Jatkuvan ajan dynaaminen optimointi
|
|
- Ada Koskinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Jatkuvan ajan dynaaminen optimointi Diskreetistä ajasta jatkuvaan Ito prosessit Optimaalinen pysäytys Poisson prosessit Optimointiopin seminaari - Syksy 2000 / 1
2 Jatkuvan ajan dynaaminen π(x,u,t) tuottovirta optimointi π(x,u,t) t tuotto t pituisella ajanjaksolla ρ diskonttotekijä aikayksikköä kohden, diskonttokerroin t pituiselle ajanjaksolle on 1/(1 + ρ t) Äärettömän aikavälin diskreetin ajan Bellmanin yhtälö: F(x)=max{π(x,u)+1/(1+ρ) E[F(x ) x,u]} Optimointiopin seminaari - Syksy 2000 / 2
3 Jatkuvan ajan dynaaminen optimointi (jatkoa) Saa muodon F(x,t) = max{π(x,u,t) t + 1/(1+ρ t) E[F(x, t+ t) x,u]} Muokataan ja annetaan t lähestyä nollaa; ρf(x,t)=max{π(x,u,t)+1/dt E[dF]}, jossa 1/dt E[dF]=lim 1/ t E[F(x, t+ t)-f(x,t)]. Ei-arbitraasi- tai tasapainoyhtälö! Ongelmana raja-arvon ottaminen. Hyvin määritelty vain Ito- ja Poissonprosesseille. Optimointiopin seminaari - Syksy 2000 / 3
4 Dynaaminen optimointi Itoprosesseilla dx = a(x,u,t) dt + b(x,u,t) dz π(x,u,t) ja F(x,t) kuten edellä x tila hetkellä t, x =x+ x tila hetkellä t+ t Sovelletaan Iton lemmaa E[F(x+ x, t+ t) x,u] = F(x,t)+ [F t (x,t)+a(x,u,t)f x (x,t)+1/2b 2 (x,u,t)f xx (x,t)] t +o( t) Optimointiopin seminaari - Syksy 2000 / 4
5 Dynaaminen optimointi Itoprosesseilla (jatkoa) Tasapainoyhtälö saa nyt muodon ρf=max{π(x,u,t)+f t (x,t)+a(x,u,t)f x (x,t)+ 1/2b 2 (x,u,t)f xx (x,t)] Tästä voidaan ratkaista u *, x *, jolloin saadaan 2. astetta oleva ODY F:lle ODY yleisesti kompleksi ja vaikea ratkaista Optimointiopin seminaari - Syksy 2000 / 5
6 Dynaaminen optimointi Itoprosesseilla (jatkoa) Äärellisellä aikavälillä: loppuaika T, lopputuotto Ω(x T,T) Yhtälölle saadaan reunaehto F(x,t)=Ω(x,t) kaikilla x F(x,t) voidaan laskea aloittamalla T:stä ja laskemalla taksepäin F(x,t):n arvot kaikkina ajanhetkinä t Jos a,b,π eivät riipu ajasta saadaan F:lle DY Optimointiopin seminaari - Syksy 2000 / 6
7 Optimaalinen pysäytys ja smooth-pasting Binääriongelma - jatka, tuottovirta π(x,t) - lopeta, lopetustuotto Ω(x,t) dx = a(x,t) dt + b(x,t) dz Intuitiivisesti: olemassa raja x * (t) s.e. jos x(t) > x * (t) (x(t) < x * (t)) on optimaalista jatkaa (lopettaa) x * (t) saadaan osana dynaamisen optimointiongelman ratkaisua Optimointiopin seminaari - Syksy 2000 / 7
8 Optimaalinen pysäytys ja smooth-pasting (jatkoa) Bellmanin yhtälö ongelmalle F(x,t)=max{Ω(x,t), π(x,t)+ 1/(1+ρdt) E[F(x+dx,t+dt] x]} Jatka -alueessa (x(t)>x * (t)) jälkimmäinen termi isompi, sovelletaan tähän Iton lemmaa 1/2b 2 (x,t) F xx (x,t)+a(x,t) F x (x,t)+f t (x,t) - ρf(x,t)+π(x,t)=0, reunaehto x(t)=x * (t) Optimointiopin seminaari - Syksy 2000 / 8
9 Optimaalinen pysäytys ja smooth-pasting (jatkoa) Bellmanin yhtälöstä: F(x * (t),t) = Ω(x * (t),t) kaikilla t value-matching condition Tarvitaan kuitenkin lisäehto smooth-pasting condition F x (x * (t),t)=ω x (x * (t),t) Optimointiopin seminaari - Syksy 2000 / 9
10 Esimerkki - koneen optimaalinen hylkääminen Yritys omistaa koneen, joka valmistaa vimpaimia - elinaika [0,T] vuotta - tuotto vähenee vuosi vuodelta - tuotossa satunnaisia hypähdyksiä - tuottovirta dx=a dt+b dz, a<0 - hylkääminen on pysyvää Seurattava sekä x että t Olemassa x * (t) s.e. jos x(t)<x * (t) kone hylätään Optimointiopin seminaari - Syksy 2000 / 10
11 Esimerkki - koneen optimaalinen hylkääminen (jatkoa) ,05 x -0,1-0,15-0,2 t Optimointiopin seminaari - Syksy 2000 / 11
12 Dynaaminen optimointi Poisson prosesseilla dx = f(x,t) dt + g(x,t) dq, dq={0,u}, P(dq=u)=λ dt, P(dq=0)= 1- λ dt Optimaalinen pysäytys ongelma hyppy lopeta -alueeseen => df=λdt[ω(x+g(x,t) u)-f(x,t)]+ (1-λdt) [F(x+f(x,t)) dt)-f(x,t)] hyppy jatka -alueeseen => sij. F(x+g(x,t) u) Ω(x+g(x,t) u) tilalle Optimointiopin seminaari - Syksy 2000 / 12
13 Dynaaminen optimointi Poisson prosesseilla (jatkoa) Sijoittamalla df ei-arbitraasiyhtälöön saadaan Poisson prosessille ρf(x,t) = π(x,t) + λ[ω(x+g(x,t) u) -F(x,t)] + F x (x,t) f(x,t) kun x+g(x,t) u kuuluu lopeta -alueeseen. Vastaava lauseke kun x+g(x,t) u kuuluu jatka -alueseen saadaan sijoittamalla Ω:n tilalle F Optimointiopin seminaari - Syksy 2000 / 13
14 Dynaaminen optimointi Poisson prosesseilla (jatkoa) Jos u on satunnaismuuttuja on käytettävä näiden kombinaatiota ottamalla odotusarvo u:n jakauman suhteen. Ratkaisua ei saada paikallisesti jatka - alueelle => Ω ja F ei voida liittää toisiinsa pelkästään reunalla => vaikeuksia. Riittävän yksinkertaisia sovelluksia löytyy eli on kuitenkin käyttökelpoinen työkalu. Optimointiopin seminaari - Syksy 2000 / 14
15 Kotitehtävä - Poisson prosessi dx = g(x,t) dq, dq kuten edellä hyppy tapahtuu aina samaan, tunnettuun pisteeseen x 0 Ω(x 0,t) = 0 Poisson prosessin df:n lausekkeesta lähtien laske F(x,t), kun x 0 sijaitsee - jatka -alueessa - lopeta -alueessa Optimointiopin seminaari - Syksy 2000 / 15
Johdannaisanalyysi. Contingent Claims Analysis Juha Leino S ysteemianalyysin. Laboratorio
Johdannaisanalyysi Contingent Claims Analysis Juha Leino 11.10.2000 Optimointiopin seminaari - Syksy 2000 / 1 Oletukset Yritys tuottaa tuotetta, jonka hinta on x x noudattaa geometrista Brownin liikettä
Diskreettiaikainen dynaaminen optimointi
Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u
OPTIMAALINEN INVESTOINTIPÄÄTÖS
OPTIMAALINEN INESTOINTIPÄÄTÖS Keskiarvoon palautuvalle prosessille ja Poissonin hyppyprosessille Optimointiopin seminaari - Syksy 000 / 1 I. KESKIAROON PALAUTUA PROSESSI Investoinnin kohde-etuuden arvo
Ito-prosessit. Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma. S ysteemianalyysin. Laboratorio
Ito-prosessit Määritelmä Geometrinen Brownin liike Keskiarvoon palautuvat prosessit Iton lemma Optimointiopin seminaari - Syksy 2000 / 1 Ito-prosessit Brownin liikkeen yleistys (Ito prosessi) x(t) : dx
Investointimahdollisuudet ja investoinnin ajoittaminen
Investointimahdollisuudet ja investoinnin ajoittaminen Ajoituksen ratkaisu dynaamisella optimoinnilla Optimointiopin seminaari - Syksy 000 / Esitelmän sisältö Investoinnin ajoitusongelman esittely Ongelman
Esteet, hyppyprosessit ja dynaaminen ohjelmointi
Esteet, hyppyprosessit ja dynaaminen ohjelmointi Juha Martikainen 4.10.2000 Oppikirjan sivut 83-87 ja 93-98 Optimointiopin seminaari - Syksy 2000 / 1 Esteet (määritelmät) Muistellaan menneitä: Ajelehtiva
Lisää satunnaisuutta ja mahdollisuus keskeyttää projekti
isää satunnaisuutta ja mahdollisuus keskeyttää projekti Esitelmä 7 - Mika lmoniemi Optimointiopin seminaari - Syksy isää satunnaisuutta Tähän mennessä on käytetty vain yhtä satunnaismuuttujaa tuotteen
Projektin arvon aleneminen
Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko
Projektin arvon määritys
Projektin arvon määritys Luku 6, s. 175-186 Optimointiopin seminaari - Syksy 2000 / 1 Tehtävä Johdetaan menetelmä projektiin oikeuttavan option määrittämiseksi kohde-etuuden hinnan P perusteella projektin
Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen
Projektin keskeyttäminen, uudelleen käynnistäminen ja hylkääminen Optimointiopin seminaari - Syksy 000 / 1 Mallin laajennus Toiminta voidaan väliaikaisesti keskeyttää ja käynnistää uudelleen Keskeyttämisestä
Investointimahdollisuudet ja niiden ajoitus
Investointimahdollisuudet ja niiden ajoitus Ratkaisu optiohinnoitteluteorian avulla Esitelmä - Eeva Nyberg Optimointiopin seminaari - Syksy 000 / Tähän asti opittua NP:n rajoitteet vaikka NP negatiivinen
[xk r k ] T Q[x k r k ] + u T k Ru k. }.
Mat-2.48 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 3. Johdetaan lineaarisen aikainvariantin seurantatehtävän yleinen ratkaisu neliöllisellä kustannuksella. Systeemi: x k+
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
x 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan välttämättömät ehdot funktionaalin. g(y(t), ẏ(t),...
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun ja t f ovat kiinteitä ja tiedetään
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan
0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
k = 1,...,r. L(x 1 (t), x
Mat-2.148 Dynaaminen optimointi Mitri Kitti/Ilkka Leppänen Mallivastaukset, kierros 6 1. Johdetaan välttämättömät ehdot funktionaalin J(y) = t g(y(t), ẏ(t),..., dr y(t), t) dt dt r ekstremaalille, kun
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
Mat Dynaaminen optimointi, mallivastaukset, kierros Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle.
Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 9 1. Johdetaan ensiksi välttämättömät ehdot diskreettiaikaiselle optimisäätötehtävälle. Tilayhtälö on x k+1 = f k (x k, u k ), k = 1,..., N 1 alkuehdolla
Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa
Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä
D ( ) E( ) E( ) 2.917
Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,
Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2
MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 5 (vko 4/003) (Aihe: jatkuvia satunnaismuuttujia ja jakaumia, sekamalli, Laininen luvut 5.1 5.7, 6.1 6.3)
Satunnaismuuttujat ja jakaumat
Luku 2 Satunnaismuuttujat ja jakaumat Lasse Leskelä Aalto-yliopisto 2. syyskuuta 207 2. Satunnaismuuttujan käsite Käytännön tilanteissa ei yleensä olla kiinnostuneita satunnaisilmiön kaikista yksityiskohdista,
Investointistrategioista kilpailluilla markkinoilla
Investointistrategioista kilpailluilla markkinoilla Tuomas Pyykkönen 29.11.2000 (esitys kirjasta: Investment under Uncertainty; Dixit, Pindyck (1994); ss. 247-260) Optimointiopin seminaari - Syksy 2000
Poisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
Dynaaminen optimointi ja ehdollisten vaateiden menetelmä
Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä
4. laskuharjoituskierros, vko 7, ratkaisut
4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.
Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa
Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu
a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.
.. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskemalla
4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen
Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä
Harjoitus 6: Symbolinen laskenta II (Mathematica)
Harjoitus 6: Symbolinen laskenta II (Mathematica) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Differentiaaliyhtälöiden ja differentiaaliyhtälösysteemien
Differentiaaliyhtälöt I, kevät 2017 Harjoitus 3
Differentiaaliyhtälöt I, kevät 07 Harjoitus 3 Heikki Korpela. helmikuuta 07 Tehtävä. Ratkaise alkuarvo-ongelmat a) y + 4y e x = 0, y0) = 4 3 b) Vastaus: xy + y = x 3, y) =.. a) Valitaan integroivaksi tekijäksi
Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet
ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa
2 dy dx 1. x = y2 e x2 2 1 y 2 dy = e x2 xdx. 2 y 1 1. = ex2 2 +C 2 1. y =
BM20A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 2, Kevät 207 Päivityksiä: Tehtävän 4b tehtävänanto korjattu ja vastauksia lisätty.. Ratkaise y, kun 2y x = y 2 e x2. Jos y () = 0 niin mikä on ratkaisu
Esimerkki: Tietoliikennekytkin
Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen
min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
Malliratkaisut Demo 1
Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,
Malliratkaisut Demot
Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä
Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
Generoivat funktiot, Poisson- ja eksponenttijakaumat
4A Generoivat funktiot, Poisson- ja eksponenttijakaumat Tämän harjoituksen tavoitteena on edelleen tutustua generoivien funktioiden sovelluksiin ja lisäksi harjoitella ratkaisemaan Poisson- ja eksponenttijakaumiin
MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin
Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia
Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia { z(t k+1 ) = z(t k ) + ɛ(t k ) t t k+1 = t k + t, k = 0,..., N, missä ɛ(t i ), ɛ(t j ), i j ovat toisistaan riippumattomia siten, että
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
Tampere University of Technology
Tampere University of Technology EDE- Introduction to Finite Element Method. Exercise 3 Autumn 3.. Solve the deflection curve v(x) exactly for the beam shown y,v q v = q z, xxxx x E I z Integroidaan yhtälö
, tuottoprosentti r = X 1 X 0
Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen
2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.
2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.
6 Variaatiolaskennan perusteet
6 Variaatiolaskennan perusteet Sivut ss. 22 26 pääosin lähteen [Kirk, Ch. 4, ss. 107 127] pohjalta Variaatiolaskenta keskittyy lokaaliin analyysiin eli funktion lokaalin minimin vastineisiin funktionaaleilla.
6. Differentiaaliyhtälösysteemien laadullista teoriaa.
1 MAT-13450 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 2010 6. Differentiaaliyhtälösysteemien laadullista teoriaa. Olemme keskittyneet tässä kurssissa ensimmäisen kertaluvun
Laskuharjoitus 7 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin 25.4. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 7 Ratkaisut 1. Kuvan
a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
Matematiikka B1 - avoin yliopisto
28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan
5. Stokastinen integrointi
STOKASTISET DIFFERENTIAALIYHTÄLÖT 55 5. Stokastinen integrointi Olemme lopulta käyneet läpi tarvittavat tiedot peruskäsitteistä ja voimme aloittaa stokastisen integroinnin (ja siten stokastisen derivoinnin
Harjoitus 4. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.
Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit
Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016
Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.
Harjoitus 6: Symbolinen laskenta II (Mathematica)
Harjoitus 6: Symbolinen laskenta II (Mathematica) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheita Differentiaaliyhtälöiden
Harjoitus 6: Symbolinen laskenta II (Mathematica)
Harjoitus 6: Symbolinen laskenta II (Mathematica) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Differentiaaliyhtälöiden ja differentiaaliyhtälösysteemien
Lineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
V ar(m n ) = V ar(x i ).
Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia
b 1. b m ) + ( 2b Ax) + (b b)
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.
Suhteellisuusteorian perusteet 2017
Suhteellisuusteorian perusteet 017 Harjoitus 5 esitetään laskuharjoituksissa viikolla 17 1. Tarkastellaan avaruusaikaa, jossa on vain yksi avaruusulottuvuus x. Nollasta poikkeavat metriikan komponentit
1 Perusteita lineaarisista differentiaaliyhtälöistä
1 Perusteita lineaarisista differentiaaliyhtälöistä Johdetaan lineaarisen aikavariantin systeemin ẋ(t) = A(t)x(t) + B(t)u(t), x(t 0 ) = x 0 yleinen ratkaisu. Tarkastellaan ensin homogeenistä yhtälöä. Lause
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu
Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) vasemman puolen
Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä
Todennäköisyys 1 Klassinen todennäköisyys: p = Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä Esimerkkejä: Nopan heitto, kolikon heitto Satunnaismuuttuja Tilastollisesti vaihtelevaa
Päätöspuut pitkän aikavälin investointilaskelmissa
Päätöspuut pitkän aikavälin investointilaskelmissa Optimointiopin seminaari, Jaakko Ollila. Parannusehdotus 4. Esimerkki : hystereesis investointipäätöksissä 1 -$ 0 Tavallinen päätöspuu Aika Laskut antavat
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku A Harjoitus 4 (vko 41/2003) (Aihe: diskreettejä satunnaismuuttujia ja jakaumia, Laininen luvut 4.1 4.7) 1. Kone tekee
. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että
J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1
J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 Poisson-prosessi Yleistä Poisson-prosessi on eräs keskeisimmistä jonoteoriassa käytetyistä malleista. Hyvin usein asiakkaiden saapumisprosessia jonoon
Kuva 1: Tehtävä 1a. = 2π. 3 x3 1 )
BMA58 - Integraalilaskenta ja sovellukset Harjoitus 3, Kevät 6 = Kuva : Tehtävä a. a Slinterinkuorelle tässä h = ja r = ja kä läpi välin [,], joka johtaa lausekkeeseen: V = π 6 / 3 d 3 3 3 = 3 Kuva : Tehtävä
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.
2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x
Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi
TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti
LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä
LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä. Diffuusio yksiulotteisessa epäjärjestäytyneessä hilassa E J ii, J ii, + 0 E b, i E i i i i+ x Kuva.:
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy
= X s + IE[X t X s ] = 0, s ja sitä, että ehdollinen odotusarvo on tavallinen odotusarvo silloin, kun satunnaismuuttuja
44 E. VALKEILA 6. Geometrinen Brownin liike 6.1. Brownin liike ja Iton kaava. Tavoitteena on mallintaa osakkeen tuottoa jatkuvassa ajassa. Jos (S t ) t T on osakkeen hintaprosessi, niin tuotolla tarkoitetaan
Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 217 Alkuviikon harjoituksissa ratkaistaan kolme tehtävää assistentin avustuksella (läsnäololaskarit).
(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi
Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot
Liikenneongelmien aikaskaalahierarkia
J. Virtamo 38.3141 Teleliikenneteoria / HOL-esto 1 Liikenneongelmien aikaskaalahierarkia AIKASKAALAHIERARKIA Kiinnostavat aikaskaalat kattavat laajan alueen, yli 13 dekadia! Eri aikaskaaloissa esiintyvät
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:
Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva
KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
Matematiikan ja tilastotieteen laitos Stokastiset differentiaaliyhtälöt Ratkaisuehdotelma Harjoitukseen 5
Matematiikan ja tilastotieteen laitos Stokastiset differentiaaliyhtälöt Ratkaisuehdotelma Harjoitukseen 5 1. Näytä, että X t := Bt 3 3tB t on martingaali Brownin liikkeen B historian suhteen. Ratkaisuehdotus:
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan