i=1 Tarkastellaan ensin inversio-ongelman injektiivisyys: Kun vaaditaan, että 0 = M x x 2

Koko: px
Aloita esitys sivulta:

Download "i=1 Tarkastellaan ensin inversio-ongelman injektiivisyys: Kun vaaditaan, että 0 = M x x 2"

Transkriptio

1 Lemma 1. Olkoon V R n lineaarinen aliavaruus. Lineaarisen kuvauksen F : V R m kuvajoukko F (V R m on lineaarinen aliavaruus, joka koostuu lineaarisen kuvauksen F matriisin M pystyvektorien {M i : i 1,... n} lineaariyhdisteistä y a i M i, missä a (a 1,..., a n V. Todistus. Koska V on lineaarinen aliavaruus, ax 1 + bx 2 V aina kun x 1, x 2 V ja a, b R. Tällöin kuvauksen F lineaarisuuden nojalla F (ax 1 + bx 2 af (x 1 + bf (x 2 F (V. Täten F (V on lineaarinen aliavaruus. Lisäksi vektori y (y 1,..., y m F (V jos (ja vain jos löytyy sellaiset kertoimet x 1,... x n että (x 1,..., x n V ja y i M ij x j, i 1,..., m (2.1 Merkitään yhtälössä (2.1 (M i j : M ij matriisin M i:nen pystyvektorin j:tä elementtiä. Huomautus 6. Kun V R n, W R m ja n < m, niin inversio-ongelma ( on huonosti asetettu, sillä kuva-avaruus R(M {Mx : x V } R m on Lemman 1 nojalla lineaarinen aliavaruus, jonka dimensio on korkeintaan n ja nyt n < m. Esimerkki 7. Olkoon Tarkastellaan inversio-ongelmaa 1 0 M ( Määrää sellainen x V R 2, että Mx y, missä y W R 3 on annettu. Tutki, onko inversio-ongelma ( hyvin asetettu. Tarkastellaan ensin inversio-ongelman injektiivisyys: Kun vaaditaan, että 0 M x ( x x1 x x x 1 + x 2 niin x 1 x 2 0. Täten inversio-ongelman ratkaisu on aina yksikäsitteinen, kun ratkaisu on olemassa. Tarkastellaan ratkaisun olemassaoloa. Koska maalijoukon W dimensio on 3 ja matriisin M kuva-avaruuden R(M dimensio on 2, niin yhtälöllä ei ole ratkaisua kaikilla y R 3. (Tämän voi havaita myös yrittämällä ratkaista yhtälö 1 0 y 1 y 2 y ( x1 x 2

2 esim. Gaussin ja Jordanin elimointimenetelmällä. Täten inversio-ongelma ( on huonosti asetettu. Kerrataan lineaarialgebraa. Matriisin M R m n transpoosi on matriisi Avaruuden R n sisätuloa merkitään (M T ij M ji missä j 1,..., m, i 1,..., n. (x, y x y y T x ( y 1 y n. missä x (x 1,..., x n, y (y 1,..., y n R n. x 1 y n x i y i, Lineaarisen aliavaruuden V R n kanta on lineaarisesti riippumattomien vektorien joukko {e 1,..., e k } V, jolle pätee V {x R n : x k a i e i, a i R, i 1,..., k}. Lineaarisen alivaruuden V R n kanta {e 1,... e k } on ortonormaali, jos { 1, kun i j (e i, e j 0, kun i j, missä i, j 1,..., k. Avaruuden R m luonnollinen kanta koostuu vektoreista e 1 (1, 0, 0,..., 0, e 2 (0.1, 0,..., 0,..., e m (0,..., 0, 1. Määritelmä 5. Olkoon V avaruuden R n lineaarinen aliavaruus ja {e 1,..., e k } sen ortonormaali kanta. Vektorin x R n ortogonaalinen projektio aliavaruudelle V on vektori P (x k (x, e i e i. (2.2 Olkoon Q V R n n linaarisen kuvauksen x P (x matriisi, Matriisia Q V kutsutaan ortogonaaliprojektioksi aliavaruudelle V. Huomautus 7. Ortogonaaliprojektio on muotoa Q V ( e e 1 e 2 e k n k T 2. e T 1. e T k k n 28

3 Lause 2. Olkoon Q V (i Q T V Q V, ortogonaaliprojektio aliavaruudelle V R n. Silloin (ii Q 2 V Q V ja (iii x V jos ja vain jos Q V x x. Todistus. Kohta (i on harjoitustehtävä. Huomautuksen 7 nojalla Q 2 V Q V Q V ( e T ( e e 1 e 2 e k e1 e 2 e k 2. T 2. e T 1 e T k (e 1, e 1 (e 1, e 2 (e 1, e n e T ( 1 (e 2, e 1 (e 2, e 2 (e 2, e n e T e 1 e 2 e k (e n, e 1 (e n, e 2 (e n, e n e T k e T ( e T e 1 e 2 e k Q V Jos x V, niin silloin x voidaan esittää aliavaruuden V kantavektorien e 1,..., e k avulla muodossa x k (x, e ie i ja Jos Q V x x, niin ( e1 e 2 e k n k Q V x e T 1 e T 2. e T k k (x, e i Q V e i k n e T k k (x, e i e i x. (e 1, x x n 1 ( (e 2, x e 1 e 2 e k. (e k, x e T 1 e T k k (x, e i e i. Lause 3 (Karakterisaatio. Inversio-ongelmalla ( on ratkaisu, jos ja vain jos Q F (V y y, missä Q F (V on ortogonaalinen projektio kuvajoukolle F (V. Todistus. Lineaarisella inversio-ongelmalla on ratkaisu, jos y F (V, missä F (V on Lemman nojalla lineaarinen alivaruus. Tämä on Lauseen kohdan (iii nojalla yhtäpitävää sen kanssa, että Q F (V y y. Karakterisaation avulla voimme tunnistaa ne annetut havainnot y, joilla inversioongelma on ratkaistavissa. Kun matriisi Q F (V on saatu määrittyä, niin riittää laskea matriisikertolasku. Matriisi Q F (V on mahdollista määrätä esim. suorittamalla Gram- Schmidt-menettely matriisin M pystyriveille. 29

4 2.2.3 Käänteiskuvauksen jatkuvuus Näytetään, että äärellisulotteisissa lineaarisissa inversio-ongelmissa käänteiskuvaus jos se on olemassa on aina jatkuva. Tätä varten palautetaan mieleen Cauchyn ja Schwartzin epäyhtälö. Kun x (x 1,..., x n ja y (y 1,..., y n R n, niin vektorien x ja y sisätulolle pätee Cauchyn ja Schwartz epäyhtälö (x, y x y ( 1 ( x i y i x i 2 y i 2. Lause 4. Olkoon V R n lineaarinen aliavaruus. Lineaarinen kuvaus F : V R m on jatkuva. Todistus. Näytetään ensin, että väite on totta kun V R n. Merkitään M ij (F (e j i, i 1,..., m, j 1,..., n, missä {e 1,... e n } on avaruuden R n luonnollinen kanta. Lineaarisuuden nojalla F (x F (y 2 F (x y 2 ( 2 M ij (x j y j. Käytetään Cauchy-Schwartzin epäyhtälöä ( 2 ( ( ( M ij (x j y j ij (M 2 (x j y j 2 (M ij 2 x y 2, F (x F (y 2 ( m (M ij 2 x y 2. Täten F on jatkuva. Oletetaan nyt, että V on lineaarinen aliavaruus ja {ẽ 1,... ẽ k } sen ortonormaali kanta avaruuden R n sisätulon suhteen. Kun x k x jẽ j ja y k ỹjẽ j. Samoin kuin yllä F (x F (y 2 ( m k ( M ij 2 k ( x j ỹ j 2, missä Lisäksi M ij (F (ẽ j i, i 1,..., m, j 1,..., k. ( k k k ( x j ỹ j 2 x j ẽ j ỹ j ẽ j, x j ẽ j ỹ j ẽ j x y 2. 30

5 Korollaari 2 (Ratkaisun jatkuvuus. Inversio-ongelman ( ratkaisu on jatkuva jos kuvaus V x Mx W on bijektio. Todistus. Kuvaus F : x Mx on lineaarinen. Jos F on bijektio, niin F 1 on olemassa. Lineaarisen kuvauksen käänteiskuvaus on myös lineaarinen, sillä jos y F x ja ỹ F x, niin F 1 (ay + bỹ F 1 (af x + bf x F 1 (F (ax + b x ax + b x af 1 (y + bf 1 (ỹ. Lauseen 4 nojalla F 1 on silloin jatkuva. Huomautus 8. Lineaarisessa äärellisulotteisessa inversio-ongelmassa ratkaisun jatkuva riippuminen annetusta datasta seuraa automaattisesti suoran teorian bijektiivisyydestä. Tämä ei päde yleisemmissä tapauksissa. Esimerkki 8. Olkoon suoran teorian matriisi. M ( Tarkastellaan inversio-ongelmaa ( : määrää x R 2 jolle y Mx kun y R 2 on annettu. Tutki, onko inversio-ongelma ( hyvin asetettu. Ratkaisu: Olkoon y (y 1, y 2 R 2. Merkitään x (x 1, x 2, jolloin y Mx ( ( ( y1 1 2 x y 2 Palautetaan mieleen lineaarialgebrasta, että neliömatriisi M on kääntyvä kun sen determinantti det(m 0. Tällöin M 1 adj(m, missä adj(m on matriisin M liittomatriisi. 2 2-matriisin tapauksessa det(m ( ( 1 ( a b a b 1 d b det ad bc ja. c d c d ad bc c a Koska det(m , niin neliömatriisilla M on käänteismatriisi ( M 1 1 ( Tällöin ongelmalla ( on ratkaisu ( ( 1 ( x1 1 2 y1 1 x y 2 5 Lisäksi ratkaisu on yksikäsitteinen, sillä ( x 2 ( y1 Mx M x M 1 Mx M 1 M x x x. y 2 ( 1 y y y 5 1 1y. 5 2 Ratkaisu riippuu jatkuvasti annetusta datasta Korollaarin 2 nojalla. Inversio-ongelma ( on täten hyvin asetettu. 31

6 Lause 5 (Neliömatriisin tapaus. Olkoon M R n n ja V W R n. Inversio-ongelma ( on hyvin asetetu, jos ja vain jos det(m 0. Todistus. Kun det(m 0, on olemassa käänteismatriisi M 1. Tällöin ratkaisu on olemassa (x M 1 y, se on yksikäsitteinen (Mx M x M 1 Mx M 1 M x ja ratkaisu riippuu Korollaarin 2 nojalla jatkuvasti annetusta datasta. Täten inversio-ongelma on hyvin asetettu. Meidän tulee vielä näyttää, että inversio-ongelma on huonosti asetettu, kun det(m 0. Tällöin matriisi M ei ole kääntyvä, joten vastaava linearikuvaus F ei voi olla bijektio. Koska hvyin asetetun inversio-ongelman suora teoria on bijektio, niin ongelma on tällöin huonosti asetettu. Esimerkki 9. Olkoon M suoran teorian matriisi, V W R 3. Tutki, onko inversio-ongelma ( hyvin asetettu. Ratkaisu: Suoran teorian matriisi M on neliömatriisi ja suora teoria on määritelty koko avaruudessa. Lauseen 5 nojalla riittää tarkastella matriisin M determinanttia det(m 11 (11 ( 66 ( (12 ( 66 ( ( ( ( ( ( ( Täten inversio-ongelma on hyvin asetettu. 2.3 Ratkaisun häiriöalttius Huonosti asetetun ongelman ratkaisu voi olla altis häiriöille, mutta myös hyvin asetetuilla ongelmilla voi olla erilainen häiriöalttius. Löysästi puhuen voidaan sanoa että ongelma A on huonommin asetettu tai häiriöalttiimpi (eng. more ill-posed/ill-conditioned kuin ongelma B, jos samansuuruinen häiriö datassa muuttaa ongelman A ratkaisua voimakkaammin kuin ongelman B ratkaisua. Esimerkki 10. Tuntemattomasta x on saatu kaksi häiriöistä havaintoa y, ỹ R 8, jotka ovat muotoa y Mx + ε ja ỹ Mx + ε, missä suoran teorian matriisi M, M R 8 ovat muotoa M ij 1 i δ ij ja M ij 2 i δ ij. Tässä δ ij on Kroneckerin delta: δ ij 0 jos i j ja δ ij 1 jos i j. Oletetaan, että 32

7 tuntemattoman todellinen arvo on (1, 1, 1, 1, 1, 1, 1, 1 ja tehtyyn havaintoon sisältyvä additivinen häiriö ε (0, 0, 0, 0, 0, 0, 0, Matriisit M ja M ovat säännöllisiä, mutta M 1 y x + M 1 ε (1, 1, 1, 1, 1, 1, 1, 1.16 ja M 1 ỹ x + M 1 ε (1, 1, 1, 1, 1, 1, 1, Viimeiseen elementtiin summautuu Vaikka ongelma on Hadamardin mielessä hyvin asetettu, ei häiriöisellä datalla saatua ratkaisua voi pitää erityisen hyvänä approksimaationa tuntemattomalle. Hyvin asetettu ongelma, jolla on hyvin suuri häiriöalttius, on ominaisuuksiltaan samankaltainen kuin huonosti asetettu ongelma, jonka ratkaisu ei riipu jatkuvasti datasta. Häiriöalttius on vakava asia, sillä suurimmassa osaa käytännön inversio-ongelmista data sisältää epätarkkuuksia ja häiriöitä Ehtoluvun määritelmä matriisin M M m n C m n Hermiten liittomatriisi on M M T. Lisäksi luku λ on matriisin M n n ominaisarvo, jos löytyy vektori R n x 0, jolle M x λx. Tällöin vektoria x kutsutaan ominaisvektoriksi. Tiedetään myös, että neliömatriisin M ominaisarvot löytyvät karakteristisen polynomin p(λ det(m λi nollakohdista. Determinantille pätee laskusääntö det(ab det(a det(b. Tulon käänteismatriisille pätee laskusääntö (AB 1 B 1 A 1 Tulon Hermiten liittomatriisille pätee laskusääntö (AB B A. Sisätulolle pätee (Mx, y ( M ij x j y i x j ( M ij y i (x, M T y ja kompleksiarvoisessa tapauksessa (Mx, y M ij x i y j (x, M T y (x, M y. i, Matriisien häiriöalttiuden kvantitaviivisessa vertailussa käytetään ehtolukuja (eng. condition numbers. Määritelmä 6. Matriisin M m n C m n singulaariarvot σ i (M ovat matriisin M M ominaisarvojen λ i nelijöjuuria eli σ i (M λ i, missä i 1,..., n. 33

8 Huomaa, että matriisin M M ominaisarvot λ i ovat ei-negatiivisia, sillä niitä vastaaville ominaisvektoreille e i pätee 0 (Me i, Me i (M Me i, e i λ i (e i, e i λ i e i 2. Lisäksi det(m M det(m det(m det(m T det(m det(m 2 0 säännöllisille matriiseille, joten nolla ei ole matriisin M M ominaisarvo, kun M on säännöllinen. Määritelmä 7. Säännöllisen matriisin M M n n C n n ehtoluku κ(m on luku κ(m M M 1, missä matriisinormi M σ max (M on matriisin M suurin singulaariarvo. Erilaisia ehtolukuja saataisiin käyttämällä muita matriisinormia. Tällä kurssilla käytetään ainoastaan tavanomaista normia määritelmästä 7. Lause 6. Olkoon M C n n säännöllinen matriisi. Matriisin M 1 suurin singulaariarvo on σ max (M 1 1 σ min (M, missä σ min (M on matriisin M pienin singulaariarvo. Todistuksessa käytetään seuraavia lemmoja. Lemma 2. Olkoon A, B C n n säännöllisiä matriiseja. Silloin matriiseilla AB ja BA on samat ominaisarvot. Todistus. Etsitään ominaisarvoja karakteristisen polynomin avulla. Nyt determinantin laskusääntöjen nojalla det(ab λi det(a(b λa 1 det(a det(b λa 1 det(b λa 1 det(a det((b λa 1 A det(ba λi. Täten matriisien AB ja BA karakteristiset polynomit ovat samat, jolloin myös niiden ominaisarvot ovat samat. Lemma 3. Olkoon A C n n säännöllinen matriisi. Matriisin A 1 ominaisarvot ovat matriisin A ominaisarvojen käänteislukuja. Todistus. Tarkastellaan karakteristista polynomia det(a λi det(a(λ 1 I A 1 λ λ n det(a det(λ 1 I A 1. Koska A on säännöllinen, niin nolla ei ole sen ominaisarvo. Täten λ on matriisin A karakteristisen polynomin nollakohda jos ja vain jos λ 1 on matriisin A 1 karakteristisen polynomin nollakohta. 34

9 Todistus. (Lause 6 Määrätään matriisin M 1 singulaariarvot. Tätä varten lasketaan (M 1 M 1 (M 1 M 1 (MM 1, jonka ominaisarvot ovat Lemman 3 nojalla matriisin MM ominaisarvojen käänteislukuja. Lemman 2 nojalla matriisin MM ominaisarvot ovat samat kuin matriisilla M M. Täten matriisin M 1 singulaariarvot ovat matriisin M singulaariarvojen käänteislukuja. Erityisesti matriisinormi σ max (M 1 1 σ min (M. Korollaari 3. Olkoon M C n n säännöllinen matriisi. Matriisin M ehtoluku κ(m σ max(m σ min (M, missä σ max (M on matriisin M suurin singulaariarvo ja σ min (M on matriisin M pienin ominaisarvo Ehtoluvun tulkinta Olkoon x R n ratkaisu yhtälölle y Mx. Olkoon annettu data y + δy, missä δy R n edustaa häiriötä. Häiriö δy datassa johtaa häiriöiseen ratkaisuun x + δx joka toteuttaa yhtälön y + δy M(x + δx. Ryhdytään vertailemaan häiriöiden suhteellisia suuruuksia δx x Tarkastellaan ensin termiä Mx y. Normin ja sisätulon välisen yhteyden nojalla ja δy y. Mx 2 (Mx, Mx (M Mx, x. (2.3 Palautetaan lineaarialgebrasta mieleen spektraalilause. Lause 7. Olkoon A : V V itseadjungoitu lineaarinen kuvaus äärellisulotteisessa sisätuloavaruudessa V. Tällöin avaruudella V on ortonormaali kanta, joka koostuu kuvauksen A ominaisvektoreista. Nyt M M on itseadjuntoitu matriisi (eli (M M M M. Merkitään λ i matriisin M M ominaisarvoja ja e i niitä vastaavia ominaisvektoreita. Lauseen 7 nojalla vektorilla x on esitys x n x ie i, missä (x 1,..., x n R n ovat vektorin x koordinaatit matriisin M M ominaisvektorien e i muodostamassa ortonormaalikannassa. Silloin neliömuoto (2.3 voidaan kirjoittaa spektraalilauseen avulla muodossa ( (M Mx, x x im Me i, x ie i λ i x i 2. Arvioimalla ominaisarvoja ylöspäin suurimmalla ominaisarvolla saadaan epäyhtälö y Mx max λi x σ max (M x x 1 i n 35 y σ max (M. (2.4

10 Sama pätee myös käänteismatriisille M 1 muodossa δx M 1 δy 1 min 1 i n λi δy δx δy σ min (M, (2.5 missä on käytetty Lemmaa 3. Ratkaisun suhteellinen virheelle pätee epäyhtälöiden (2.4 ja (2.5 nojalla δx x δy σ min(m 1 y σ 1 max κ(m δy y. Ehtoluku antaa ratkaisun suhteelliselle virheelle ylärajan. Kun ehtoluku on hyvin suuri (luokkaa > 10 5, niin pelkät pyöristysvirheet alkavat haitata yhtälön numeerista ratkaisua. Esimerkki 11. Identtisen matriisin ehtoluku on 1. Tämä on myös pienin mahdollinen ehtoluku. Esimerkki 12. Esimerkissä 10 matriisien ehtoluvut ovat κ(m 8 ja κ( M Esimerkki 13. Lasketaan matriisin M ehtoluku. Lasketaan ensin M T M T Tämän matriisin ominaisarvot löytyvät karakteristisen polynomin 461 λ p(λ det λ λ nollakohdista eli asetetaan p(λ (461 λ ((390 λ (4721 λ (424 (4721 λ (424 ( 861 (390 λ ( 926 Yhtälöllä (2.6 on kolme ratkaisua λ 1, λ 2 ja λ 3, joiden neliöjuuret ovat ( λ 1, λ 2, λ 3 (0.0006, 21.8, (2.6

11 Tällöin ehtoluku on κ(m Olkoon y Mx + ε annettu. Jos ε 1/5, niin mitä saadaan selville vektorista x? Tarkastellaan tilannetta, jossa tuntematon x (0, 0, 1 ja ɛ (0.1, 0.1, 0.1. Silloin ja Koska matriisin M determinantti Mx ( T y Mx + ε ( T. det(m 11 (11 ( 66 ( (12 ( 66 ( ( , niin sen käänteismatriisi on 11 ( 66 ( (12 ( 66 ( M 1 (10 ( ( ( ( (11 ( Käyttämällä matriisin M käänteismatriisia saadaan T M 1 (Mx + ɛ x + ( T, mikä on sangen kaukana vektorista x (0, 0, 1. Esimerkki 14. Työstetään vielä inversio-ongelmien kannalta hiukan patologisempi esimerkki dekonvoluutiosta. Lähdetään tarkastelemaan konvoluutiota g( θ π π R( θ θf(θdθ, missä θ [ π, π] ja funktiot R ja f ovat kahdesti jatkuvasti derivoituvia 2π-periodisia funktioita eli R(θ + n2π R(θ ja f(θ + n2π f(θ jokaisella n Z. Oletetaan lisäksi, että R on symmetrinen ja ei-negatiivinen funktio eli R(θ R( θ ja R(θ 0, t [0, π]. Oletetaan, että meille on annettu data g(θ 1,..., g(θ n, missä θ j hj π, j 1,.., n ja h 2π n, n 2m jollakin m > 3 ja funktio R tunnetaan. Mitä silloin tiedetään funktiosta f? Tiedämme, että Riemannin integraali g( θ saadaan raja-arvona Riemannin summista S n ( θ R( θ θ (n j f(θ (n j h n, 37

12 kun välin jakoa tihennetään (erityisesti dyadisesti kun n 2 m ja m. Kirjoitetaan nyt annetut arvot muodossa ( π g(θ k R(θ k θf(θdθ S n (θ k + S n (θ k missä approksimaatiovirhe Merkitään sekä π R(θ k θ j f(θ j h + e k, e k π π R(θ k θf(θdθ S n (θ k. M kj R(θ k θ j h x k f(θ k ja y k g(θ k kun k, j 1,..., n. Voimme korvata alkuperäisen ongelman matriisiyhtälöllä, y Mx + e. jossa annettu data y on epätarkka. Ryhdytään arvioimaan matriisin M ehtolukua. Matriisi M on R(0 R( h R( 2h R( (n 2h R( (n 1h R(h R(0 R( h R( (n 3h R( (n 2h M h R(2h R(h R(0 R( (n 4h R( (n 2h..... R((n 1h R((n 2h R((n 3h R(h R(0 Funktion R jaksollisuuden ansiosta matriisi M on ns. sirkulantti matriisi. Yleisesti matriisia M R n n kutsutaan sirkulantiksi (eng. circulant matrix, jos se on muotoa m 1 m n m n 1 m 3 m 2 m 2 m 1 m n m 4 m 3 M m 3 m 2 m 1 m 5 m m n m n 1 m n 2 m 2 m 1 jollakin vektorilla (m 1,..., m n R n. 38

13 Lemma 4. Sirkulantin matriisin M R n n ominaisarvot ovat λ k m j exp( 2πi(j 1(k 1/n, k 1,.., n. ja sirkulantti matriisi M on unitaarisesti similaarinen diagonaalimatriisin kanssa (eli on olemassa unitaarinen matriisi U, jolle U MU on diagonaalimatriisi. Todistus. Näytetään ensin, että on olemassa ei-triviaali vektori F (k R n, jolle MF (k λ k F (k jokaisella k 1,..., n. Valitaan Lasketaan mitä on (MF (k j F (k j exp(2πi(j 1(k 1/n, k, j 1,..., n. l1 M jl F (k l m (j l+1mod n exp(2πi(l 1(k 1/n l1 m L exp(2πi(j L(k 1/n λ k exp(2π(j 1(k 1 L1 λ k F (k j. Selvästi F (k 0, joten λ k on ominaisarvo. Osoitetaan seuraavaksi, että ominaisvektorit ovat ortogonaalisia. Jos k l, niin ominaisvektoreiden F (k ja F (l sisätulo (F (k, F (l exp(2πi(j 1(k 1/n exp( 2πi(j 1(l 1/n exp(2πi(j 1(k l/n n 1 z j 1 j 0 z j 1 zn 1 z 1 exp(2πi(k l 1 exp(2πi(k l/n 0, missä käytimme geometrisen sarjan osasummaa luvulle z exp(2πi(k l/n 1. Lisäksi jos k l, niin sisätulo (F (k, F (k exp(2πi(j 1(k 1/n exp( 2πi(j 1(k 1/n n. Asetetaan U 1 n (F (1,..., F (n. Tällöin U U 1 n F (1T. F (nt (F (1,..., F (n I n n. Siis U on unitaarinen. Lisäksi MU Udiag(λ 1,..., λ n, josta similaarisuus seuraa. 39

14 Sirkulantin matriisin M ominaisarvojen itseisarvot ovat sen singulaariarvoja, sillä matriisi M M Udiag( λ 1,..., λ n U Udiag(λ 1,..., λ n U Udiag( λ 1 2,..., λ n 2 U on similaarinen matriisin diag( λ 1 2,..., λ n 2 kanssa ja similaarisilla matriiseilla on samat ominaisarvot. Olkoon nyt m j R(h(j 1h, j 1,..., n. Vastaavan sirkulantin matriisin M ominaisarvot ovat λ k hr(h(j 1 exp( 2πi(j 1(k 1/n. Oletetaan, että matriisi M on säännöllinen. Jos k 1, niin λ 1 hr(h(j 1 Jos k n/2 + 1 (n on parillinen, niin Matriisin ehtoluvulle saadaan arvio λ n/2+1 ( 1 j 1 hr(h(j 1. κ(m λ 1 λ n/2+1. Sievennetään summalauseketta käyttäen hyväksi funktion R jaksollisuutta ja symmetriaa. Kirjoitetaan aluksi λ n/2+1 parilliset ja parittomat j analyysin peruslause ( 1 j 1 hr(h(j 1 n/2 1 h R(h(2J R(h(2J J0 n/2 1 h (2J+1h (2Jh dθ (θdθ. J0 Jaetaan summalauseke kahteen osaa: integraaleihin välin [0, π] osavälien yli ja integraa- 40

15 leihin välin [π, 2π] osavälien yli : λ n/2+1 h J0 J J n/4 h J0 π nh 2 h J0 jaksollisuus h J0 Tehdään muuttujan vaihto θ θ λ n/2+1 h J0 R antisymmetrinen h (2J+1h (2Jh (2J+1h (2Jh (2J+1h (2Jh (2J+1h (2Jh (2J+1h (2Jh (2J+1h J0 (2Jh n/2 1 dθ (θdθ + (2J+1h Jn/4 (2Jh dθ (θdθ dθ (θdθ + (2(J +n/4+1h J 0 (2(J +n/4h dθ (θdθ dθ (θdθ + (2J +1h+π J 0 (2J h+π dθ (θdθ dθ (θdθ + (2J +1h π (2J h π dθ (θdθ. J 0 dθ (θdθ + dθ (θdθ + J 0 J 0 π (2J h π (2J +1h π (2J h π (2J +1h dθ ( θ dθ dθ (θ dθ Vaihdetaan vielä summausindeksiksi J n/4 J 1 (2J+1h λ n/2+1 h J0 (2Jh dθ (θdθ + π 2(n/4 J 1h J0 π 2(n/4 J 1h h dθ (θ dθ (2J+1h h (2J+1h+h J0 (2Jh dθ (θdθ + (2Jh+h dθ (θ dθ (2J+1h θθ h h (θ (θ + hdθ (2Jh dθ dθ. J0 Käytetään analyysin peruslausetta vielä uudestaan (2J+1h θ+h λ n/2+1 h d 2 R (2Jh θ dθ 2 (θ dθ dθ. Viemällä itseisarvomerkit integraalien sisälle saamme arvion π θ+h λ n/2+1 h sup d 2 R 0 θ θ dθ 2 (θ dθ dθ h 2 π sup d 2 R θ dθ 2 (θ, J0 41

16 jolloin κ(m n n hr(0 h 2 π sup θ R (θ R(0 2π 2 sup θ R (θ O(n. Mitä suurempi n on sitä epästabiilimpaa on matriisin M n n kääntäminen. Tämä on tyypillistä käytöstä silottavien konvoluutioiden äärellisulotteisille approksimaatioille. 2.4 Yhteenveto Äärellisulotteisessa lineaarisessa inversio-ongelmassa suora teoria F : V W on lineaarinen kuvaus kahden äärellisulotteisen lineaarisen aliavaruuden V, W välillä. Suora teoria voidaan esittää matriisin M avulla. Äärellisulotteinen lineaarinen inversio-ongelma on hyvin asetettu, jos jokaisella y W yhtälölle y Mx löytyy ratkaisu x V. yhtälöllä Mx 0 on aliavaruudessa V ainoastaan triviaali ratkaisu x 0. Äärellisulotteinen lineaarinen inversio-ongelma on huonosti asetettu, jos edes toinen seuraavista väitteistä on totta: jollakin y W yhtälöllä y Mx ei ole ratkaisua x V. löytyy x V, jolle x 0 ja Mx 0. Kun neliömatriisin M tapauksessa pyritään selvittämään onko ongelma hyvin asetettu, riittää tarkastella onko matriisi säännöllinen (eli det(m 0. Jos datassa on liikaa häiriöitä, voi hyvin asetetun ongelman ratkaisu olla etäällä tarkasta ratkaisusta. Hyvin asetettu ongelma, jolla on hyvin suuri häiriöalttius, on ominaisuuksiltaan samankaltainen kuin huonosti asetettu ongelma, jonka ratkaisu ei riipu jatkuvasti datasta. Osattava: tutkia onko annettu äärellisulotteinen lineaarinen inversio-ongelma hyvin asetettu. tunnistaa ja antaa esimerkkejä äärellisulotteisista lineaarisista huonosti asetetuista ongelmista. määritellä matriisin ehtoluku laskea annetun matriisin ehtoluku Ymmärrettävä: mitä eroa on häiriöherkällä ja huonosti asetetulla ongelmalla miten ehtoluku liittyy häirityn yhtälöryhmän ratkaisujen tarkkuuteen. Tiedettävä: 42

17 mitä tarkoittaa tarkka data ja häiriöinen data että funktioita approksimoidaan numeerisessa laskennassa äärellisulotteisilla vektoreilla. että huonosti asetettua inversio-ongelmaa approksimoivan hyvin asetetun inversioongelman häiriöalttius voi kasvaa kun approksimaatiota pyritään tarkentamaan. 43

Likimääräisratkaisut ja regularisaatio

Likimääräisratkaisut ja regularisaatio Luku 3 Likimääräisratkaisut ja regularisaatio Käytännön inversio-ongelmissa annettu data y ei aina ole tarkkaa, vaan sisältää häiriöitä. Tuntemattomasta x on annettu häiriöinen data y F (x + }{{}}{{} ε.

Lisätiedot

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0).

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0). Esimerkki 9 Esimerkissä 6 miniminormiratkaisu on (ˆx, ˆx (, 0 Seuraavaksi näytetään, että miniminormiratkaisuun siirtyminen poistaa likimääräisongelman epäyksikäsitteisyyden (mutta lisääntyvän ratkaisun

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

802360A Inversio-ongelmien peruskurssi (Syksy 2011) Sari Lasanen

802360A Inversio-ongelmien peruskurssi (Syksy 2011) Sari Lasanen 802360A Inversio-ongelmien peruskurssi (Syksy 20) Sari Lasanen 0. lokakuuta 20 2 Inversio-ongelmien peruskurssi (4 op) Osaamistavoitteet: Kurssin onnistuneen suorittamisen jälkeen opiskelija tunnistaa

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

Alkeismuunnokset matriisille, sivu 57

Alkeismuunnokset matriisille, sivu 57 Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

6. OMINAISARVOT JA DIAGONALISOINTI

6. OMINAISARVOT JA DIAGONALISOINTI 0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

3.2.2 Tikhonovin regularisaatio

3.2.2 Tikhonovin regularisaatio 3 Tikhonovin regularisaatio Olkoon x 0 R n tuntematon, M R m n teoriamatriisi ja y Mx + ε R m (316 annettu data Häiriöherkässä ongelmassa pienimmän neliösumman miniminormiratkaisu x M + y Q N (M x + M

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

Likimääräisratkaisut ja regularisaatio

Likimääräisratkaisut ja regularisaatio 48 Luku 4 Likimääräisratkaisut ja regularisaatio Ryhdytään tarkastelemaan klassisia approksimatiivisia ratkaisumenetelmiä huonosti asetetuille tai häiriöherkille äärellisulotteisille lineaarisille ongelmille

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

LINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT

LINEAARIALGEBRA P. LUENTOMONISTE ja HARJOITUSTEHTÄVÄT LINEAARIALGEBRA II 802119P LUENTOMONISTE ja HARJOITUSTEHTÄVÄT syksy 2008 30 V SISÄTULOAVARUUKSISTA 1. Sisätulon määritelmä Tarkastellaan sisätulon määrittelyä varten kompleksilukujen joukkoa C = {x + iy

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus. 1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 3

Inversio-ongelmien laskennallinen peruskurssi Luento 3 Inversio-ongelmien laskennallinen peruskurssi Luento 3 Kevät 2011 1 Singulaariarvohajotelma (Singular Value Decomposition, SVD) Olkoon A R m n matriisi 1. Tällöin A voidaan esittää muodossa A = UΣV T,

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt

Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

Lineaarialgebra, kertausta aiheita

Lineaarialgebra, kertausta aiheita Lineaarialgebra, kertausta aiheita Matriisitulo käänteismatriisi determinantin kehittäminen determinantin ominaisuudet adjungaatti ja Cramerin kaavat yhtälöryhmän eri esitystavat Gauss-Jordan -algoritmi

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162

Tällä viikolla viimeiset luennot ja demot. Lineaarialgebra (muut ko) p. 1/162 Tällä viikolla viimeiset luennot ja demot Lineaarialgebra (muut ko) p. 1/162 Lineaarialgebra (muut ko) p. 2/162 Kertausta Vektorin u = (u 1,u 2 ) R 2 pituus u = u 2 1 +u2 2 Vektorien u ja v = (v 1,v 2

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

1. Normi ja sisätulo

1. Normi ja sisätulo Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

Lineaarikuvaukset. 12. joulukuuta F (A r ) = F (A r ) r .(3) F (s) = s. (4) Skalaareille kannattaa määritellä lisäksi seuraavat tulot:

Lineaarikuvaukset. 12. joulukuuta F (A r ) = F (A r ) r .(3) F (s) = s. (4) Skalaareille kannattaa määritellä lisäksi seuraavat tulot: Lineaarikuvaukset 12. joulukuuta 2005 1 Yleistys multivektoreille Olkoon F lineaarikuvaus vektoriavaruudessa. Yleistetään F luonnollisella tavalla terille F (a 1 a n ) = F (a 1 ) F (a n ), (1) sekä terien

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa

Lisätiedot

i=1 Näistä on helppo näyttää ominaisuudet (1)-(4). Ellei toisin mainita, käytetään R n :ssä

i=1 Näistä on helppo näyttää ominaisuudet (1)-(4). Ellei toisin mainita, käytetään R n :ssä Kurssimateriaalia K3/P3-kursille syksyllä 003. 8.0.003 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni.. Normi

Lisätiedot

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili

x 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili 6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö

Lisätiedot

Singulaariarvohajotelma ja pseudoinverssi

Singulaariarvohajotelma ja pseudoinverssi HELSINGIN YLIOPISTO Pro gradu -tutkielma Niko Kaitarinne Singulaariarvohajotelma ja pseudoinverssi Matematiikan ja tilastotieteen laitos Matematiikka Helmikuu 01 Helsingin yliopisto Matematiikan ja tilastotieteen

Lisätiedot

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117

Seuraava luento ti on salissa XXII. Lineaarialgebra (muut ko) p. 1/117 Seuraava luento ti 31.10 on salissa XXII Lineaarialgebra (muut ko) p. 1/117 Lineaarialgebra (muut ko) p. 2/117 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v

Lisätiedot

Ax, y = x, A y. A = A A hermiittinen. Jokainen reaalinen ja symmetrinen matriisi on määritelmän mukaan myös hermiittinen. A =, HARJOITUSTEHTÄVIÄ

Ax, y = x, A y. A = A A hermiittinen. Jokainen reaalinen ja symmetrinen matriisi on määritelmän mukaan myös hermiittinen. A =, HARJOITUSTEHTÄVIÄ X.. Matriisialgebra Esimerkki 4 Jos niin x =[i, +i, 2 i ] T C 3, y =[ 2i, 2i, i ] T C 3, x, x = x 2 =+(+)+(4+)=8, y, y =(+4)+4+(+)=, x, y = i( + 2i)+(+i)( 2i)+(2 i)( +i) = +3i. Matriisia A = ĀT sanotaan

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Matriisialgebra harjoitukset, syksy 2016

Matriisialgebra harjoitukset, syksy 2016 Matriisialgebra harjoitukset, syksy 6 MATRIISIALGEBRA, s. 6, Ratkaisuja/ M.Hamina & M. Peltola 8. Olkoon 4 A 6. 4 Tutki, onko A diagonalisoituva. Jos on, niin määrää matriisi D T AT ja siihen liittyvä

Lisätiedot

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms.

Muistutus: Matikkapaja ke Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta yms. Lineaarialgebra (muut ko) p. 1/139 Ensi viikon luennot salissa X Muistutus: Matikkapaja ke 14-16 Siellä voi kysyä apua demoihin, edellisen viikon demoratkaisuja, välikoetehtävien selitystä, monisteesta

Lisätiedot

Lineaarialgebra II P

Lineaarialgebra II P Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun

Lisätiedot

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66

Ensi viikon luennot salissa X. Lineaarialgebra (muut ko) p. 1/66 Ensi viikon luennot salissa X Lineaarialgebra (muut ko) p. 1/66 Lineaarialgebra (muut ko) p. 2/66 Redusoitu porrasmuoto 1 1 2 4 1 1 4 6 2 2 5 9 1 1 0 2 0 0 1 1 0 0 0 0 Eli aste r(a) = 2 ja vaakariviavaruuden

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin

Lisätiedot

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet

Lisätiedot

Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi

Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi MS-A0007 Matriisilaskenta 5. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 25.11.2015 Laskentaongelmissa käsiteltävät matriisit ovat tyypillisesti valtavia.

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

Iteratiiviset ratkaisumenetelmät

Iteratiiviset ratkaisumenetelmät Iteratiiviset ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Yleinen iteraatio Lineaarisen yhtälöryhmän iteratiivinen ratkaisumenetelmä voidaan esittää muodossa: Anna alkuarvaus: x 0 R n

Lisätiedot

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx. Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 4

Inversio-ongelmien laskennallinen peruskurssi Luento 4 Inversio-ongelmien laskennallinen peruskurssi Luento 4 Kevät 20 Regularisointi Eräs keino yrittää ratkaista (likimääräisesti) huonosti asetettuja ongelmia on regularisaatio. Regularisoinnissa ongelmaa

Lisätiedot