkellinen nopeus on jollain hetkellä sama kuin keskimääräinen nopeus. a c b Pekka Salmi FUNK 1. lokakuuta / 55
48 Seuraus Jos jollain välillä f (x) = g (x) jokaisessa pisteessä x, niin on olemassa sellainen vakio c, että f (x) = g(x) + c jokaisessa välin pisteessä x. Erityisesti jos f (x) = 0 jollain välillä, niin f on vakiofunktio kyseisellä välillä. Pekka Salmi FUNK 1. lokakuuta / 55
49 Funktion kulun tutkiminen Lause Jos f (x) > 0 jollain välillä, niin f on aidosti kasvava kyseisellä välillä. Jos taas f (x) < 0 jollain välillä, niin f on aidosti vähenevä kyseisellä välillä. Esimerkki Funktion f (x) = x 2 2x derivaatta on f (x) = x 3 3 x 2 1 f (x) = x 2 2x = x(x 2). Huomaa, että f (x) = 0 kun x {0, 2}, f (x) < 0 kun 0 < x < 2 ja muulloin f (x) > 0. f (x) = x 3 3 x 2 1 Pekka Salmi FUNK 1. lokakuuta / 55
50 Toinen derivaatta Korkeamman kertaluvun derivaatat saadaan derivoimalla derivaattafunktiota (mikäli mahdollista): f (x) = (f ) (x), f (x) = (f ) (x),... Lause Olkoon f (x 0 ) = 0. Jos f (x 0 ) > 0, niin funktion f kriittinen piste x 0 on paikallinen minimikohta. Jos taas f (x 0 ) < 0, niin x 0 on paikallinen maksimikohta. Perustelu: Olkoot f (x 0 ) = 0 ja f (x 0 ) > 0. Nyt f f (x 0 + h) f (x 0 ) f (x 0 + h) (x 0 ) = lim = lim > 0, h 0 h h 0 h joten kun h on tarpeeksi pieni niin f (x 0 + h) < 0 kun h < 0 ja f (x 0 + h) > 0 kun h > 0. Täten f on vähenevä x 0 :n vasemmalla puolella ja kasvava oikealla, joten x 0 on paikallinen minimikohta. Pekka Salmi FUNK 1. lokakuuta / 55
51 Esimerkki Esimerkki Etsi funktion kriittiset pisteet ja tutki niiden laatu. f (x) = x + 1 x x+1 x 2 +1 Pekka Salmi FUNK 1. lokakuuta / 55
52 Jatkuvalla funktiolla ääriarvot suljetulla välillä Lause Suljetulla välillä [a, b] määritellyllä jatkuvalla funktiolla f : [a, b] R on ääriarvot kyseisellä välillä. Jatkuvan funktion f : [a, b] R ääriarvojen etsiminen: 1 Tutki funktion f kriittiset pisteet eli derivaatan nollakohdat. 2 Tutki välin päätepisteet a ja b. 3 Tutki pisteet, joissa f ei ole derivoituva. Pekka Salmi FUNK 1. lokakuuta / 55
53 Esimerkkejä Esimerkki Etsi funktion f (x) = x 3 x 2 1 ääriarvot välillä [ 1, 1]. 3 Esimerkki Etsi funktion f (x) = x 3 x 2 1 ääriarvot välillä [ 2, 4]. 3 x 3 3 x 2 1 Pekka Salmi FUNK 1. lokakuuta / 55
54 l'hôpitalin sääntö Tutkitaan raja-arvoa missä Jos f (x) lim x x 0 g(x) lim f (x) = lim g(x) = 0 x x 0 x x 0 f (x) lim x x 0 g (x) (tai ± ). on olemassa, niin raja-arvo ( ) on olemassa ja voidaan laskea l'hôpitalin säännöllä: f (x) lim x x 0 g(x) = lim f (x) x x 0 g (x). ( ) Pekka Salmi FUNK 1. lokakuuta / 55
55 Esimerkkejä Esimerkki Laske lim x 0 x tan x. Esimerkki Laske lim x x. x 0+ Pekka Salmi FUNK 1. lokakuuta / 55
Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.
Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn
LisätiedotToispuoleiset raja-arvot
Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen
LisätiedotOletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on
Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä
LisätiedotJohdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Pekka Salmi 17. lokakuuta 2016 Pekka Salmi FUNK 17. lokakuuta 2016 1 / 205 Yleistä Luennot: ma 1214, pe 1012 Luennoitsija: Pekka Salmi, MA327 Laskupäivä: ke 1014,
Lisätiedot5 Differentiaalilaskentaa
5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.
LisätiedotSeurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa
Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään
LisätiedotFunktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo
LisätiedotÄärettömät raja-arvot
Äärettömät raja-arvot Määritelmä Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on + mikäli kaikilla R > 0 löytyy sellainen δ > 0 että f (x) > R aina kun x 0 < x < x 0 + δ. Funktion f oikeanpuoleinen
LisätiedotJATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.
JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva
LisätiedotMATP153 Approbatur 1B Harjoitus 5 Maanantai
MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).
LisätiedotPositiivitermisten sarjojen suppeneminen
Positiivitermisten sarjojen suppeneminen Jono (b n ) n= on kasvava, jos b n+ b n kaikilla n =, 2,... Lemma Jokainen ylhäältä rajoitettu kasvava jono (b n ) n= raja-arvo on lim n b n = sup n Z+ b n. suppenee
LisätiedotJohdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 1 Pekka Salmi 18. syyskuuta 2015 Pekka Salmi FUNK 18. syyskuuta 2015 1 / 65 Yleistä Luennot: ma 1214, pe 1012 Luennoitsija: Pekka Salmi, M229 (kahden viikon
Lisätiedot6 Eksponentti- ja logaritmifunktio
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 019 6 Eksponentti- ja logaritmifunktio 6.1 Eksponenttifunktio 1. Määritä (a) e 3 e + 5, (b) e, (c) + 3e e cos.. Tutki, onko funktiolla f() = 1 e tan + 1 ( π + nπ, n
Lisätiedot3 Derivoituvan funktion ominaisuuksia
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 3 Derivoituvan funktion ominaisuuksia 31 l Hospitalin sääntö 1 Määritä 2 5 4 2 + 2 7 12 + 11, e 1 2, (c) tan sin 2 Määritä 2012 3 704 + 2 6 30 13 10 + 7, 3 2017
LisätiedotA = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.
MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset
Lisätiedot2 Funktion derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 2 Funktion derivaatta 2.1 Määritelmiä ja perusominaisuuksia 1. Määritä suoraan derivaatan määritelmää käyttäen f (0), kun (a) + 1, (b) (2 + ) sin(3). 2. Olkoon
LisätiedotSisältö. Funktiot 12. syyskuuta 2005 sivu 1 / 25
Funktiot 12. syyskuuta 2005 sivu 1 / 25 Sisältö 1 Funktiot 2 1.1 Määritelmä ja peruskäsitteitä 2 1.2 Bijektiivisyys 3 1.3 Käänteisfunktio f 1 4 1.4 Funktioiden monotonisuus 5 1.5 Funktioiden laskutoimitukset
LisätiedotRatkaisuehdotus 2. kurssikoe
Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti
LisätiedotMATP153 Approbatur 1B Harjoitus 6 Maanantai
. (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään
LisätiedotAnalyysi I (sivuaineopiskelijoille)
Analyysi I (sivuaineopiskelijoille) Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2017 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 19 1 of 18 Kahden muuttujan funktioista
LisätiedotFunktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
LisätiedotRatkaisuehdotus 2. kurssikokeeseen
Ratkaisuehdotus 2. kurssikokeeseen 4.2.202 (ratkaisuehdotus päivitetty 23.0.207) Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin
LisätiedotInjektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )
Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään
LisätiedotAnalyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.
Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta
Lisätiedotd Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali
6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla
LisätiedotMaksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta
Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti
LisätiedotLuku 4. Derivoituvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa
LisätiedotJuuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 14..016 Kertaus K1. a) b) x 18 ( x 9) ( x ) ( x+ ) lim = lim = lim x+ x+ ( x + ) x x x = lim (x 6) = ( ) 6 = 1 x x + 6 ( ) + 6 0 lim = =
LisätiedotVASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN
Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa
Lisätiedot1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo.
Matematiikan ja tilastotieteen laitos Differentiaalilaskenta, syksy 01 Lisätetävät Ratkaisut 1. Määritä funktion f : [ 1, 3], suurin ja pienin arvo. f (x)= x 3 3x, Ratkaisu. Funktio f on jatkuva suljetulla
LisätiedotHY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
Lisätiedot2 Funktion derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /
MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa
LisätiedotOletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on
Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 13 Derivaatan määritelmä Määritelmä
Lisätiedot1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ
Matematiikan tilastotieteen laitos Differentiaalilaskenta, syksy 2015 Lisätehtävät 1 Ratkaisut 1. Olkoon f :, x+1, x 1, f (x)= x+3, x>1 Piirrä funktion kuvaa välillä [ 1, 3]. (a) Tutki ra-arvon (ε, δ)-määritelmän
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
Lisätiedot0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
LisätiedotDifferentiaalilaskenta 1.
Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,
LisätiedotRaja arvokäsitteen laajennuksia
Raja arvokäsitteen laajennuksia Näitä ei ole oppikirjassa! Raja arvo äärettömyydessä: Raja arvo äärettömyydessä on luku, jota funktion arvot lähestyvät, kun muuttujan arvot kasvavat tai vähenevät rajatta.
LisätiedotTekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.
Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (
LisätiedotMATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,
LisätiedotMatematiikkaa kauppatieteilijöille
Matematiikkaa kauppatieteilijöille Harjoitus 7, syksy 2016 1. Funktio f(x) = x 2x 2 + 4 on jatkuva ja derivoituva kaikilla x R. Nyt funktio f(x) on aidosti alaspäin kupera kun f (x) > 0 ja aidosti ylöspäin
LisätiedotTalousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta
Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion
Lisätiedot(x 0 ) = lim. Derivoimissääntöjä. Oletetaan, että funktiot f ja g ovat derivoituvia ja c R on vakio. 1. Dc = 0 (vakiofunktion derivaatta) 2.
Derivaatta kuvaa funktion hetkellistä kasvunopeutta. Geometrisesti tulkittuna funktion derivaatta kohdassa x 0 on funktion kuvaajalle kohtaan x 0 piirretyn tangentin kulmakerroin. Funktio f on derivoituva
LisätiedotReaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011
Kuudennen eli viimeisen viikon luennot Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuihin 2.3. ja 2.4. Esko Turunen esko.turunen@tut.fi Jatkuvuuden
LisätiedotMATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan
LisätiedotMatriisit ja optimointi kauppatieteilijöille
Matriisit ja optimointi kauppatieteilijöille Harjoitus 4, kevät 2019 1. a) f(x) = x 3 6x 2 + 9x + 1, 3 x 3 Funktio f(x) on jatkuva ja derivoituva. Funktio f(x) saavuttaa suurimman ja pienimmän arvonsa
LisätiedotTalousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta
Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion
LisätiedotVastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:
. Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää
LisätiedotTehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.
Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y
LisätiedotKaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.
6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon
Lisätiedot5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
Lisätiedotsaadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla
Lisätiedotsin(x2 + y 2 ) x 2 + y 2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 2017 Harjoitus 2 Ratkaisuedotukset 2.1. Tutki funktion g : R 2 R, g(0, 0) = 0, jatkuvuutta. g(x, y) = sin(x2 + y 2 ) x 2 + y 2, kun (x,
LisätiedotMatematiikan peruskurssi (MATY020) Harjoitus 7 to
Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat
Lisätiedotl 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
LisätiedotMatematiikan peruskurssi (MATY020) Harjoitus 10 to
Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin
LisätiedotFunktion määrittely (1/2)
Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.
LisätiedotMATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Lisätiedot5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
LisätiedotOlkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:
4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x
LisätiedotMatematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.
7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 1 Korkolaskentaa Oletetaan, että korkoaste on r Jos esimerkiksi r = 0, 02, niin korko on 2 prosenttia Tätä korkoastetta käytettään diskonttaamaan tulevia tuloja ja
Lisätiedotf(x) f(y) x y f f(x) f(y) (x) = lim
Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,
LisätiedotTehtävä 1. Miksi seuraavat esimerkit eivät ole funktioita? 1. f : R Z, f(x) = x 2. 2 kun x on parillinen,
Funktiotehtävät, 10. syyskuuta 005, sivu 1 / 4 Perustehtävät Tehtävä 1. Miksi seuraavat esimerkit eivät ole funktioita? 1. f : R Z, f(x) = x. kun x on parillinen, f : N {0, 1, }, f(x) = 1 kun x on alkuluku,
LisätiedotMikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.
4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa
LisätiedotDIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 2. luento 10.11.2017 Keinotekoiset neuroverkot Neuroverkko koostuu syöte- ja ulostulokerroksesta
LisätiedotLuku 2. Jatkuvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 21 Risto Silvennoinen Luku 2. Jatkuvien funktioiden ominaisuuksia. Jatkossa väli I tarkoittaa jotakin seuraavista reaalilukuväleistä: ( ab, ) = { x a< x< b} = { x a
LisätiedotSivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi
Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla
LisätiedotMS-A010X Differentiaali- ja integraalilaskenta 1
MS-A010X Differentiaali- ja integraalilaskenta 1 Pekka Alestalo 1 Aalto-yliopisto Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos 6.9.2017 1 Kiitokset Harri Hakulalle, Janne Korvenpäälle,
Lisätiedot1.1. YHDISTETTY FUNKTIO
1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,
Lisätiedot763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 2012
763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 01 1 Sisältö: 1 Differentiaalilaskentaa Integraalilaskentaa 3 Vektorit 4 Potenssisarjoja 5 Kompleksiluvut 6 Differentiaaliyhtälöistä
LisätiedotTehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
LisätiedotKERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.
KERTAUSHARJOITUKSIA. Rationaalifunktio 66. a) b) + + + = + + = 9 9 5) ( ) ( ) 9 5 9 5 9 5 5 9 5 = = ( ) = 6 + 9 5 6 5 5 Vastaus: a) 67. a) b) a a) a 9 b) a+ a a = = a + a + a a + a a + a a ( a ) + = a
LisätiedotMAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio
MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen
LisätiedotMatematiikan tukikurssi: kurssikerta 10
Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen
LisätiedotJuuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(
LisätiedotJuuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77
Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)
Lisätiedot2.2 Jatkuva funktio Funktio f(x) jatkuva pisteessä x 0, jos f on määritelty. Esim. sin x. = lim. lim. (1 x 2 /6 + O(x 4 )) = 1.
2 Raja-arvo ja erivaatta 2 Raja-arvon määritelmä Funktiolla f() on raja-arvo f 0 pisteessä 0 jos f() lähestyy arvoa f 0 kun lähestyy arvoa 0 Merkitään f() f 0 kun 0 (2) tai Raja-arvo matemaattisemmin:
LisätiedotDerivaattaluvut ja Dini derivaatat
Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo
Lisätiedotk-kantaisen eksponenttifunktion ominaisuuksia
3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio
Lisätiedot