Talousmatematiikan perusteet, L2 Kertaus Aiheet
|
|
- Hannu-Pekka Hukkanen
- 2 vuotta sitten
- Katselukertoja:
Transkriptio
1 Talousmatematiikan perusteet, L2 Kertaus
2 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto- ja jakolaskut vasemmalta oikealle 4. yhteen- ja vähennyslasku vasemmalta oikealle. (5 2 (4 + 3))/3 2 1 = (5 2 7)/3 2 1 = (25 7)/3 2 1 = 18/3 2 1 = = 12 1 = 11
3 2 harjoitus 1: Laske seuraavien lausekkeiden arvot: 2 (2 + 4)/(5 2) = ((10 6/2) + 1) 4 1 =
4 3 harjoitus 1: Laske seuraavien lausekkeiden arvot: 2 (2 + 4)/(5 2) = 2 6/3 = 12/3 = 4 ((10 6/2) + 1) 4 1 = ((10 3) + 1) 4 1 = (7 + 1) 4 1 = = 32 1 = 31
5 4 wiki-materiaalia: linkki Murtoluvun Merkitys: m n on luku, joka saadaan kun ykkönen jaetaan n:ään yhtäsuureen ossaan, ja näitä osia otetaan m kappaletta 3 4 = = = Viivan alla: NIMITTÄJÄ = 4 = miten moneen slice-palaan piza jaetaan Viivan päällä: OSOITTAJA = 3 = miten monta slice-palaa otetaan
6 5 Laventaminen Murtoluvun saa laventaa ilman sen merkityksen muuttumista. Laventamisessa osoittaja ja nimittäjä kerrotaan samalla luvulla (tavallisesti pienellä kokonaisluvulla). 2) 3 4 = = 6 8
7 6 Supistaminen Supistamisessa osoittaja ja nimittäjä jaetaan samalla luvulla (tavallisesti pienellä kokonaisluvulla) (2 = 6/2 10/2 = 3 5
8 7 Yhteen- ja vähennyslasku Ennen yhteen- tai vähennyslaskua murtoluvut tulee laventamalla tai supistamalla tehdä saman-nimisiksi = = = Edellä saatu tulos 13/12 voidaan myös ilmoittaa sekalukuna = ( = = )
9 8 Kerto- ja jakolasku Katso Wiki. Kertolaskussa osoittajat kerrotaan ja nimittäjät kerrotaan = = = 5 6 Jakolaskussa jaettava murtoluku kerrotaan jakajan käänteisluvulla 2 3 : 5 4 = = = 8 15
10 9 Kerto- ja jakolasku Kun kokonaisluvulla kerrotaan, niin kertoja menee viivan päälle = = = = 2 6 = 1 3 Kun murtoluku jaetaan kokonaisluvulla, niin jakaja menee viivan alle 2 3 : 2 = = 2 6 = 1 3 Kokonaisluku voidaan aina tulkita murtolukuna 5 = 5 1
11 Testi 10 Laske seuraavat laskut ensin kynällä ja paperilla ja sitten laskimella: a) ( ) 3 = b) ( ) ( ) = c) = 4
12 Testi 11 Laske seuraavat laskut ensin kynällä ja paperilla ja sitten laskimella: a) (2 1 ( 2 3 1) 3 = 3 3 ) 3 = = 1 b) ( ) ( ) = = 5 3 c) = ( ) ( ) 4 5 / = = 16 15
13 Prosentti 12 Prosentti tarkoittaa yhtä sadasosaa (latinaksi pro centum, englanniksi per cent, espanjaksi por ciento ). p a, p%, on p sadasosaa. Seuraavat lauseet sanovat siis saman asian. Maksu on 5 a 600 eurosta. Maksu on 5 sadasosaa 600 eurosta. Maksu on 5 600e 100. Maksu on e.
14 Prosentti 13 Jos b on p% luvusta a, eli niin b = p 100 a a = perusarvo (Mihin verrataan?) (Minkä sadasosista on kysymys.) p = luku (Miten monta sadasosaa?) b = arvo (Mitä verrataan?)
15 Prosentti, kahden luvun vertailu 14 Jos y on p% suurempi kuin x, niin perusarvo on x (kuin sanan perästä) luku on p arvo on ero = y x y x = p ( 100 x y = 1 + p ) x 100 Jos y on p% pienempi kuin x, niin perusarvo on x (kuin sanan perästä) luku on p arvo on ero = x y x y = p ( 100 x y = 1 p ) x 100
16 Prosentti, arvon muutos 15 Jos muuttujan x arvo muuttuu, niin merkitsemme alkuperäista arvoa x 0 :lla ja muuttunutta arvoa x 1 :llä. Jos x kasvaa p%, niin perusarvo on x 0 (arvo ennen muutosta) luku on p arvo on ero = x 1 x 0 x 1 x 0 = p ( 100 x 0 x 1 = 1 + p ) x Jos x 0 on p% y 0 :stä ja x kasvaa d%-yksikköä, niin x 1 on (p + d)% y 1 :stä.
17 Kertausta 16 Kreikkalaiset aakkoset engl. (lukuohje) engl. (lukuohje) A α alpha (alffa) N ν nu (nyy) B β beta (beetta) Ξ ξ xi (ksii) Γ γ gamma (gamma) O o omicron (omiikron) δ delta (deltta) Π π pi (pii) E ε, ε epsilon (epsilon) P ρ rho (roo) Z ζ zeta (zeetta) Σ σ sigma (sigma) H η eta (eetta) T τ tau (tau) Θ θ, ϑ theta (theetta) Υ υ upsilon (ypsilon) I ι iota (iootta) Φ φ, ϕ phi (fii) K κ kappa (kappa) X χ chi (khii) Λ λ lambda (lamda) Ψ ψ psi (psii) M µ mu (myy) Ω ω omega (oomega)
18 Kertausta 17 Kaavoja Binomikaavat (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b)(a b) = a 2 b 2 pitää muistaa, että tarvittaessa osaa käyttää Lausu: Summan neliö = ensimmäisen neliö + 2 tulo + toisen neliö
19 Kertausta 18 Kaavoja Potenssikaavat a m a n = a m+n a m a n = a m n a n b n = (a b) n a n b n = ( a b (a m ) n = a m n ) n, b 0
20 Kertausta 19 Kaavoja Potenssikaavat sopimukset a 0 = 1, a 0 a n = 1 a n, a 0 kannattaa erityisesti muistaa: a = a 1/2 n a = a 1/n a m/n = n a m
21 Kertausta 20 Itseisarvo Itseisarvo Määritelmä { a, kun a 0, a = a, kun a 0. Usein sovellustilanne on seuraava U U U 5.01
22 Kertausta 21 Itseisarvo Kahden luvun erotuksen itseisarvo on niiden etäisyys lukusuoralla a b a b
23 Kertausta 22 Kaavoja Neliöjuurikaavat reaaliluvuille (1) b = a (a 0) ja (b 0) ja (b 2 = a) (2) a b = a b a a (3) b = b (4) ( a) 2 = a (5) a 2 = a (6) b = n a b n = a (7) n a = a 1/n
24 Kertausta 23 Jos a on joukon A alkio, niin merkitsemme a A Jos a ei ole joukon A alkio, niin merkitsemme a / A Joukon voi määritellä luettelemalla A = {1,2,3,4}, B = {1,2,...,100} Jos alkioita on paljon, käytämme notaatiota Joukko = {x perusjoukko ehto} Esimerkiksi nollan ja yhden välissä olevien reaalilukujen joukko on F = {x R 0 < x < 1} Jos kahdella joukolla A ja B on täsmälleen samat alkiot, ne ovat identtiset ja merkitsemme A = B. Muussa tapauksessa A B
25 Kertausta 24 Jos jokainen A:n alkio on myös B:n alkio, niin sanomme että A on B:n osajoukko ja merkitsemme A B Jos A on B:n osajoukko ja B:ssä on alkio, jota ei ole A:ssa, niin sanomme, että A on B:n aito osajoukko ja merkitsemme A B Tyhjä joukko /0 = { } on joukko, jossa ei ole yhtään alkiota.
26 Kertausta 25 Perusjoukot N = {1,2,3,...} = luonnollisten lukujen joukko Z = {..., 2, 1,0,1,2,...} = kokonaislukujen joukko Q = {x x = m/n,n 0,m,n Z} = rationaalilukujen joukko R = reaalilukujen joukko C = kompleksilukujen joukko
27 Kertausta 26 Joukkojen A ja B yhdiste (union) on joukko A B = {x E x A tai x B}. E B A
28 Kertausta 27 Joukkojen A ja B leikkaus (intersection) on joukko A B = {x E x A ja x B}. E B A
29 Kertausta 28 Joukkojen A ja B erotus (difference) on joukko A \ B = {x E x A ja x / B}. E B A
30 Kertausta 29 Joukon A komplementti (complement) on joukko A = {x E x / A}. E A
Talousmatematiikan perusteet, L2 Kertaus Aiheet
Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-
Talousmatematiikan perusteet, L2
Talousmatematiikan perusteet, L2 orms.1030 EPKY / kevät 2011 Toisen Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat (alkaen sisältä ulospäin) 2. potenssit ja juuri 3. kerto-
1 Peruslaskuvalmiudet
1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,
8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta
8. Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta - oheisessa kuvassa ympyrä on jaettu kolmeen yhtä suureen osaan, joista kukin osa on yksi kolmasosa koko ympyrästä
MAT-71506 Program Verification (Ohjelmien todistaminen) merkintöjen selityksiä
MAT-71506 Program Verification (Ohjelmien todistaminen) merkintöjen selityksiä Antti Valmari & Antero Kangas Tampereen teknillinen yliopisto Matematiikan laitos 20. elokuuta 2013 Merkkien selityksiä Tähän
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan
3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin
niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle.
Alkeistason matikkaa Plus-, miinus-, kerto- ja jakolaskujen laskujärjestys Esim. jos pitää laskea tällainen lasku:? niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus-
1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2
Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................
Pro gradu -tutkielma Meteorologia SUOMESSA ESIINTYVIEN LÄMPÖTILAN ÄÄRIARVOJEN MALLINTAMINEN YKSIDIMENSIOISILLA ILMAKEHÄMALLEILLA. Karoliina Ljungberg
Pro gradu -tutkielma Meteorologia SUOMESSA ESIINTYVIEN LÄMPÖTILAN ÄÄRIARVOJEN MALLINTAMINEN YKSIDIMENSIOISILLA ILMAKEHÄMALLEILLA Karoliina Ljungberg 16.04.2009 Ohjaajat: Ari Venäläinen, Jouni Räisänen
! #! %! & #!!!!! ()) +
! #! %! & #!!!!! ()) + Tiedekunta/Osasto Fakultet/Sektion Faculty Humanistinen tiedekunta Laitos Institution Department Taiteiden tutkimuksen laitos Tekijä Författare Author Matti Pesonen Työn nimi Arbetets
y z = (x, y) Kuva 1: Euklidinen taso R 2
Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z
Talousmatematiikan perusteet, L3 Prosentti, yhtälöt Aiheet
Talousmatematiikan perusteet, L3 Prosentti, t Toisen Prosentti 1 Jos b on p% luvusta a, eli niin b = p 100 a a = perusarvo (Mihin verrataan?) (Minkä sadasosista on kysymys.) p = prosenttiluku (Miten monta
Luonnolliset vs. muodolliset kielet
Luonnolliset vs. muodolliset kielet Luonnollisia kieliä ovat esim. 1. englanti, 2. suomi, 3. ranska. Muodollisia kieliä ovat esim. 1. lauselogiikan kieli (ilmaisut p, p q jne.), 2. C++, FORTRAN, 3. bittijonokokoelma
Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.
13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin
Harjoitustehtävien ratkaisut. Joukko-opin harjoituksia. MAB1: Luvut ja lukujoukot 2
MAB: Luvut ja lukujoukot Harjoitustehtävien ratkaisut Joukko-opin harjoituksia T Joukossa W V ovat kaikki joukkojen W ja V alkiot, siis alkiot, jotka ovat joko W :n tai V :n tai molempien alkioita. Siis
Reaaliluvut 1/7 Sisältö ESITIEDOT:
Reaaliluvut 1/7 Sisältö Reaalilukujoukko Reaalilukujoukkoa voidaan luonnollisimmin ajatella lukusuorana, molemmissa suunnissa äärettömyyteen ulottuvana suorana, jonka pisteet ja reaaliluvut vastaavat toisiaan:
MS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf
1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA
1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA Tekijät: Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Seuraavien tehtävien tekemiseen tarvitset tulitikkuja
HUOLTOMATEMATIIKKA 2, MATERIAALI
1 SISÄLTÖ HUOLTOMATEMATIIKKA, MATERIAALI 1) Murtoluvut ) Yhtenevyys ja yhdenmuotoisuus 3) Tasokuvioiden pinta-alat ja piirit 4) Kappaleiden tilavuudet 5) Suorakulmainen kolmio ja Pythagoran lause 6) Suorakulmaisen
MABK1 Kurssimateriaali. Eiran aikuislukio 2005
MABK1 Kurssimateriaali Eiran aikuislukio 2005 Sisältö 1 Sanasto 1 2 Luvut ja laskutoimitukset 5 2.1 Lukujoukot................................ 5 2.2 Peruslaskutoimitukset.......................... 6 2.3
Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.
Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä
1. Logiikan ja joukko-opin alkeet
1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista
Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä
61 7.1 Potenssin määritelmä Potenssi on lyhennetty merkintä tulolle, jossa kantaluku kerrotaan itsellään niin monta kertaa kuin eksponentti ilmaisee. - luvun toinen potenssi on nimeltään luvun neliö o
Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R }
7 Kompleksiluvut Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. 7.1 Kompleksilukujen määritelmä Määritelmä 7.1.1. Kompleksilukujen joukko
Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut
Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien
KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut
KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen
PERUSKOULUSTA PITKÄLLE
Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS
Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26.
MAB 0: Kertauskurssi Opettaja: Janne.Lemberg @ tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26. Alustava aikataulu: ma 29.8 ke 31.8 ma 5.9 ke 7.9 ma 12.9 ke 14.9 ma 19.9 ke 21.9 ma 26.9 ke 28.9
8 Joukoista. 8.1 Määritelmiä
1 8 Joukoista Joukko on alkoidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukkooppi aksiomaattisesti. Näin ei tässä tehdä
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin
Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi
Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 8 Mikko Salo 13.9.2017 Sisältö 1. Kertausta Kurssin suorittaminen Kurssi suoritetaan lopputentillä (20.9. tai 4.10.). Arvostelu hyväksytty/hylätty. Tentissä on aikaa 4 h,
MAT Algebra 1(s)
8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen
1. Muutamia erityisongelmia murtolukujen käsitteen oppimisessa
1. Muutamia erityisongelmia murtolukujen käsitteen oppimisessa (Lähde: Lamon, S. 1999. Teaching fractions and ratios for understanding. New Jersey: Lawrence Erlbaum Publishers.) Murtolukujen alueelle siirryttäessä
2.2 Neliöjuuri ja sitä koskevat laskusäännöt
. Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi
{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja
5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.
Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan!
Aiemmin opittu Perusopetuksen opetussuunnitelman mukaan seuraavat lukuihin ja laskutoimituksiin liittyvät sisällöt on käsitelty vuosiluokilla 3 5: kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen
Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,...
Ratkaisut 1 1. Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,.... Nolla, koska kerrotaan nollalla. 3. 16 15 50 = ( 8) 15 50 = (8 15) ( 50) = 1000 500 = 500 000. 4.
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut
Joukot. Georg Cantor ( )
Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista
Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.
Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.
2 Kertausta lisäyksin
orms1030c2s1.tex 15 2.1. / January 11, 2007 2 Kertausta lisäyksin 2.1 Joukko-oppia ja logiikkaa Joukko muodostuu alkioista. Joukkoa merkitään isolla kirjaimella ja joukon alkiota pienellä kirjaimella.
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon
Rationaalilauseke ja -funktio
4.8.07 Rationaalilauseke ja -funktio Määritelmä, rationaalilauseke ja funktio: Kahden polynomin ja osamäärä, 0 on rationaalilauseke, jonka osoittaja on ja nimittäjä. Huomaa, että pelkkä polynomi on myös
Johdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus syksy 008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä Todista ketjumurtoluvun peräkkäisille konvergenteille kaava ( ) n induktiolla käyttämällä jonojen ( ) ja ( ) rekursiokaavaa.
0. perusmääritelmiä 1/21/13
Lukutyypit Laskusäännöt Laskujärjestys 0. perusääriteliä Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaDonaaliluvut (Q): kaikki luvut, jotka voidaan esifää kahden
NELIÖJUURI. Neliöjuuren laskusääntöjä
NELIÖJUURI POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA2 Tarkoittaa positiivista tai nollaa Määritelmä, neliöjuuri: Luvun a R neliöjuuri, merkitään a, on se ei-negatiivinen luku, jonka neliö (eli toiseen potenssiin
0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys
0. perusmääritelmiä Lukutyypit Laskusäännöt Laskujärjestys Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaConaaliluvut (Q): kaikki luvut, jotka voidaan esieää kahden
KORJAUSMATIIKKA 3, MATERIAALI
1 SISÄLTÖ KORJAUSMATIIKKA, MATERIAALI 1) Potenssi ) Juuri ) Polynomit 4) Ensimmäisen asteen yleinen yhtälön ratkaisu 5) Yhtälöt ongelmaratkaisuissa (tehtävissä esitellään myös. asteen yhtälön ratkaisu)
Kompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
Kompleksiluvut. JYM, Syksy /99
Kompleksiluvut JYM, Syksy 2014 1/99 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
Testaa taitosi 1: Lauseen totuusarvo
Testaa taitosi 1: Lauseen totuusarvo 1. a) Laadi lauseen A (B A) totuustaulu. b) Millä lauseiden A ja B totuusarvoilla a-kohdan lause on tosi? c) Suomenna a-kohdan lause, kun lause A on olen vihainen ja
0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys
Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaFonaaliluvut (Q): kaikki luvut, jotka voidaan esihää kahden
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?
Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,
Algebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku.
Algebra 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. a) Luku on luonnollinen luku. b) Z c) Luvut 5 6 ja 7 8 ovat rationaalilukuja, mutta luvut ja π eivät. d) sin(45 ) R e)
Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi
Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Merkintöjä 1 Matriisi on suorakulmainen lukukaavio.
Algebra I, harjoitus 8,
Algebra I, harjoitus 8, 4.-5.11.2014. 1. Olkoon G ryhmä ja H sen normaali aliryhmä. Todista, että tällöin G/H on ryhmä, kun määritellään laskutoimitus joukossa G/H asettamalla aina, kun x, y G (lauseen
TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Mari Herranen. Ultratulo
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Mari Herranen Ultratulo Informaatiotieteiden yksikkö Matematiikka Marraskuu 2015 Tampereen yliopisto Informaatiotieteiden yksikkö HERRANEN, MARI: Ultratulo Pro
2) Kirjoita osoittajaan ja nimittäjään jotkin luvut, joilla yhtälöt ovat voimassa. Keksi kolme eri ratkaisua. 2 = 5 = 35 = 77 = 4 = 10 = 8
Nimi 1 ALGEBRAN KERTAUS 1) Järjestä luvut pienimmästä suurimpaan., 8 3, 8, 8 4, 908, 7, 1, 99, 167, 1, 987, 1011. 4 ) Kirjoita osoittajaan ja nimittäjään jotkin luvut, joilla yhtälöt ovat voimassa. Keksi
MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen
MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen
1.1. Määritelmiä ja nimityksiä
1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x
Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi
Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot
Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi
Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ( 0, 4, ( ( 1 4 2, a 11 a 12 a 21 a 22 Kaavio kirjoitetaan kaarisulkujen väliin (amer. kirjoissa
Kreikka'(10'op)' Avoin&yliopisto,&kesä&2014& TT,&MA&Ulla&Tervahauta&&&TM&Nina&Nikki& & KÄYTÄNNÖN'ASIOITA'
Kreikka'(10'op)' Avoinyliopisto,kesä2014 TT,MAUllaTervahautaTMNinaNikki KÄYTÄNNÖN'ASIOITA' Yleistä' Luennot: 15.5.A27.5.sekä2.6.A18.6.2014,maAto16.15A18.45/Tervahauta 30.7.A28.8.2014maAtoklo16.15A18.45/Nikki
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
Lukujen uusi maailma: p-adiset luvut
Solmu 3/2008 1 Lukujen uusi maailma: p-adiset luvut Tauno Metsänkylä Matematiikan laitos, Turun yliopisto Kun kokonaislukujen 0,1,2,... joukkoa laajennetaan vaiheittain ottamalla mukaan negatiiviset kokonaisluvut,
Vastauksia. Topologia Syksy 2010 Harjoitus 1
Topologia Syksy 2010 Harjoitus 1 (1) Olkoon X joukko ja (T j ) j J perhe X:n topologioita. Osoita, että T = {T j : j J} on X:n topologia. (2) Todista: Välit [a, b) muodostavat R 1 :n erään topologian kannan.
(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,
(0 desimaalia, 2 merkitsevää numeroa).
NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden
H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.
10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas
Kokonaisluvut. eivät ole kokonaislukuja!
Luvut Lähdetään liikkeelle kertaamalla mitä tiedämme luvuista. Mitä erilaiset luvut kuvaavat ja millaisia ominaisuuksia niillä on? Mikä voisi olla luonnollisin luku aloittaa? Luonnolliset luvut Luonnolliset
1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7
Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.
0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys
0. perusmääritelmiä Lukutyypit Laskusäännöt Laskujärjestys Luonnolliset luvut: 1,2,3,4... Kokonaisluvut (ℵ):... 4, 3, 2, 1,0,1,2,3,4... RaBonaaliluvut: kaikki luvut jotka voidaan esidää kahden kokonaisluvun
Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.
Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y
Johdatus matemaattiseen päättelyyn (5 op)
Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi
Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Lampinen Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta Informaatiotieteiden yksikkö Matematiikka Kesäkuu 2016 Tampereen
(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot
Matematiikan tukikurssi, kurssikerta 1
Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon
Kompleksilukujen kunnan konstruointi
Kompleksilukujen kunnan konstruointi Seuraava esitys osoittaa, miten kompleksilukujoukko voidaan määritellä tunnetuista reaalisista käsitteistä lähtien. Määrittelyjen jälkeen on helppoa osoittaa Mathematican
Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä
1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen
1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa
1 ja perusominaisuuksia 2 Laskutoimitukset kompleksiluvuilla 3 Reaaliluvut ja kompleksiluvut Matematiikan peruskurssi KP3 I OSA 1: Johdatus kompleksilukuihin 4 Kompleksilukujen algebraa 5 Kompleksitaso
Opettaja: tyk.fi Aika ja paikka: ma, ke klo 18:40-20:05, luokka 26.
MAB 0: Kertauskurssi Opettaja: Janne.Lemberg @ tyk.fi Aika ja paikka: ma, ke klo 18:40-20:05, luokka 26. Alustava aikataulu: ma 9.1 ke 11.1 ma 16.1 ke 18.1 ma 23.1 ke 25.1 ma 30.1 ke 1.2 ma 6.2 ke 8.2
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan
R1 Harjoitustehtävien ratkaisut
MAB R Harjoitustehtävien ratkaisut R Harjoitustehtävien ratkaisut. Jos lämpötila nousee asteesta asteella, mikä on uusi lämpötila? +. Lämpötila nousee viiteen asteeseen. Lukusuoralla: 0 + Nuolen pituus.
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää
MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I
MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetyhteenveto, 3. osahuhtikuuta
Matemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 4. Kurssikerta Petrus Mikkola 4.10.2016 Tämän kerran asiat Funktion raja-arvo Raja-arvon määritelmä Toispuolinen raja-arvo Laskutekniikoita Rationaalifunktion esityksen
TEHTÄVIEN RATKAISUT. Luku Kaikki luvut on kokonaislukuja. Luonnollisia lukuja ovat 35, 7 ja 0.
TEHTÄVIEN RATKAISUT Luku.. Kaikki luvut on kokonaislukuja. Luonnollisia lukuja ovat, 7 ja 0.. a) Luvun vastaluku on, koska + ( ) 0. b) Luvun 7 vastaluku on 7, koska 7 + ( 7) 0. c) Luvun 0 vastaluku on
Sisältö Tarrakirjoittimen esittely... 89 Aloitusvinkkejä... 89
Sisältö Tarrakirjoittimen esittely... 89 Tuotteen rekisteröiminen... 89 Aloitusvinkkejä... 89 Virran kytkeminen... 89 Akun asentaminen... 90 Akun lataaminen... 90 Tarrakasetin asettaminen paikalleen...
Neljän alkion kunta, solitaire-peli ja
Neljän alkion kunta, solitaire-peli ja taikaneliöt Kalle Ranto ja Petri Rosendahl Matematiikan laitos, Turun yliopisto Nykyisissä tietoliikennesovelluksissa käytetään paljon tekniikoita, jotka perustuvat
A L G E B R A N O P P I - J A E S I M E R K K I K I R J A PORVOO HELSINKI WERNER SÖDERSTRÖM OSAKEYHTIÖ KAHDESTOISTA PAINOS
K. V Ä I S Ä L Ä A L G E B R A N O P P I - J A E S I M E R K K I K I R J A I KAHDESTOISTA PAINOS PORVOO HELSINKI WERNER SÖDERSTRÖM OSAKEYHTIÖ Kouluhallituksen hyväksymä WERNER SÖDERSTRÖM OSAKEYHTIÖN KIRJAPAINOSSA
LUONNONVAKIOITA. 9.284 770 1 (31) 10 24 J T 1 Landén g-tekijä g e = 2µ e /µ B 2.002 319 304 386 (20) Ydinmagnetoni
LUONNONVAKIOITA Suure Symboli Arvo Permeabiliteetti tyhjiössä µ 0 4π 10 7 H m 1 tarkasti Valonnopeus tyhjiössä c 0 299 792 458 m s 1 exactly Permittiivisyys tyhjiössä ǫ 0 = 1/µ 0 c 2 0 8.854 187 816...
matematiikkaa maahanmuuttajille Eeva Rinne
matematiikkaa maahanmuuttajille Eeva Rinne 1 Turun kristillisen opiston oppimateriaaleja -sarja Tekijä: Eeva Rinne Julkaisija: Turun kristillisen opiston säätiö, Lustokatu 7, 20380 Turku. www.tk-opisto.fi