Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio
|
|
- Ada Salonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Ito-prosessit Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma Optimointiopin seminaari - Syksy 2000 / 1
2 Ito-prosessit Brownin liikkeen yleistys (Ito prosessi) x(t) : dx = a(x,t)dt+b(x,t)dz dz Wiener-prosessin inkrementti a(x,t) trendikerroin (drift rate), E(dx)=a(x,t)dt b(x,t) 2 varianssikerroin, V(dx)=b(x,t) 2 dt Optimointiopin seminaari - Syksy 2000 / 2
3 Geometrinen Brownin liike dx = α x dt + σ x dz α määrää trendin ja σ varianssin Aika (kk) Optimointiopin seminaari - Syksy 2000 / 3
4 Geometrinen Brownin liike E[x(t)] = x 0 e α t ja V[x(t)] = x 0 e 2α t (e σ 2 t - 1), eli kasvavat eksponentiaalisesti Esim. x(t) tuotto, tuoton nykyarvon odotusarvo E rt rt [ x( t) e dt] = E[ x( t)] e dt = x0 /( r α 0 0 ) Mallinnetaan mm. arvopapereiden hintoja, korkoja yms. Optimointiopin seminaari - Syksy 2000 / 4
5 Keskiarvoon palautuvat prosessit dx =η (x*-x) dt+σ dz (nk. Ornstein-Uhlenbeck prosessi) η kuvaa palautumisnopeutta ja x* normaalitasoa Jos x(0)=x 0 niin E[x(t)]=x*+(x 0 -x*)e -η t V[x(t)]=σ 2 /(2η) (1- e -2η t ) Aika (kk) Optimointiopin seminaari - Syksy 2000 / 5
6 Keskiarvoon palautuvat prosessit Ornstein-Uhlenbeck saadaan erään AR(1) prosessin raja-arvona kun t 0 Sovittamalla dataan malli x t -x t-1 =a+bx t +ε t saadaan estimaatit x*:lle η:lle ja σ:lle Yleistyksiä mm. a(x,t)= η x(x*-x) ja/tai b(x,t)= σ x Mallinnetaan mm. raaka-aineiden hintoja Optimointiopin seminaari - Syksy 2000 / 6
7 Pohdintoja Millä prosessilla mallintaa ilmiöitä esim. raakaaineiden hintoja? Mallin estimointi tilastollisilla testaamalla (unit root tests) ongelmana datan vähyys Muut kriteerit mallin valinnassa intuitio ja teoreettiset argumentit helppokäyttöisyys (geometrinen Brownin liike) Optimointiopin seminaari - Syksy 2000 / 7
8 Iton lemma Olkoon x(t) Ito-prosessi ja funktio F(x,t) kahdesti differentioituva Mikä on F:n differentiaali? Vastaus Iton lemma: df=f t dt +F x dx +1/2 F xx (dx) 2 Voidaan differentioida ja integroida Ito-prosessien funktioita! Optimointiopin seminaari - Syksy 2000 / 8
9 Iton lemma Esim. optio kuparikaivokseen investoimiseen option arvo riippuu kuparin hinnasta, joka noudattaa Ito-prosessia Iton lemmalla saadaan stokastinen prosessi option arvolle Lemma yleistyy myös funktioille, jotka riippuvat useista Ito-prosesseista, F(x 1,...,x m, t), dx i =a i (x 1,...,x m )dt+b i (x 1,...,x m )dz i df = Ft dt + Fx dxi + 1/ 2 F dx dx i i i j i j x x i j Optimointiopin seminaari - Syksy 2000 / 9
10 Iton lemma Intuitiivinen perustelu Taylorin kehitelmällä: df=f t dt +F x dx +1/2 F xx (dx) 2 +1/6 F xxx (dx) (dx) 2 = b(x,t) 2 dt + dt:n korkeampia potensseja siis kehitelmän kolmas termi on huomioitava df=[f t dt+a(x,t) F x +1/2 b(x,t) 2 F xx ]dt+b(x,t) F x dz Optimointiopin seminaari - Syksy 2000 / 10
11 Geometrinen Brownin liike (jatkoa) x noudattaa geom. Brownin liikettä Millaista prosessia F(x,t)=log(x) noudattaa? Nyt F t = 0, F x =1/x ja F xx =-1/x 2 Iton lemma df=1/x dx - 1/(2 x 2 ) (dx) 2 = (α -1/2 σ 2 )dt+σ dz, eli kyseessä on Brownin liike (trendillä) Optimointiopin seminaari - Syksy 2000 / 11
12 Esimerkki x(t) geom. Brownin liike, F(x)=x θ, lasketaan F:n nykyarvon odotusarvo, eli Iton lemma => df = α Fdt+σ Fdz, missä α = (θα +1/2 θ(1-θ)σ 2 ) ja σ = θσ, saadaan E E[ 0 F( x( t)) e dt] rt rt θ [ F( x( t)) e dt] = E[ F( x( t))] e dt = x0 /( r α 0 0 rt *) Optimointiopin seminaari - Syksy 2000 / 12
13 Kotitehtävä x (t) ja y(t) noudattavat geometrista Brownin liikettä: dx=α x xdt+σ x xdz x, dy=α y ydt+σ y ydz y ja E[dz x dz y ]=ρdt F(x,y)=log(x,y), laske df Optimointiopin seminaari - Syksy 2000 / 13
Johdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio
Johdannaisanalyysi Contingent Claims Analysis Juha Leino 11.10.2000 Optimointiopin seminaari - Syksy 2000 / 1 Oletukset Yritys tuottaa tuotetta, jonka hinta on x x noudattaa geometrista Brownin liikettä
LisätiedotJatkuvan ajan dynaaminen optimointi
Jatkuvan ajan dynaaminen optimointi Diskreetistä ajasta jatkuvaan Ito prosessit Optimaalinen pysäytys Poisson prosessit Optimointiopin seminaari - Syksy 2000 / 1 Jatkuvan ajan dynaaminen π(x,u,t) tuottovirta
LisätiedotWiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia
Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia { z(t k+1 ) = z(t k ) + ɛ(t k ) t t k+1 = t k + t, k = 0,..., N, missä ɛ(t i ), ɛ(t j ), i j ovat toisistaan riippumattomia siten, että
LisätiedotOPTIMAALINEN INVESTOINTIPÄÄTÖS
OPTIMAALINEN INESTOINTIPÄÄTÖS Keskiarvoon palautuvalle prosessille ja Poissonin hyppyprosessille Optimointiopin seminaari - Syksy 000 / 1 I. KESKIAROON PALAUTUA PROSESSI Investoinnin kohde-etuuden arvo
LisätiedotProjektin arvon määritys
Projektin arvon määritys Luku 6, s. 175-186 Optimointiopin seminaari - Syksy 2000 / 1 Tehtävä Johdetaan menetelmä projektiin oikeuttavan option määrittämiseksi kohde-etuuden hinnan P perusteella projektin
LisätiedotLUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k
LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1
LisätiedotLisää satunnaisuutta ja mahdollisuus keskeyttää projekti
isää satunnaisuutta ja mahdollisuus keskeyttää projekti Esitelmä 7 - Mika lmoniemi Optimointiopin seminaari - Syksy isää satunnaisuutta Tähän mennessä on käytetty vain yhtä satunnaismuuttujaa tuotteen
LisätiedotInvestointimahdollisuudet ja niiden ajoitus
Investointimahdollisuudet ja niiden ajoitus Ratkaisu optiohinnoitteluteorian avulla Esitelmä - Eeva Nyberg Optimointiopin seminaari - Syksy 000 / Tähän asti opittua NP:n rajoitteet vaikka NP negatiivinen
LisätiedotProjektin arvon aleneminen
Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen
Lisätiedot= X s + IE[X t X s ] = 0, s ja sitä, että ehdollinen odotusarvo on tavallinen odotusarvo silloin, kun satunnaismuuttuja
44 E. VALKEILA 6. Geometrinen Brownin liike 6.1. Brownin liike ja Iton kaava. Tavoitteena on mallintaa osakkeen tuottoa jatkuvassa ajassa. Jos (S t ) t T on osakkeen hintaprosessi, niin tuotolla tarkoitetaan
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
LisätiedotPäätöspuut pitkän aikavälin investointilaskelmissa
Päätöspuut pitkän aikavälin investointilaskelmissa Optimointiopin seminaari, Jaakko Ollila. Parannusehdotus 4. Esimerkki : hystereesis investointipäätöksissä 1 -$ 0 Tavallinen päätöspuu Aika Laskut antavat
Lisätiedot8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin
LisätiedotDiskreettiaikainen dynaaminen optimointi
Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1
LisätiedotJohdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
Lisätiedot2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.
2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.
LisätiedotInvestointimahdollisuudet ja investoinnin ajoittaminen
Investointimahdollisuudet ja investoinnin ajoittaminen Ajoituksen ratkaisu dynaamisella optimoinnilla Optimointiopin seminaari - Syksy 000 / Esitelmän sisältö Investoinnin ajoitusongelman esittely Ongelman
LisätiedotEsteet, hyppyprosessit ja dynaaminen ohjelmointi
Esteet, hyppyprosessit ja dynaaminen ohjelmointi Juha Martikainen 4.10.2000 Oppikirjan sivut 83-87 ja 93-98 Optimointiopin seminaari - Syksy 2000 / 1 Esteet (määritelmät) Muistellaan menneitä: Ajelehtiva
Lisätiedot6 Variaatiolaskennan perusteet
6 Variaatiolaskennan perusteet Sivut ss. 22 26 pääosin lähteen [Kirk, Ch. 4, ss. 107 127] pohjalta Variaatiolaskenta keskittyy lokaaliin analyysiin eli funktion lokaalin minimin vastineisiin funktionaaleilla.
LisätiedotRatkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2017 Harjoitus 1 Ratkaisuehdotukset 11 Osoita, että vektorifunktio f = (f 1,, f m ): R n R m, on jatkuva, jos ja vain jos jokainen komponenttifunktio
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
LisätiedotEstimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
Lisätiedot6. Sovelluksia stokastiselle integroinnille
92 STOKASTISET DIFFERENTIAALIYHTÄLÖT 6. Sovelluksia stokastiselle integroinnille 6.1. Uusia martingaaleja. Tähän mennessä olemme löytäneet vain kourallisen martingaaleja eli tiedämme, että B t on martingaali,
LisätiedotMS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin
LisätiedotVI. TAYLORIN KAAVA JA SARJAT. VI.1. Taylorin polynomi ja Taylorin kaava
VI. TAYLORIN KAAVA JA SARJAT VI.. Taylorin polynomi ja Taylorin kaava Olkoon n N ja x, c, c, c 2,..., c n R. Tehtävä: Etsittävä sellainen R-kertoiminen polynomi P, että sen aste deg P n ja P (x ) = c,
LisätiedotDynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotKuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t
Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Valkoinen kohina ε t 2 1 0 1 2 Voimme tehdä saman laskun myös yleiselle välille [ a, a], missä 0 < a
LisätiedotOsa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
LisätiedotYksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi
Lisätiedot4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
LisätiedotAntti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
LisätiedotH7 Malliratkaisut - Tehtävä 1
H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan
LisätiedotBlack Scholes-hinnoittelumallin robustisuus ja tyylitellyt tosiseikat
Black Scholes-hinnoittelumallin robustisuus ja tyylitellyt tosiseikat Tommi Sottinen, Helsingin yliopisto Yhteistyössä C. Bender, TU Braunschweig E. Valkeila, Teknillinen korkeakoulu 10. lokakuuta 2006
LisätiedotMATEMATIIKAN JA TILASTOTIETEEN LAITOS
f ( n) JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Funktionaalianalyysi Ei harjoituksia 1.4.2015 Funktionaalista viihdettä pääsiäistauolle: viikolla 14 (ma 30.3., ti 31.3. ja ke 1.4.)
LisätiedotHarha mallin arvioinnissa
Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö
LisätiedotJohdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
LisätiedotInvestointistrategioista kilpailluilla markkinoilla
Investointistrategioista kilpailluilla markkinoilla Tuomas Pyykkönen 29.11.2000 (esitys kirjasta: Investment under Uncertainty; Dixit, Pindyck (1994); ss. 247-260) Optimointiopin seminaari - Syksy 2000
LisätiedotIlkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
LisätiedotProjektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen
Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen Optimointiopin seminaari - Syksy 000 / 1 Mallin laajennus Toiminta voidaan väliaikaisesti keskeyttää ja käynnistää uudelleen Keskeyttämisestä
LisätiedotMaximum likelihood-estimointi Alkeet
Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
Lisätiedot6.2.3 Spektrikertymäfunktio
ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden
LisätiedotTalousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa
Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
LisätiedotSatunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
LisätiedotEstimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio
17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla
LisätiedotValintahetket ja pysäytetyt martingaalit
4B Valintahetket ja pysäytetyt martingaalit Tämän harjoituksen tavoitteena on oppia tunnistamaan, mitkä satunnaishetket ovat valintahetkiä ja oppia laskemaan lukuarvoja ja estimaatteja satunnaisprosessien
Lisätiedot6. Differentiaaliyhtälösysteemien laadullista teoriaa.
1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun
LisätiedotOletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen
Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä
Lisätiedot5. Stokastinen integrointi
STOKASTISET DIFFERENTIAALIYHTÄLÖT 55 5. Stokastinen integrointi Olemme lopulta käyneet läpi tarvittavat tiedot peruskäsitteistä ja voimme aloittaa stokastisen integroinnin (ja siten stokastisen derivoinnin
LisätiedotRahoitusriskit ja johdannaiset Matti Estola. luento 10 Binomipuut ja optioiden hinnoittelu
Rahoitsriskit ja johdannaiset Matti Estola lento 1 Binomipt ja optioiden hinnoittel 1. Optiohintojen mallintaminen Esimerkki. Oletetaan, että osakkeen spot -krssi on $ ja spot -krssilla 3 kk:n kltta on
Lisätiedotx n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x
Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotYksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin
LisätiedotMatematiikka B1 - avoin yliopisto
28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan
LisätiedotEstimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
LisätiedotMATEMATIIKAN PERUSKURSSI II kevät 2018 Ratkaisut 1. välikokeen preppaustehtäviin. 1. a) Muodostetaan osasummien jono. S n =
MATEMATIIKAN PERUSKURSSI II kevät 208 Ratkaisut. välikokeen preppaustehtäviin. a) Muodostetaan osasummien jono S n = n ( k k) k= josta saadaan = ( 0 ) + ( 2) + ( 2 3) + ( n 2 n ) + ( n n) = n, n =, 2,...,
Lisätiedotx 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 3 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 28 R. Kangaslampi Matriisihajotelmista
Lisätiedotk S P[ X µ kσ] 1 k 2.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Lisätiedot1 Di erentiaaliyhtälöt
Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y
LisätiedotBlack ja Scholes ilman Gaussia
Black ja Scholes ilman Gaussia Tommi Sottinen Vaasan yliopisto SMY:n vuosikokousesitelmä 19.3.2012 1 / 21 Johdanto Tarkastelemme johdannaisten, eli kansankielellä optioiden, hinnoittelua. Kuuluisin hinnoittelumalli
LisätiedotTalousmatematiikan perusteet
kevät 219 / orms.1 Talousmatematiikan perusteet 1. Laske integraalit a 6x 2 + 4x + dx, b 5. harjoitus, viikko 6 x + 1x 1dx, c xx 2 1 2 dx a termi kerrallaan kaavalla ax n dx a n+1 xn+1 +C. 6x 2 + 4x +
Lisätiedotmin x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
LisätiedotEnnustaminen ARMA malleilla ja Kalmanin suodin
Ennustaminen ARMA malleilla ja Kalmanin suodin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017
LisätiedotJohdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
LisätiedotHY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
LisätiedotTilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
Lisätiedottilastotieteen kertaus
tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla
Lisätiedot2. Uskottavuus ja informaatio
2. Uskottavuus ja informaatio Aluksi käsittelemme uskottavuus- ja log-uskottavuusfunktioita Seuraavaksi esittelemme suurimman uskottavuuden estimointimenetelmän Ensi viikolla perehdymme aiheeseen lisääkö
LisätiedotSelvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x
Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden
LisätiedotReaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla
Reaalioptioden käsitteen esittely yksinkertaisen esimerkin avulla Optimointiopin seminaari - Syksy 2000 / 1 Esitelmän sisältö Investointien peruuttamattomuuden vaikutus investointipäätökseen Investointimahdollisuuksien
LisätiedotHarjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
LisätiedotLause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.
Määritelmä 4.3. Estimaattoria X(Y ) nimitetään lineaariseksi projektioksi, jos X on lineaarinen kuvaus ja E[(X X(Y )) Y] 0 }{{} virhetermi Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi
LisätiedotJohdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
Lisätiedot805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x
Lisätiedot3. Teoriaharjoitukset
3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x
LisätiedotProbabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto
Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita
LisätiedotMat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008
Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot
LisätiedotKeskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)
Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista
Lisätiedot9. Tila-avaruusmallit
9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia
LisätiedotLisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
Lisätiedot805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan
Lisätiedota) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
LisätiedotDifferentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3
MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
LisätiedotOdotusarvoparien vertailu. Vilkkumaa / Kuusinen 1
Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että
LisätiedotHarjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
LisätiedotNormaalijakaumasta johdettuja jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma
Lisätiedot4. Martingaalit ja lokaalit martingaalit
STOKASTISET DIFFERENTIAALIYHTÄLÖT 45 4. Martingaalit ja lokaalit martingaalit Lähestymme nyt jo kovaa vauhtia hetkeä, jolloin voimme aloittaa stokastisen integroinnin. Ennen sitä käymme vielä läpi yhtä
LisätiedotTilastollisia peruskäsitteitä ja Monte Carlo
Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia
LisätiedotTilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
Lisätiedot9. laskuharjoituskierros, vko 12-13, ratkaisut
9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t
Lisätiedot