Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t
|
|
- Hanna-Mari Halttunen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Valkoinen kohina ε t Voimme tehdä saman laskun myös yleiselle välille [ a, a], missä 0 < a <. Todennäköisyys sille, että Gaussisen valkoisen kohinan komponentit ovat yhtäaikaa rajoitettuja on siis nolla. Toisin sanoen P (sup t ɛ t < a) 0. Valkoinen kohina on myös tässä mielessä hyvin epäsäännöllistä. Huomautus Stokastiselle prosessille ei voi kirjoittaa yhteistodennäköisyystiheysfunktiota samaaan tapaan kuin satunnaisvektoreille. Sen sijaan äärellisulotteisten reunajakaumien F Xt1,...,X tk tiheysfunktiot ovat määriteltävissä. Stokastisten prosessien olemassaolo voidaan näyttää äärellisulotteisten reunajakaumien avulla. Tämän havaitsi ensimmäisenä Kolmogorov, jonka mukaan tulos on nimetty. (Tulosta ei esitetä tällä kurssilla) Määritelmä 3.3. Olkoon X t, t I, stokastinen prosessi. Sanotaan, että µ t on stokastisen prosessin X t odotusarvo, jos µ t E[X t ] jokaisella t I. Sanotaan, että C : I I R on stokastisen prosessin kovarianssifunktio, jos C(t, s) E[(X t µ t )(X s µ s )] jokaisella t, s I. Sanotaan, että Γ t on stokasisen prosessin X t jokaisella t, t τ I. Γ t (τ) C(t, t τ) autokovarianssifunktio, jos Esimerkki 3.2. Olkoon ε t valkoinen kohina, jolle ε t N(0, σ 2 ) jokaisella t 1, 2, 3,.... Olkoon X t 2 + t 2 + 3ε t. Laske prosessin X t odotusarvo ja kovarianssifunktio, mahdollista. 8
2 Ratkaisu: µ t E[X t ] E[2 + t 2 + 3ε t ] 2 + t 2 + E[3ε t ] 2 + t 2. Odotusarvo µ t 2 + t 2 jokaisella t 1, 2, 3,.... C(t, s) E[(X t µ t )(X s µ s )] E[(X t 2 t 2 )(X s 2 s 2 )] E[3ε t 3ε s ] { 9E[ε t ]E[ε s ] 0, kun t s 9E[ε 2 t ] 9σ 2 kun t s. Kätevä merkintä valkoisen kohinan kovarianssin laskemisessa on Kroneckerin deltafunktio { 1 kun i j δ i,j 0 kun i j. Kun ε on valkoinen kohina, jonka varianssi on σ 2, niin E[ε t ε s ] δ t,s E[ε 2 t ] δ t,s σ 2. Toinen kätevä merkintä on indikaattorifunktio { 1, kun x A I A (x) 0 muulloin. Esimerkiksi I {t Z:1 t 5} (j). Määritelmä 3.4. Olkoon X t stokastinen prosessi, jonka autokovarianssi on Γ t (τ). Stokastisen prosessin X t autokorrelaatio on ρ t (τ) Γ t (τ) Γt (0) Γ t τ (0). 3.2 MA-prosessit MA tulee sanoista Moving Average eli liukuva keskiarvo. Määritelmä 3.5. Stokastinen prosessi X t on ensimmäisen kertaluvun MA-prosessi (liukuvan keskiarvon prosessi) eli MA(1)-prosessi, jos X t µ + ε t + θε t 1 jokaisella t, missä µ, θ R ovat vakioita ja ε t on valkoinen kohina. 9
3 Lasketaan MA(1)-prosessin X t, t Z, odotusarvo: E[X t ] E[µ + ɛ t + θɛ t 1 ] µ. Lasketaan MA(1)-prosessin autokovarianssifunktio: Γ t (τ) E[(X t µ)(x t τ µ)] E[(ε t + θɛ t 1 )(ɛ t τ + θε t τ 1 )] E[ε t ε t τ + θε t 1 ε t τ + θε t θε t τ 1 ) + θ 2 ε t 1 ε t τ 1 ] δ t,t τ σ 2 + θδ t 1,t τ σ 2 + θδ t,t τ 1 σ 2 + θ 2 δ t 1,t τ 1 σ 2 Erityisesti Γ t (0) E[Xt 2 ] (1 + θ 2 )σ 2 ja Γ t (1) θσ 2. Kun τ > 1, niin Γ t (τ) 0. Kuva 3.2: Näyte MA(1)-prosessista X t 3 + ε t + ε t 1, t 1,..., 80, missä valkoinen kohina ε t N(0, 1) X t Kuva 3.3: Näyte valkoisesta kohinasta ε t N(0, 1), t 0, 1, 2,..., 80 Valkoinen kohina ε t MA(1)-prosessilla on enemmän rakennetta kuin valkoisella kohinalla: peräkkäiset pisteet ovat keskenään korreloituneita. 10
4 MA(1) eli liukuvan keskiarvon prosessin X t peräkkäiset komponentit ovat korreloituneita. Korrelaation suuruus on E[(X t µ)(x t 1 µ)] Var(X 2 t ) θσ 2 (1 + θ 2 )σ 2 θ (1 + θ 2 ). Nyrkkisääntöjä: Kun θ > 0, niin suurta (tai pientä) X t :n arvoa seuraa todennäköisesti suurehko (tai pienehkö) X t+1 :n arvo. Miten käy, kun θ < 0? Tutki kuvaa 2.8. Positiiviset parametrin θ arvot tuottavat säännöllisempiä prosesseja kuin negatiiviset parametrin θ arvot. Valkoinen kohina on epäsäännöllisempi kuin MA(1)-prosessi, kun θ > 0. Kuva 3.4: Näyte MA(1)-prosessista X t 3 + ε t ε t 1, missä valkoinen kohina ε N(0, 1) X t
5 Kuva 3.5: Näyte valkoisesta kohinasta ε N(0, 1) Valkoinen kohina ε t Määritelmä 3.6. Olkoon X t stokastinen prosessi. Sanotaan, että X t on stationäärinen, jos jokaisen satunnaisvektorin (X k1, X k2,..., X km ) jakauma on sama kuin satunnaisvektorin (X k1 +p, X k2 +p,..., X km +p) jakauma kaikilla k 1,..., k M, M ja p. Määritelmä 3.7. Prosessi X t on heikosti stationäärinen, jos sen odotusarvo on vakio ja sen autokovarianssi Γ t (τ) Γ(τ) ei riipu ajasta t. Esimerkki Valkoinen kohina ε t on heikosti stationäärinen, sillä sen odotusarvo E[ε t ] 0 ja sen autokovarianssi Γ t (τ) E[ε t ε t τ ] σ 2 δ t,t τ σ 2 δ 0,τ ei riipu muuttujan t arvosta. 2. MA(1)-prosessi X t, t Z, on heikosti stationäärinen. 3. Prosessi X t 3 2t + ε t ei ole heikosti stationäärinen, sillä sen odotusarvo riippuu ajasta t. E[X t ] 3 2t 4. Prosessi X t 7 t 2 ε t ei ole heikosti stationäärinen, sillä sen odotusarvo E[X t ] 7 on vakio, mutta sen varianssi riippuu ajasta t. Γ t (0) E[(X t 7) 2 ] t 4 σ 2 Huomautus Heikosti stationäärinen prosessi ei välttämättä ole stationäärinen eikä, yllättäen, myöskään toisin päin. Stationäärisellä prosessilla ei nimittäin välttämättä ole olemassa ensimmäistä ja toista momenttia. Esimerkki 3.4. Olkoon X t sellainen prosessi, että X t ja X s ovat tilastollisesti riippumattomia jokaisella t s ja X t on Cauchy-jakautunut jokaisella t eli P (X t a) a 12 1 π(1 + x 2 ) dx.
6 Tällöin integraali E[X t ] x 1 π(1 + x 2 ) dx hajaantuu eikä prosessilla X t ole olemassa odotusarvoa. Kuitenkin satunnaisvektorin (X k1,..., X km ) yhteisjakauman tiheysfunktio on riippumattomuuden nojalla f (Xk1,...,X km )(x 1,..., x M ) f Xk1 (x 1 ) f XkM (x M ) Oikea puoli ei muutu, vaikka indeksit k j vaihdettaisiin arvoiksi k j + p. M j1 1 π(1 + x 2 j ). Ensimmäisen kertaluvun MA-prosessi yleistyy korkeamman kertaluvun prosesseiksi: Määritelmä 3.8. Sanotaan, että X t on MA(q)-prosessi eli q:nnen kertaluvun liukuvan keskiarvon prosessi, jos X t µ + ε t + θ 1 ε t 1 + θ 2 ε t θ q ε t q, missä ε t, t Z, on valkoinen kohina ja µ, θ 1,..., θ q R. Lasketaan MA(q)-prosessin odotusarvo: E[X t ] E[µ + ε t + θ 1 ε t 1 + θ 2 ε t θ q ε t q ] µ + E[ε t ] + θ 1 E[ε t 1 ] + + θ q E[ε t q ] µ. Autokovarianssin laskemista varten otetaan käyttöön merkintä: θ 0 1. Tällöin X t µ + θ k ε t k. (3.2.1) Sijoittamalla lauseke (3.2.1) autokovarianssin määritelmään saadaan Γ t (τ) E[(X t µ)(x t τ µ)] [( ) ( )] E θ k ε t k θ j ε t τ j j0 [ ] E θ k ε t k θ j ε t τ j k,j0 On tärkeää kirjoittaa eri summiin eri indeksi, jonka yli summataan! Vaihdetaan seuraa- 13
7 vaksi odotusarvon ja summausten järjestys: Γ t (τ) θ k θ j E [ε t k ε t τ j ] k,j0 σ 2 θ k θ j δ k,τ+j σ 2 k,j0 θ k θ j σ 2 δ t k,t τ j k,j0 θ τ+j θ j I 0 τ+j q j0 σ 2 θ τ+j θ j I τ j q τ σ 2 j0 min(q,q τ) jmax(0, τ) θ τ+j θ j σ 2 q τ j0 θ τ+jθ j kun 0 τ q σ 2 q j τ θ j τ+jθ j+τ j σ 2 q+τ j 0 θ j θ j τ kun q τ < 0 0 muulloin { σ 2 q τ j0 θ τ +jθ j kun τ q 0 muulloin. MA(q)-prosessi on heikosti stationäärinen. Kun τ > q, niin Γ(τ) 0. Esim. Γ(2) σ 2 q 2 j0 θ τ+jθ j σ 2 (θ 2 θ 0 + θ 3 θ θ τ+q 2 θ q 2 ). 3.3 AR-prosessit MA-prosesseilla voidaan mallittaa vierekkäisiä korreloitunoita arvoja. Liukuvan keskiarvon prosessin kertaluku määrittää kuinka etäälle ajassa korrelaatio yltää. Miten voidaan mallittaa äärettömän kauas yltävää korrelaatiota? Määritelmä 3.9. Sanotaan, että X t on ensimmäisen kertaluvun autoregressiivinen prosessi eli AR(1)-prosessi, jos X t c + φx t 1 + ε t (3.3.2) missä φ R ja ε t on valkoinen kohina, jonka varianssi on σ 2. Nimitys autoregressiivinen johtuu siitä, että prosessin arvoa X t mallinnetaan prosessin omalla arvolla eri ajanhetkellä t 1. Lause 3.1. Jos φ < 1, niin kaavalla (3.3.2) määritelty AR(1)-prosesssi X t, missä t Z, on heikosti stationäärinen. Todistus. Ratkaistaan yhtälö X t X t 1 + ε. Aloitetaan konstruktiivisella tarkastelulla. Johdetaan konstruktio rekursiivisesti: X t c + φx t 1 + ε t c + φ(c + φx t 2 + ε t 1 ) + ε t c + φc + φ 2 X t 2 + ε t + φε t 1 c + φc + φ 2 (c + φx t 3 + ε t 2 ) + ε t + φε t 1 c + φc + φ 2 c + φ 3 X t 3 + ε t + φε t 1 + φ 2 ε t 2. 14
8 Kuva 3.6: Näyte MA(5)-prosessista X t 3 + ε t + ε t ε t 2 + 1ε t 3 + ε t ε t 5, missä valkoinen kohina ε N(0, 1) X t Kuva 3.7: Näyte valkoisesta kohinasta ε N(0, 1) Valkoinen kohina ε t Jatkamalla menettelyä, voidaan muodostaa yriteratkaisu X t cφ k + φ k ε t k, mikäli tämä yrite on hyvin määritelty. Tarkistetaan, että sarjat suppenevat. Koska φ < 1, niin φ k 1 1 φ. Näytetään, että satunnainen sarja φk ε t k suppenee todennäköisyydellä 1. Selvästi φ k ε t k φ k ε t k. 15
9 Fubinin lauseen ja Cauchy-Schwartzin epäyhtälön nojalla E[ φ k ε t k ] φ k E[ ε t k ] φ k σ σ 1 φ. Koska positiivisten termien muodostaman sarjan odotusarvo on äärellinen, suppenee kyseinen sarja todennäköisyydellä 1 (sillä vastaoletuksella päädyttäisiin ristiriitaan äärellisyyden kanssa). Varmistetaan lopuksi, että yrite toteuttaa vaaditun yhtälön ( ) ( c ) X t φx t 1 + φ k c ε t k φ 1 φ k 1 φ + φ k ε t 1 k c 1 φ 1 φ + φ k ε t k c + ε t. φ k+1 ε t (k+1) Lisäksi ratkaisun yksikäsitteisyys voidaan näyttää Fourier-mentelmien avulla sopivasti valituissa jonoluokissa (tämä sivuutetaan). Tutkitaan seuraavaksi heikkoa stationäärisyyttä. Odotusarvo Autokovarianssi: (kun τ 0) c µ t E[X t ] E[ 1 φ + φ k ε t k ] c 1 φ. Γ t (τ) E[(X t µ t )(X t τ µ t τ )] ( ) ( E[ φ k ε t k φ j ε t τ j )] j0 φ j+k E[ε t k ε t τ j ] k,j0 φ j+k σ 2 δ k,τ+j k,j0 σ 2 φ j+k δ k,τ+j k,j0 φ τ+2j I {n:0 τ+n< } (j) j0 φ τ 1 φ 2. AR(1)-prosessilla X t c + φx t 1 + ε t, missä φ < 1 ja E[ε 2 ] σ 2, on seuraavat ominaisuudet: 16
10 Odotusarvo E[X t ] c. 1 φ Autokovarianssi Γ(τ) φτ σ 2 1 φ 2. Kun ε t N(0, σ 2 ), niin myös X t on normaalisti jakautunut, sillä normaalisti jakautuneiden satunnaismuuttujien summa on aina normaalisti jakautunut. Kuva 3.8: AR(1)-prosessin autokovarianssifunktio Γ(τ), kun φ 0.3 ja σ 1. Autokovarianssi Vastaavasti voidaan määritellä korkeamman kertaluvun autoregressiiviset prosessit. Määritelmä Sanotaan, että X t on p:nnen kertaluvun autoregressiivinen prosessi eli AR(p)-prosessi, jos X t c + φ 1 X t 1 + φ 2 X t φ p X t p + ε t, (3.3.3) missä c, φ k R ja ε t on valkoinen kohina. Jätämme seuraavan tuloksen todistuksen luennoilla väliin. Lause 3.2. AR(p)-prosessi (3.3.3) on heikosti stationäärinen jos kaikki yhtälön ratkaisut ovat yksikköympyrän ulkopuolella. 1 φ 1 z φ 2 z 2 φ p z p 0, {z z 1 + iz 2 C : z z 2 2 < 1} Harjoituksissa näytetään, että heikosti stationäärisen AR(p)-prosessin autokorrelaatiofunktio ρ(τ) toteuttaa ns. Yule-Walker-yhtälöt: ρ(τ) φ 1 ρ(τ 1) + + φ p ρ(τ p) + σ2 Γ(0), τ 0. 17
11 Kuva 3.9: Näyte AR(1)-prosessista X t X t 1 + ε t, missä valkoinen kohina ε N(0, 1) X t Kuva 3.10: Näyte AR(1)-prosessista X t 3 0.9X t 1 +ε t, missä valkoinen kohina ε N(0, 1) X t ARMA-malli Yhdistetään AR- ja MA-mallit. Määritelmä Stokastinen prosessi X t on ARMA(p, q)-prosessi, jos X t c + φ 1 X t φ p X }{{ t p + ε } 1 + θ 1 ε t θ q ε t q, }{{} AR-osuus MA-osuus missä ε t on valkoinen kohina. ARMA(p)-prosessin häiriötermi on siis MA(q)-prosessi, jonka odotusarvo on 0.Tämä häiriö on korreloitunutta kun taas tavallisen AR(p)-prosessin häiriö on korreloimaton valkoinen kohina. ARMA-mallit ovat tärkeitä aikasarjamalleja yksinkertaisuutensa ja joustavuutensa johdosta. 18
Vastaavasti voidaan määritellä korkeamman kertaluvun autoregressiiviset prosessit.
Autokovarianssi: (kun τ 0) Γ t (τ) = E[(X t µ t )(X t τ µ t τ )] ( ) ( = E[ φ k ε t k φ j ε t τ j )] = = j=0 φ j+k E[ε t k ε t τ j ] k,j=0 φ j+k σ 2 δ k,τ+j k,j=0 = σ 2 φ j+k δ k,τ+j = = k,j=0 φ τ+2j I
4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
3. Teoriaharjoitukset
3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin
6.1 Autokovarianssifunktion karakterisaatio aikatasossa
6. Spektraalianalyysi Tällä kurssilla on käyty läpi eräitä stationääristen aikasarjojen ominaispiirteitä, kuten aikasarjaa mallintavan stokastisen prosessin X t odotusarvo E[X t ] ja autokovarianssifunktio
Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.
Määritelmä 4.3. Estimaattoria X(Y ) nimitetään lineaariseksi projektioksi, jos X on lineaarinen kuvaus ja E[(X X(Y )) Y] 0 }{{} virhetermi Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi
9. Tila-avaruusmallit
9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia
Stationaariset stokastiset prosessit ja ARMA-mallit
Stationaariset stokastiset prosessit ja ARMA-mallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
6.2.3 Spektrikertymäfunktio
ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet
ARMA mallien ominaisuudet ja rakentaminen
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Viikko 4: 1 ARMA-mallien ominaisuudet 1 Stationaaristen
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61
3.3. Satunnaismuuttujien ominaisuuksia 61 Odotusarvo Määritelmä 3.5 (Odotusarvo) Olkoon X diskreetti satunnaismuuttuja, jonka arvojoukko on S ja todennäköisyysfunktio f X (x). Silloin X:n odotusarvo on
6.5.2 Tapering-menetelmä
6.5.2 Tapering-menetelmä Määritelmä 6.7. Tapering on spektrin estimointimenetelmä, jossa estimaattori on muotoa f m (ω) = 1 m ( ) k w 2π m Γ(k)e ikω, k= m missä Γ on otosautokovarianssifunktio ja ikkunafunktio
STOKASTISET PROSESSIT
TEORIA STOKASTISET PROSESSIT Satunnaisuutta sisältävän tapahtumasarjan kulkua koskevaa havaintosarjaa sanotaan aikasarjaksi. Sana korostaa empiirisen, kokeellisesti havaitun tiedon luonnetta. Aikasarjan
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
805324A (805679S) Aikasarja-analyysi (Syksy 2016) Sari Lasanen
805324A (805679S) Aikasarja-analyysi (Syksy 2016) Sari Lasanen 1. Kurssin tiedot Osaamistavoitteet: Kurssin onnistuneen suorittamisen jälkeen opiskelija tuntee aikasarja-analyysin peruskäsitteet (mm. trendi,
Epäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.
Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin
x 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
ARMA(p, q)-prosessin tapauksessa maksimikohdan määrääminen on moniulotteinen epälineaarinen optimointiongelma.
missä µ = c φ ja C j,k = Γj k) = σ 2 φj k φ 2. ARMAp, q)-prosessin tapauksessa maksimikohdan määrääminen on moniulotteinen epälineaarinen optimointiongelma. Käytännösssä optimointi tehdään numeerisesti
V ar(m n ) = V ar(x i ).
Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 017 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I 1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X
805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan
Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
Ilkka Mellin Aikasarja-analyysi Stationaariset stokastiset prosessit
Ilkka Mellin Aikasarja-analyysi Stationaariset stokastiset prosessit TKK (c) Ilkka Mellin (2007) 1 Stationaariset stokastiset prosessit >> Stationaariset stokastiset prosessit Integroituvuus Korrelaatiofunktioiden
Valintahetket ja pysäytetyt martingaalit
4B Valintahetket ja pysäytetyt martingaalit Tämän harjoituksen tavoitteena on oppia tunnistamaan, mitkä satunnaishetket ovat valintahetkiä ja oppia laskemaan lukuarvoja ja estimaatteja satunnaisprosessien
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen
Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:
Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva
Ennustaminen ARMA malleilla ja Kalmanin suodin
Ennustaminen ARMA malleilla ja Kalmanin suodin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
Kompleksianalyysi, viikko 6
Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että
Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan
Mitä pitäisi vähintään osata Tässäkäydään läpi asiat jotka olisi hyvä osata Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan osattavan 333 Kurssin sisältö Todennäköisyyden, satunnaismuuttujien
Tilastomatematiikka Kevät 2008
Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet
Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04
3 Lukujonon raja-arvo
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n
Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17
Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat
3 Lukujonon raja-arvo
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n
Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)
Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)
Konvergenssilauseita
LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n
0 3 y4 dy = 3 y. 15x 2 ydx = 15. f Y (y) = 5y 4 1{0 y 1}.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 18 Harjoitus Ratkaisuehdotuksia Tehtäväsar I 1. Satunnaismuuttujilla X Y on tkuva yhteiskauma yhteistiheysfunktiolla f
ARMA mallien ominaisuudet ja rakentaminen
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Viikko 4: 1 ARMA-mallien ominaisuudet 1 Stationaaristen
11 Raja-arvolauseita ja approksimaatioita
11 Raja-arvolauseita ja approksimaatioita Tässä luvussa esitellään sellaisia kuuluisia todennäköisyysteorian raja-arvolauseita, joita sovelletaan usein tilastollisessa päättelyssä. Näiden raja-arvolauseiden
4.3 Moniulotteinen Riemannin integraali
4.3 Moniulotteinen Riemannin integraali Tässä luvussa opitaan miten integroidaan usean muuttujan reaaliarvoista tai vektoriarvoista funktiota, millaisten joukkojen yli jatkuvaa funktiota voi integroida,
(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:
. Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7
MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet
Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko
ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen
Inversio-ongelmien laskennallinen peruskurssi Luento 7
Inversio-ongelmien laskennallinen peruskurssi Luento 7 Kevät 2012 1 Tilastolliset inversio-ongelmat Tilastollinen ionversio perustuu seuraaviin periaatteisiin: 1. Kaikki mallissa olevat muuttujat mallinnetaan
4.2.2 Uskottavuusfunktio f Y (y 0 X = x)
Kuva 4.6: Elektroniikassa esiintyvän lämpökohinan periaate. Lämpökohinaa ε mallinnetaan additiivisella häiriöllä y = Mx + ε. 4.2.2 Uskottavuusfunktio f Y (y 0 X = x) Tarkastellaan tilastollista inversio-ongelmaa,
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset
TKK @ Ilkka Mellin (2008) 1/5
Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,
Signaalimallit: sisältö
Signaalimallit: sisältö Motivaationa häiriöiden kuvaaminen ja rekonstruointi Signaalien kuvaaminen aikatasossa, determinisitinen vs. stokastinen Signaalien kuvaaminen taajuustasossa Fourier-muunnos Deterministisen
Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ).
Jonot Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Lukujonon täsmällinen tulkinta on funktio f : N R, jolle f
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka
Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi
TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti
Epälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen
Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä
(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?
6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.
1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:
4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä
Täydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13
Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen
Esimerkki: Tietoliikennekytkin
Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan
Osittaisdifferentiaaliyhtälöt
Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,
1 Reaaliset lukujonot
Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot
Poisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P
Markkinaportfolio on koostuu kaikista markkinoilla olevista riskipitoisista sijoituskohteista siten, että sijoituskohteiden osuudet (so. painot) markkinaportfoliossa vastaavat kohteiden markkina-arvojen
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
Tilastollinen päättely II, kevät 2017 Harjoitus 2A
Tilastollinen päättely II, kevät 07 Harjoitus A Heikki Korpela 3. tammikuuta 07 Tehtävä. (Monisteen tehtävä.3 Olkoot Y,..., Y n Exp(λ. Kirjoita vastaava tilastollisen mallin lauseke (ytf. Muodosta sitten
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Lukujoukot. Luonnollisten lukujen joukko N = {1, 2, 3,... }.
Lukujoukot Luonnollisten lukujen joukko N = {1, 2, 3,... }. N 0 = {0, 1, 2, 3,... } = N {0}. Kokonaislukujen joukko Z = {0, 1, 1, 2, 2,... }. Rationaalilukujen joukko Q = {p/q p Z, q N}. Reaalilukujen
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1
Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................
Positiivitermisten sarjojen suppeneminen
Positiivitermisten sarjojen suppeneminen Jono (b n ) n= on kasvava, jos b n+ b n kaikilla n =, 2,... Lemma Jokainen ylhäältä rajoitettu kasvava jono (b n ) n= raja-arvo on lim n b n = sup n Z+ b n. suppenee
k S P[ X µ kσ] 1 k 2.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
u = 2 u (9.1) x + 2 u
9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,
Matemaattisten tieteiden kandiohjelma / MTL Todennäköisyyslaskenta IIb Kurssikoe (kesto 2h 30 min)
Matemaattisten tieteiden kandiohjelma / MTL Todennäköisyyslaskenta IIb Kurssikoe 8..7 (kesto h 3 min) Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu. Ei
Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?
TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä
4. Martingaalit ja lokaalit martingaalit
STOKASTISET DIFFERENTIAALIYHTÄLÖT 45 4. Martingaalit ja lokaalit martingaalit Lähestymme nyt jo kovaa vauhtia hetkeä, jolloin voimme aloittaa stokastisen integroinnin. Ennen sitä käymme vielä läpi yhtä