Algebrallisista käyristä

Koko: px
Aloita esitys sivulta:

Download "Algebrallisista käyristä"

Transkriptio

1 Tampereen yliopisto Pro gradu -tutkielma Heidi Kalliojärvi Algebrallisista käyristä Matematiikan ja tilastotieteen laitos Matematiikka Elokuu 2009

2 Tampereen yliopisto Matematiikan ja tilastotieteen laitos KALLIOJÄRVI, HEIDI: Algebrallisista käyristä Pro gradu -tutkielma, 79 s. Matematiikka Elokuu 2009 Tiivistelmä Tässä tutkielmassa käsitellään algebrallisten tasokäyrien teoriaa. Tarkastelu rajoitetaan tapahtuvaksi yli algebrallisesti suljetun kunnan. Työssä keskitytään varsinkin säännöllisiin projektiivisiin tasokäyriin, koska niillä on erityisiä ominaisuuksia ja käyttöä esimerkiksi koodausteoriassa. Liikkeelle lähdetään affiinin ja projektiivisen tasokäyrän määritelmistä. Tasokäyrien määrittelyyn liittyvien tarkastelujen jälkeen tutustutaan Noetherin renkaisiin, diskreetteihin valuaatiorenkaisiin lokaaleine parametreineen sekä tietyssä käyrän pisteessä määriteltyihin rationaalifunktioihin. Rationaalifunktioiden osalta keskitytään paljolti niiden napoihin ja nollakohtiin. Lisäksi esitellään säännöllisen projektiivisen käyrän divisorit. Divisori määrää aina tietyn vektoriavaruuden, jonka ominaisuuksiin myös perehdytään. Eräs tutkielman päätavoitteista on pyrkiä löytämään yhteyksiä edellä mainittujen käsitteiden välille. Tutkielmassa esiteltäviä keskeisiä tuloksia ovat muun muassa Noetherin renkaita koskeva Hilbertin kantalause, rationaalifunktioita käsittelevä heikko approksimaatiolause sekä divisoreihin liittyvä Riemannin lause. Tutkielman lukemista helpottaa, mikäli lukijalla on esitietoinaan kurssi Algebra II. Asiasanat: algebralliset käyrät, algebrallinen geometria

3 Sisältö Johdanto 1 1 Algebrallisen geometrian peruskäsitteitä Kuntateorian alkeita Affiini tasokäyrä Homogeeniset polynomit Affiini koordinaattimuunnos ja affiinin tasokäyrän tangentti Affiinin tasokäyrän säännöllisyys Koordinaattirengas Rationaalifunktiot Affiinista tasosta projektiiviseen tasoon Projektiivinen avaruus Projektiivinen tasokäyrä Homogeeninen koordinaattirengas ja funktiokunta Projektiivinen koordinaattimuunnos Projektiivisen tasokäyrän säännöllisyys Algebrallisista käyristä Noetherin rengas Maksimaalinen ideaali ja lokaali rengas Diskreetti valuaatiorengas Lokaali rengas O P (C) Heikko approksimaatiolause Divisorit Yleistietoa divisoreista Vektoriavaruus L(D) Riemannin lause

4 Johdanto Tässä Pro gradu -tutkielmassa tarkastellaan eräitä algebrallisia käyriä koskevia tuloksia. Lukijan oletetaan hallitsevan melko laajat algebran perustiedot. Varsinkin kunta- ja rengasteorian tuntemus on lukijalle avuksi. Tutkielman lähdemateriaalina on käytetty pääasiassa William Fultonin teosta Algebraic Curves. Täydentävinä teoksina toimivat Henning Stichtenothin kirja Algebraic Function Fields and Codes sekä tähän pohjautuva Eero Hyryn luentomoniste Koodausteoria ja algebralliset käyrät. Työssä tutkitaan algebrallisia käyriä yleisellä tasolla. Erityisiin käyrätyyppeihin, kuten elliptisiin ja hyperelliptisiin käyriin, ei erikseen syvennytä. Elliptisistä käyristä löytyy tietoa esimerkiksi kirjasta [9]. Artikkelin [10] avulla pääsee alkuun hyperelliptisten käyrien parissa. Algebrallisiin käyriin liittyviä sovelluksia käytetään muun muassa koodausteoriassa. Ensimmäisessä luvussa käydään läpi työssä tarvittavia esitietoja ja peruskäsitteitä. Aluksi suoritetaan tarkasteluja affiinissa tasossa. Pelkästään affiineja tasokäyriä käyttämällä ei kuitenkaan päästä käsiksi kaikkiin työn kannalta olennaisiin tuloksiin. Toisessa luvussa tarkastelunäkökulmaa laajennetaankin affiinista tasosta projektiiviseen tasoon. Tämän jälkeen affiineja ja projektiivisia käyriä kuljetetaan rinnakkain tutkielman edetessä. Kolmannessa luvussa määritellään ensiksi Noetherin rengas ja esitetään muun muassa Hilbertin kantalause sekä joitakin muita Noetherin renkaan ominaisuuksia. Tämän jälkeen esitellään diskreetti valuaatiorengas kertalukufunktioineen. Luvussa perehdytään myös rationaalifunktioihin ja lokaaliin renkaaseen O P (C). Rationaalifunktioita koskevista tuloksista mainittakoon tässä heikko approksimaatiolause. Selvitetään, millaisia mahdollisia yhteyksiä on Noetherin renkailla, diskreeteillä valuaatiorenkailla, säännöllisillä pisteillä sekä annetussa käyrän pisteessä määritellyillä rationaalifunktioilla. Tarkastelun pohjana toimii jokin algebrallinen tasokäyrä. Neljännessä luvussa liitetään säännöllisen projektiivisen käyrän divisorit osaksi edellä käsiteltyä teoriaa. Divisorit tarjoavat uusia työkaluja päästä käsiksi muun muassa rationaalifunktion napoihin ja nollakohtiin. Erityisesti tutkitaan divisorin D määräämää vektoriavaruutta L(D). Myös avaruuden L(D) dimensio l(d) on keskeisellä sijalla tarkasteluissa. Lopuksi esitetään Riemannin lause säännölliselle projektiiviselle tasokäyrälle yli algebrallisesti suljetun kunnan. 1

5 1 Algebrallisen geometrian peruskäsitteitä Tässä luvussa esitellään työssä tarvittavia termejä ja käsitteitä. Renkaasta puhuttaessa tarkoitetaan aina kommutatiivista ykkösellistä rengasta. 1.1 Kuntateorian alkeita Määritelmä 1.1 Jos K on kunnan L alikunta, sanotaan, että L on kunnan K laajennus. Tälle käytetään merkintää L/K. Määritelmä 1.2 Kunnan k sanotaan olevan algebrallisesti suljettu, jos jokaisella vakiopolynomista eroavalla polynomilla F k[x] on juuri kunnassa k. Alkion algebrallisuus on eräs kuntateorian keskeisimmistä käsitteistä: Määritelmä 1.3 Olkoon R renkaan S alirengas. Sanotaan, että alkio v S on kokonainen yli renkaan R, jos on olemassa sellainen pääpolynomi F (X) = X n + a n 1 X n a 1 X + a 0 R[X], että F (v) = 0. Jos R = K ja S = L ovat kuntia, sanotaan, että v on algebrallinen yli kunnan K. Mikäli v ei ole algebrallinen yli kunnan K, sanotaan, että v on transkendenttinen yli kunnan K. Määritelmä 1.4 Olkoon L/K kuntalaajennus. Sanotaan, että L on kunnan K algebrallinen laajennus, jos jokainen v L on algebrallinen yli kunnan K. Määritelmä 1.5 Olkoon R renkaan S alirengas ja v 1,... v n S. Tarkastellaan sijoitushomomorfismia ϕ : R[X 1,..., X n ] S, G G(v 1,..., v n ). Määritellään, että R[v 1,..., v n ] = Im(ϕ). Havaitaan, että R[v 1,..., v n ] on suppein sellainen renkaan S alirengas, joka sisältää renkaan R ja alkiot v 1,..., v n. Määritelmä 1.6 Olkoon L/K kuntalaajennus. Jos v 1,... v n L, niin merkinnällä K(v 1,..., v n ) tarkoitetaan suppeinta sellaista kunnan L alikuntaa, joka sisältää kunnan K ja alkiot v 1,..., v n. 2

6 Nyt K(v 1,..., v n ) = { } G(v1,..., v n ) H(v 1,..., v n ) G, H K[X 1,..., X n ], H(v 1,..., v n ) 0). Määritelmä 1.7 Olkoon L/K kuntalaajennus. Sanotaan, että L on kunnan K äärellisesti generoitu laajennus, jos on olemassa sellaiset alkiot v 1,..., v n L, että L = K(v 1,..., v n ). Apulause 1.1 Olkoon L/K kuntalaajennus ja x, y L. Nyt K(x)(y) = K(x, y). Todistus. Koska määritelmän 1.6 mukaan K K(x, y) ja x K(x, y), niin K(x) K(x, y). Samalla tavoin nähdään, että koska K(x) K(x, y) ja y K(x, y), niin K(x)(y) K(x, y). Määritelmän 1.6 mukaisesti K(x, y) on suppein kunnan L alikunta, joka sisältää kunnan K ja alkiot x, y. Tämä tarkoittaa, että K(x)(y) = K(x, y). Määritelmä 1.8 Olkoon L/K kuntalaajennus. Kunnan L dimensiota K-vektoriavaruutena kutsutaan kuntalaajennuksen L/K asteeksi. Sille käytetään merkintää [L : K]. Apulause 1.2 Mikäli M/L ja L/K ovat kuntalaajennuksia, on voimassa yhtälö [M : K] = [M : L][L : K]. Todistus. Sivuutetaan. Todistus löytyy kirjasta [6, s.498]. Määritelmä 1.9 Olkoon L/K kuntalaajennus. Sanotaan, että L on kunnan K äärellinen laajennus, mikäli [L : K] <. Tunnetusti äärellinen laajennus on aina myös algebrallinen [7, s.188]. Apulause 1.3 Olkoon L/K kuntalaajennus. Alkio α L on algebrallinen yli kunnan K, jos ja vain jos [K(α) : K] <. Todistus. Sivuutetaan. Todistus löytyy teoksesta [7, s.379] 3

7 Apulause 1.4 Olkoon K kokonaisalueen R osamääräkunta ja L/K äärellinen laajennus. a) Jokaista v L kohti on olemassa sellainen 0 a R, että av on kokonainen yli kokonaisalueen R. b) On olemassa sellainen vektoriavaruuden L kanta {v 1,..., v n } yli kunnan K, että jokainen v i (i = 1,..., n) on kokonainen yli kokonaisalueen R. Todistus. a) Koska L/K on algebrallinen laajennus, niin määritelmän 1.4 mukaisesti kukin v L on algebrallinen yli kunnan K. Määritelmän 1.3 perusteella jokaista v L kohti löytyy sellainen pääpolynomi F (X) = X n + a n 1 X n a 1 X + a 0 K[X], että F (v) = 0. Koska F K[X] ja K on kokonaisalueen R osamääräkunta, jokainen a i (i = 0, 1,..., n 1) pystytään esittämään muodossa a i = b i /c i, missä b i, c i R ja c i 0. Voidaan siis kirjoittaa Asetetaan a = c 0 c 1 c n 1. Nyt eli Merkitään v n + b n 1 c n 1 v n 1 + b n 2 c n 2 v n b 1 c 1 v + b 0 c 0 = 0. ( a n v n + b n 1 v n 1 + b n 2 v n b 1 v + b ) 0 = 0 c n 1 c n 2 c 1 c 0 (av) n + ab n 1 c n 1 (av) n 1 + a2 b n 2 c n 2 (av) n an 1 b 1 c 1 (av) + an b 0 c 0 = 0. G(X) = X n + ab n 1 c n 1 X n 1 + a2 b n 2 c n 2 X n an 1 b 1 c 1 X + an b 0 c 0. Alkion a valinnasta johtuu, että polynomin G kertoimista saadaan supistettua pois nimittäjät c 0,..., c n 1. Täten G(X) R[X]. Koska lisäksi G on pääpolynomi ja G(av) = 0, määritelmän 1.3 mukaan av on kokonainen yli kokonaisalueen R. b) Koska [L : K] <, on olemassa vektoriavaruuden L äärellinen kanta {x 1,..., x n } yli kunnan K. Nyt x 1,..., x n L, joten a)-kohdan perusteella jokaista alkiota x i (i = 1,..., n), kohti löytyy sellainen 0 a i R, että a i x i on kokonainen yli kokonaisalueen R. 4

8 Näytetään, että myös joukko {a 1 x 1,..., a n x n } muodostaa vektoriavaruuden L kannan yli kunnan K. Riittää osoittaa, että alkiot a i x i (i = 1,..., n), ovat lineaarisesti riippumattomia yli kunnan K. Tarkastellaan relaatiota b 1 (a 1 x 1 ) b n (a n x n ) = 0, missä b 1,..., b n K. Tämä on sama asia kuin yhtälö (b 1 a 1 )x (b n a n )x n = 0. Koska alkiot x i ovat lineaarisesti riippumattomia yli kunnan K, on b i a i = 0 kaikilla i = 1,..., n. Mutta koska oletuksen mukaan a i 0 kaikilla i = 1,..., n, niin välttämättä b i = 0 kaikilla i = 1,..., n. Tämä todistaa väitteen, kun asetetaan v i = a i x i. 1.2 Affiini tasokäyrä Intuitiivisesti ajateltuna algebrallinen tasokäyrä ymmärretään jonkin polynomin nollakohtien joukkona. Kun siirrytään tutkimaan algebrallisia tasokäyriä, on mielekästä tarkastella niitä yli algebrallisesti suljetun kunnan k. Voidaan ensinnäkin osoittaa, että algebrallisesti suljettu kunta on aina ääretön [14, s.1]. Pelkkä kunnan äärettömyys ei sinänsä vielä kuitenkaan riitä takaamaan, että tasokäyrä eroaisi tyhjästä joukosta: ei tiedetä, paljonko tarkasteltavalla käyrällä on pisteitä. Voidaan kuitenkin osoittaa, että kun käyrän pisteiden koordinaatit sijaitsevat algebrallisesti suljetussa kunnassa, käyrän määräävä pistejoukko on ääretön [7, s.379]. Tästä eteenpäin kunnan k oletetaan olevan algebrallisesti suljettu. Annetaan seuraava täsmällinen määritelmä: Määritelmä 1.10 Olkoon F k[x, Y ] jaoton polynomi. Polynomin F nollakohtien joukkoa C = {(a, b) k 2 F (a, b) = 0} kutsutaan polynomin F määräämäksi affiiniksi tasokäyräksi yli kunnan k. 1.3 Homogeeniset polynomit Eräs tämän tutkielman keskeisimmistä käsitteistä on homogeenisen polynomin käsite: Määritelmä 1.11 Olkoon R kokonaisalue sekä n Z +. Polynomin F R[X 1,..., X n ] sanotaan olevan d-asteinen homogeeninen polynomi eli muoto, jos polynomin F jokainen nollasta eroava termi on astetta d. 5

9 Nollapolynomissa ei ole termejä, joten se on homogeeninen astetta n kaikilla n N. Määritelmä 1.12 Olkoon F R[X 1,..., X n ]. Kirjoitetaan F = F 0 + F F d, missä d = deg(f ) ja kukin F i R[X 1,..., X n ] on homogeeninen astetta i (i = 1,..., d). Määritellään polynomi F R[X 1,..., X n+1 ] seuraavasti: F = X d n+1f 0 + X d 1 n+1f F d = X d n+1f (X 1 /X n+1,..., X n /X n+1 ). Menettelyä kutsutaan homogenisoinniksi ja polynomia F polynomin F homogenisaatioksi muuttujan X n+1 suhteen. Määritelmästä 1.12 todetaan ensinnäkin, että F (X 1 /X n+1,..., X n /X n+1 ) R[X 1 /X n+1,..., X n /X n+1 ]. Lisäksi huomataan, että F on todellakin homogeeninen astetta d. Määritelmästä 1.12 nähdään myös, että mikäli G R[X 1,..., X n+1 ] on homogeeninen astetta e, niin G(X 1 /X n+1,..., X n /X n+1, 1) = G/X e n+1. Vastaavasti homogeenisesta polynomista saadaan tavallinen polynomi: Määritelmä 1.13 Olkoon F R[X 1,..., X n+1 ] homogeeninen polynomi. Määritellään polynomi F R[X 1,..., X i 1, X i+1,..., X n+1 ] seuraavasti: F = F (X 1,..., X i 1, 1, X i+1,..., X n+1 ). Menettelyä kutsutaan dehomogenisoinniksi ja polynomia F polynomin F dehomogenisaatioksi muuttujan X i suhteen. Tarkastelujen helpottamiseksi homogenisointi ja dehomogenisointi suoritetaan jatkossa muuttujan X n+1 suhteen. Apulause 1.5 Homogenisoinnilla ja dehomogenisoinnilla on seuraavat ominaisuudet: a) Olkoot F, G R[X 1,..., X n+1 ] homogeenisia. Nyt (F G) = F G. b) Olkoot F, G R[X 1,..., X n ]. Nyt (F G) = F G. 6

10 Todistus. a) Määritelmän 1.13 mukaan (F G) = (F G)(X 1,..., X n, 1) = F (X 1,..., X n, 1)G(X 1,..., X n, 1) = F G. b) Käyttämällä määritelmää 1.12 nähdään, että (F G) deg(f G) = Xn+1 (F G)(X 1 /X n+1,..., X n /X n+1 ). Koska R on kokonaisalue, on voimassa deg(f G) = deg(f ) + deg(g). Näin ollen yllä olevasta tulee edelleen esitys deg(f )+deg(g) Xn+1 F (X 1 /X n+1,..., X n /X n+1 )G(X 1 /X n+1,..., X n /X n+1 ), joka voidaan lausua muodossa X deg(f ) n+1 F (X 1 /X n+1,..., X n /X n+1 )X deg(g) n+1 G(X 1 /X n+1,..., X n /X n+1 ). Viimeksi saatu lauseke on määritelmän 1.12 mukaisesti F G. Apulause 1.6 Homogenisoinnilla ja dehomogenisoinnilla on seuraavat ominaisuudet: a) Olkoon F R[X 1,..., X n+1 ] homogeeninen ja r korkein sellainen muuttujan X n+1 potenssi, että X r n+1 jakaa polynomin F. Nyt X r n+1(f ) = F. b) Olkoon F R[X 1,..., X n ]. Nyt (F ) = F. Todistus. a) Kirjoitetaan d = deg(f ) ja F = X d n+1f 0 + X d 1 n+1f X r n+1f d r, missä kukin F i R[X 1,..., X n ] on homogeeninen astetta i (i = 0,..., d r). Tällöin määritelmästä 1.13 saadaan ja edelleen määritelmän 1.12 avulla F = F 0 + F F d r (F ) = X d r n+1f 0 + X d r 1 n+1 F F d r. Kertomalla yllä oleva yhtälö puolittain termillä X r n+1 nähdään, että X r n+1(f ) = F. 7

11 b) Kirjoitetaan F = F 0 + F F d, missä d = deg(f ) ja kukin F i R[X 1,..., X n ] on homogeeninen astetta i (i = 1,..., d). Määritelmän 1.12 perusteella F = X d n+1f 0 + X d 1 n+1f F d. Käyttämällä nyt määritelmää 1.13 nähdään, että (F ) = 1 d F d 1 F F d = F. Apulause 1.7 Olkoon F R[X 1,..., X n+1 ]. Jos G (F ), niin G (F ). Todistus. Nyt G = AF, missä A R[X 1,..., X n+1 ]. Apulauseen 1.5 a)-kohdan perusteella G = (AF ) = A F, mikä todistaa väitteen. Apulause 1.8 Olkoon F k[x, Y ] homogeeninen polynomi. Nyt F hajoaa ensimmäisen asteen tekijöihin. Todistus. Olkoon r korkein sellainen muuttujan Y potenssi, että Y r jakaa polynomin F. Tällöin apulauseen 1.6 a)-kohdan perusteella F = Y r (F ). Koska F k[x] ja k on algebrallisesti suljettu, F hajoaa tunnetusti ensimmäisen asteen tekijöihin (kts. [4, s. 170]). Voidaan siis kirjoittaa F = ɛπ(x λ i ), missä ɛ, λ i k. Soveltamalla apulauseen 1.5 b)-kohtaa polynomiin F huomataan, että (F ) = ɛπ(x λ i Y ), joten kaikkiaan F = Y r ɛπ(x λ i Y ). 8

12 Apulause 1.9 Jos F k[x 1,..., X n+1 ] on kunnassa k jaoton homogeeninen polynomi, niin myös dehomogenisaatio F = F (X 1,..., X n, 1) on jaoton kunnassa k (mikäli F ei ole vakio). Todistus. Tehdään vastaoletus, että F = AB, missä A, B k[x 1,..., X n ], A, B k. Apulauseen 1.6 a)-kohdan mukaan F = X r n+1(f ), missä polynomin F jaottomuuden perusteella joko F = λx n+1, λ k, tai r = 0. Edellisessä tapauksessa F = λ, mikä on oletuksessa pois suljettu erikoistapaus. Ollaan siis kiinnostuneita ainoastaan tapauksesta r = 0. Tällöin apulauseen 1.5 b)-kohtaa soveltamalla nähdään, että F = (F ) = (AB) = A B. Nyt A, B k, mikä on ristiriidassa polynomin F jaottomuuden kanssa. Vastaoletus on siis väärä, ja F on jaoton. 1.4 Affiini koordinaattimuunnos ja affiinin tasokäyrän tangentti Määritelmä 1.14 Bijektiota T : A n A n, (x 1,..., x n ) (T 1 (x 1,..., x n ),..., T n (x 1,..., x n )), missä jokainen T i k[x 1,..., X n ] on ensimmäisen asteen polynomi (i = 1,..., n), kutsutaan affiiniksi koordinaattimuunnokseksi. Merkitään symbolisesti T = (T 1,..., T n ). Jos T = (T 1,..., T n ) : A n A n on affiini koordinaattimuunnos ja G k[x 1,..., X n ], niin polynomille G(T 1,..., T n ) käytetään merkintää G T. Olkoon C jaottoman polynomin F k[x, Y ] määräämä affiini tasokäyrä sekä T = (T 1, T 2 ) : A 2 A 2 affiini koordinaattimuunnos. Osoitetaan, että myös polynomi F (T 1, T 2 ) k[x, Y ] määrää affiinin tasokäyrän: Apulause 1.10 Olkoon F k[x, Y ] jaoton ja T = (T 1, T 2 ) : A 2 A 2 affiini koordinaattimuunnos. Nyt myös polynomi F (T 1, T 2 ) k[x, Y ] on jaoton. 9

13 Todistus. Tehdään vastaoletus, että F (T 1, T 2 ) = AB, missä A, B k[x, Y ], A, B k. Koska määritelmän 1.14 mukaan T on bijektio, sillä on käänteiskuvaus T 1. On selvää, että myös T 1 on affiini koordinaattimuunnos. Merkitään symbolisesti T 1 = (S 1, S 2 ), missä S i (i = 1, 2) on ensimmäisen asteen polynomi. Näin ollen on olemassa polynomit A = A(S 1, S 2 ), B = B(S 1, S 2 ) k[x, Y ]. Koska T 1 (S 1, S 2 )(a, b) = a ja T 2 (S 1, S 2 )(a, b) = b, niin A B = A(S 1, S 2 )B(S 1, S 2 ) = (AB)(S 1, S 2 ) = F (T 1, T 2 )(S 1, S 2 ) = F. Siis F ei olekaan jaoton, joten vastaoletus on väärä ja alkuperäinen väite tosi. Käyrälle F (T 1 (X, Y ), T 2 (X, Y )) = 0 käytetään merkintää C T. Huomataan, että C T = T 1 (C). Nimittäin P T 1 (C) täsmälleen silloin, kun T (P ) C. Tämä puolestaan on yhtäpitävää sen kanssa, että F (T (P )) = 0. Apulause 1.11 Olkoot P, Q A 2 eri pisteitä. Olkoon lisäksi L pisteiden P ja Q kautta kulkeva suora ja T : A 2 A 2 affiini koordinaattimuunnos. Nyt T (L) on pisteiden T (P ) ja T (Q) kautta kulkeva suora. Todistus. Jos P = (a 1, a 2 ) ja Q = (b 1, b 2 ), niin Kirjoitetaan L = {(a 1 + t(b 1 a 1 ), a 2 + t(b 2 a 2 )) t k}. T = (T 1, T 2 ) = (A 1 X + B 1 Y + C 1, A 2 X + B 2 Y + C 2 ), missä A i, B i, C i k, i = 1, 2. Tällöin ja T (P ) = T (a 1, a 2 ) = (A 1 a 1 + B 1 a 2 + C 1, A 2 a 1 + B 2 a 2 + C 2 ) T (Q) = T (b 1, b 2 ) = (A 1 b 1 + B 1 b 2 + C 1, A 2 b 1 + B 2 b 2 + C 2 ). Merkitään lyhyesti T (P ) = (c 1, c 2 ) sekä T (Q) = (d 1, d 2 ). Soveltamalla affiinia koordinaattimuunnosta suoraan L saadaan T (L) = {A 1 (a 1 + t(b 1 a 1 )) + B 1 (a 2 + t(b 2 a 2 )) + C 1, A 2 (a 1 + t(b 1 a 1 )) + B 2 (a 2 + t(b 2 a 2 )) + C 2 t k}. 10

14 Tämä merkitsee, että T (L) = {(c 1 + t(d 1 c 1 ), c 2 + t(d 2 c 2 ))}. Viimeksi esitetystä lausekkeesta nähdään, että T (L) on suora, joka kulkee pisteiden T (P ) ja T (Q) kautta. Apulause 1.12 Olkoot P, P A 2. Olkoot lisäksi L 1 ja L 2 (L 1 L 2 ) pisteen P kautta kulkevia suoria sekä L 1 ja L 2 (L 1 L 2) pisteen P kautta kulkevia suoria. On olemassa sellainen yksikäsitteinen affiini koordinaattimuunnos T : A 2 A 2, että T (P ) = P ja T (L i ) = L i, missä i = 1, 2. Todistus. Merkitään P = (a 1, a 2 ), P = (a 1, a 2) A 2. Olkoot vielä Q = (b 1, b 2 ) L 1, R = (c 1, c 2 ) L 2, Q = (b 1, b 2) L 1, R = (c 1, c 2) L 2. Kaikki tässä mainitut pisteet oletetaan erillisiksi. Tutkitaan, mitä ehtoja affiinin koordinaattimuunnoksen T pitää toteuttaa. Huomataan ensin, että mikäli haluttua tyyppiä oleva T löytyy, niin apulauseen 1.11 perusteella T (L 1 ) on pisteiden T (P ) ja T (Q) kautta kulkeva suora. Vastaavasti suora T (L 2 ) kulkee tällöin pisteiden T (P ) ja T (R) kautta. Halutaan, että a) T (L 1) on pisteiden P ja Q kautta kulkeva suora ja b) T (L 2) on pisteiden P ja R kautta kulkeva suora. Ehdot a) ja b) toteutuvat, jos löytyy sellainen koordinaattimuunnos T, että T (P ) = P, T (Q) = Q ja T (R) = R. Mikäli T on olemassa, se on muotoa T = (T 1, T 2 ) = (A 1 X + B 1 Y + C 1, A 2 X + B 2 Y + C 2 ). Tällaisen koordinaattimuunnoksen olemassaolo on sama asia kuin se, että yhtälöryhmä (1) A 1 a 1 + B 1 a 2 + C 1 = a 1 (2) A 1 b 1 + B 1 b 2 + C 1 = b 1 (3) A 1 c 1 + B 1 c 2 + C 1 = c 1 (4) A 2 a 1 + B 2 a 2 + C 2 = a 2 (5) A 2 b 1 + B 2 b 2 + C 2 = b 2 (6) A 2 c 1 + B 2 c 2 + C 2 = c 2 11

15 on ratkeava. Yhtälöryhmää (1)-(6) vastaava 6 6-kerroinmatriisi on A = a 1 a b 1 b c 1 c a 1 a b 1 b c 1 c 2 1 Siis A muodostuu neljästä 3 3-lohkosta. Näistä toinen ja kolmas ovat nollalohkoja. Koska L 1 L 2 ja L 1 L 2, niin R ei ole pisteiden P ja Q kautta kulkevalla suoralla eikä R pisteiden P ja Q kautta kulkevalla suoralla. Tämän vuoksi ensimmäisen ja neljännen lohkon rivit ovat lineaarisesti riippumattomia ja siksi näiden kahden lohkon determinantit eroavat nollasta. Koska det(a) on ensimmäisen ja neljännen lohkon determinanttien tulo, niin det(a) 0. Yhtälöryhmällä (1)-(6) on siis ei-triviaali ratkaisu. Tästä kuuden yhtälön ryhmästä kertoimet A i, B i ja C i, i = 1, 2 ratkeavat yksikäsitteisesti, mikä osoittaa, että yksikäsitteinen T on löydetty. Olkoon C jaottoman polynomin F k[x, Y ] määräämä affiini tasokäyrä, P = (a, b) C ja T : A 2 A 2 sellainen affiini koordinaattimuunnos, että T (X, Y ) = (X + a, Y + b). Nyt C T on käyrä F (X + a, Y + b) = 0. Kirjoitetaan. F T = G m + G m G n, missä kukin G i k[x, Y ] on homogeeninen astetta i (i = m,..., n), G m 0. Apulauseesta 1.8 seuraa erityisesti, että G m = L r i i, missä suorat L i = 0 ovat eri suoria. Merkitään L i = α i X + β i Y. Näin voidaan asettaa seuraava määritelmä: Määritelmä 1.15 Olkoot oletukset kuten edellä. Suoria L i : α i (X a) + β i (Y b) = 0 kutsutaan käyrän C tangenteiksi pisteessä P. Lukua r i sanotaan tangentin L i kertaluvuksi pisteessä P. Pisteeseen P = (0, 0) piirretyt tangentit ovat selvästi muotoa L i : α i X + β i Y = 0 Tangentteihin liittyy läheisesti seuraava määritelmä: 12

16 Määritelmä 1.16 Olkoot oletukset yhä kuten määritelmässä Jos P = (0, 0), lukua m kutsutaan polynomin F (tai käyrän C) kertaluvuksi pisteessä P ja merkitään m = m P (C). Mikäli P (0, 0), niin määritellään, että m P (C) = m (0,0) (C T ). Apulause 1.13 Olkoon C jaottoman polynomin F k[x, Y ] määräämä affiini tasokäyrä. Nyt P C, jos ja vain jos m P (C) > 0. Todistus. Merkitään P = (a, b). Olkoon T : A 2 A 2, T (X, Y ) = (X + a, Y + b). Tällöin T (0, 0) = P. Koska määritelmän 1.16 perusteella m P (C) = m (0,0) (C T ), riittää tarkastella tapausta P = (0, 0). Osoitetaan, että m (0,0) (C) = 0 täsmälleen silloin kun (0, 0) C. Kirjoitetaan F = F 0 + F F n, missä kukin F i k[x, Y ] on homogeeninen astetta i (i = 0,..., n). Huomataan, että F i (0, 0) = 0, jos i > 0. Tästä seuraa, että F (0, 0) = F 0 (0, 0). Mutta koska deg(f 0 ) = 0, niin F 0 (0, 0) = F 0. Siis F 0 (0, 0) = 0 täsmälleen silloin, kun F 0 = 0, mikä on yhtäpitävää sen kanssa, että m (0,0) (C) > 0. Apulause 1.14 Olkoon C jaottoman polynomin F k[x, Y ] määräämä affiini tasokäyrä, P C, P A 2 ja T : A 2 A 2 sellainen affiini koordinaattimuunnos, että T (P ) = P. Nyt suora L = 0 on käyrän C tangentti pisteessä P, jos ja vain jos suora L T = 0 on käyrän C T tangentti pisteessä P. Todistus. Merkitään P = (a, b), P = (a, b ). Etsitään aluksi esitys käyrän C tangenteille pisteessä P käyttämällä määritelmää Olkoon sellainen affiini koordinaattimuunnos, että T : A 2 A 2 T (X, Y ) = (X + a, Y + b). 13

17 Tällöin T (0, 0) = P. Lausutaan F T = G m G n, missä m = m P (C) ja kukin G i k[x, Y ] on homogeeninen astetta i (i = m,..., n). Olkoon G m = L j apulauseen 1.8 mukainen esitys. Määritelmän 1.15 perusteella suorat L j (X a, Y b) = 0 ovat käyrän C tangentit pisteessä P. Pyritään sitten esittämään käyrän C T tangentit pisteessä P suorien L j avulla. Hyödynnetään tässä ensin affiinia koordinaattimuunnosta T. Se on muotoa T (X, Y ) = (T 1 (X, Y ), T 2 (X, Y )) = (A 1 X + B 1 Y + C 1, A 2 X + B 2 Y + C 2 ), missä A i, B i, C i k, i = 1, 2. Koska T (P ) = P, niin (1a) A 1 a + B 1 b + C 1 = a ja Näin ollen sekä (1b) A 2 a + B 2 b + C 2 = b. (2a) C 1 = a A 1 a B 1 b (2b) C 2 = b A 2 a B 2 b, joten sijoittamalla kohdissa (2a) ja (2b) saadut lausekkeet affiinin koordinaattimuunnoksen T esitykseen nähdään, että Edelleen Olkoon nyt T (X, Y ) = (A 1 (X a ) + B 1 (Y b ) + a, A 2 (X a ) + B 2 (Y b ) + b). F T (X, Y ) = F (A 1 (X a ) + B 1 (Y b ) + a, A 2 (X a ) + B 2 (Y b ) + b). sellainen affiini koordinaattimuunnos, että T : A 2 A 2 T (X, Y ) = (X + a, Y + b ). 14

18 Siis T (0, 0) = P. Kirjoitetaan (F T ) T = F T (X + a, Y + b ) = F (A 1 X + B 1 Y + a, A 2 X + B 2 Y + b) n = G i (A 1 X + B 1 Y, A 2 X + B 2 Y ), i=m missä G m (A 1 X + B 1 Y, A 2 X + B 2 Y ) = L j (A 1 X + B 1 Y, A 2 X + B 2 Y ). Määritelmän 1.15 mukaan käyrän C T tangentit pisteessä P ovat suorat L j (A 1 (X a ) + B 1 (Y b ), A 2 (X a ) + B 2 (Y b )) = 0. Nämä ovat samat kuin suorat L T = 0, mikä todistaa väitteen. Apulause 1.15 Olkoon T : A n isomorfismin A n affiini koordinaattimuunnos. Nyt T indusoi T : k[x 1,..., X n ] k[x 1,..., X n ], T (F ) = F (T 1,..., T n ). Todistus. Määritelmän 1.14 perusteella polynomit T i k[x 1,..., X n ] ovat ensimmäisen asteen polynomeja (i = 1,..., n). Ne ovat siten muotoa T i (X 1,..., X n ) = Σa ij X j + b i (i = 1,..., n). Näin ollen T voidaan esittää matriisimuodossa: T (x 1,..., x n ) = Ax + b, missä A = a 11 a 1n.. a n1... a nn x = x 1. x n, 15

19 ja Selvästi T = T T, missä b = b 1. b n. T = (T 1..., T n) : A n A n on lineaarikuvaus (T i = Σa ij X j (i = 1,..., n)) ja T = (T 1..., T n ) : A n A n on siirto (T i = X i + b i (i = 1,..., n)). Siirtona T on bijektio ja määritelmän 1.14 mukaan T on bijektio, joten myös T on bijektio. Tästä seuraa, että A on kääntyvä. Kuvaus T indusoi rengashomomorfismin T : k[x 1,..., X n ] k[x 1,..., X n ], T (F ) = F (T 1,..., T n ). Alussa esitetyn nojalla T voidaan lausua matriisimuodossa missä T (X) = AX + b, X = X 1. X n Matriisin A kääntyvyyden perusteella on olemassa kuvaus Nyt joten S : X A 1 (X b). (S T )(X) = S(AX + b) = A 1 ((AX + b) b) = X, S T = id. Väite T S = id todistetaan samoin suoralla laskulla. Siis S = T 1. Rengashomomorfismi T on näin todettu bijektioksi ja siten isomorfismiksi. 16

20 1.5 Affiinin tasokäyrän säännöllisyys Affiinin tasokäyrän pisteet voidaan jakaa kahteen kategoriaan: Määritelmä 1.17 Olkoon C jaottoman polynomin F k[x, Y ] määräämä affiini tasokäyrä. Pistettä P C kutsutaan epäsäännölliseksi, jos F F (P ) = (P ) = 0. X Y Muussa tapauksessa pisteen P sanotaan olevan säännöllinen. Käyrää, jonka kaikki pisteet ovat säännöllisiä, kutsutaan säännölliseksi tai sileäksi käyräksi. Säännöllisillä tasokäyrillä on monia tärkeitä erityisominaisuuksia. Seuraavassa saadaan kätevä ehto affiinin tasokäyrän säännöllisyydelle: Apulause 1.16 Olkoon C jaottoman polynomin F k[x, Y ] määräämä affiini tasokäyrä. Piste P C on säännöllinen, jos ja vain jos m P (C) = 1. Todistus. Mikäli asetetaan T : A 2 A 2, T (X, Y ) = (X + a, Y + b), niin määritelmän 1.16 perusteella m P (C) = m (0,0) (C T ). Riittää siis tutkia tapausta P = (0, 0). Kirjoitetaan jälleen F = F m + F m F n, missä kukin F i k[x, Y ] on homogeeninen astetta i (i = m,..., n). Koska P C, niin apulauseen 1.13 mukaan ei voi olla m = 0. Havaitaan, että F i X (0, 0) = F i (0, 0) = 0, Y jos i 1. Siis F X (0, 0) = F 1 (0, 0) X ja F Y (0, 0) = F 1 (0, 0). Y Määritelmän 1.17 perusteella (0, 0) on säännöllinen täsmälleen silloin, kun F (0, 0) 0 X tai F (0, 0) 0 Y Äsken sanotun perusteella tämä toteutuu tarkalleen, kun F 1 0, mikä puolestaan on yhtäpitävää sen kanssa, että m P (C) = 1. 17

21 1.6 Koordinaattirengas Otetaan seuraavaksi käyttöön käyrän koordinaattirenkaan käsite. Sen avulla voidaan määritellä ensin käyrän polynomifunktiot ja tämän jälkeen rationaalifunktiot (ks. luku 1.7), jotka ovat keskeisellä sijalla tutkittaessa algebrallisia käyriä. Määritelmä 1.18 Olkoon C jaottoman polynomin F k[x, Y ] määräämä affiini tasokäyrä. Käyrän C koordinaattirengas yli kunnan k on jäännösluokkarengas k[c] = k[x, Y ]/(F ). Määritelmä 1.19 Alkiota g k[c] kutsutaan käyrän C polynomifunktioksi. Olkoon C jaottoman polynomin F k[x, Y ] määräämä affiini tasokäyrä ja P C. Koordinaattirenkaan k[c] alkiot ovat sivuluokkia g = G + (F ), missä G k[x, Y ]. Motivaatio määritelmän 1.19 nimitykselle polynomifunktio saadaan siitä, että jokaiseen g = G + (F ) k[c] voidaan liittää konkreettinen polynomifunktio ψ : C k, ψ(p ) = G(P ). Havaitaan, että ψ on todellakin kuvaus. Nimittäin jos g = G + (F ) = G + (F ) jollain G k[x, Y ], niin G G (F ). Tämä tarkoittaa, että G G = HF, missä H k[x, Y ]. Nyt G(P ) G (P ) = H(P )F (P ) = 0, jolloin siis G(P ) = G (P ). Yllä sanotun perusteella voidaan asettaa seuraava määritelmä: Määritelmä 1.20 Olkoon C jaottoman polynomin F k[x, Y ] määräämä affiini tasokäyrä. Olkoon lisäksi g = G+(F ) k[c], G k[x, Y ] sekä P C. Polynomifunktion g arvo pisteessä P on g(p ) = G(P ). Kirjoittamalla G = Σλ i,j X i Y j huomataan, että koska alkiot λ k voidaan samastaa sivuluokkien λ + (F ) kanssa, niin G + (F ) = Σλ i,j x i y j = G(x, y), missä x = X + (F ), y = Y + (F ). Näin ollen k[c] = k[x, y]. Erikoisesti F (x, y) = F + (F ) = 0. 18

22 Apulause 1.17 Olkoon C jaottoman polynomin F k[x, Y ] määräämä affiini tasokäyrä. Koordinaattirengas k[c] on kokonaisalue. Todistus. Olkoot g, h k[c]. Osoitetaan, että jos gh = 0, niin g = 0 tai h = 0. Tällöin g = G+(F ), h = H +(F ), missä G, H k[x, Y ]. Nyt gh = GH +(F ). Koska gh = 0, on oltava GH (F ). Tämä tarkoittaa, että F GH. Polynomin F jaottomuuden perusteella F G tai F H [7, s. 148]. Siis G (F ) tai H (F ) eli g = 0 tai h = Rationaalifunktiot Koska affiinin tasokäyrän C koordinaattirengas k[c] on kokonaisalue, voidaan muodostaa sen osamääräkunta: Määritelmä 1.21 Olkoon C jaottoman polynomin F k[x, Y ] määräämä affiini tasokäyrä. Kokonaisalueen k[c] osamääräkuntaa k(c) sanotaan käyrän C rationaalifunktioiden kunnaksi. Alkiota f k(c) kutsutaan käyrän C rationaalifunktioksi. Koordinaattirengas k[c] on kunnan k(c) alirengas, joten jokainen g k[c] on myös rationaalifunktio. Lisäksi huomataan, että koska k[c] = k[x, y], niin k(c) = k(x, y). Määritelmä 1.22 Sanotaan, että rationaalifunktio f k(c) on määritelty pisteessä P C, jos on olemassa sellaiset polynomifunktiot a, b k[c], että f = a b ja b(p ) 0. Tällöin rationaalifunktion f arvo pisteessä P on Määritelmä 1.22 on mielekäs. Jos näet f(p ) = a(p ) b(p ). f = a b, missä a, b k[c], b (P ) 0, niin ab = a b. Tällöin a(p )b (P ) = a (P )b(p ), joten a(p ) b(p ) = a (P ) b (P ). Siis rationaalifunktion f arvo pisteessä P on hyvinmääritelty. Rationaalifunktio ei kuitenkaan ole välttämättä määritelty kaikkialla: 19

23 Määritelmä 1.23 Olkoon f = a b k(c) ja P C. Jos f ei ole määritelty pisteessä P, sanotaan, että rationaalifunktiolla f on napa pisteessä P. Tällöin merkitään f(p ) =. On helppo todeta, että joukko { a b k(c) b(p ) 0} on kunnan k(c) alirengas. Kyseinen joukko koostuu siis pisteessä P määritellyistä rationaalifunktioista. Tästä saadaan motivaatio seuraavalle määritelmälle: Määritelmä 1.24 Olkoon C jaottoman polynomin F k[x, Y ] määräämä affiini tasokäyrä ja P C. Alirengasta O P (C) = { a b k(c) b(p ) 0}. kutsutaan käyrän C lokaaliksi renkaaksi pisteessä P. Rengasta O P (C) tarkastellaan lähemmin luvussa 3. 20

24 2 Affiinista tasosta projektiiviseen tasoon 2.1 Projektiivinen avaruus Affiinissa tasossa A 2 kaksi suoraa joko leikkaavat toisensa tai ovat yhdensuuntaiset. Lisätään affiiniin tasoon äärettömyyspisteitä, jotta saataisiin avaruus, jossa kaksi suoraa leikkaavat toisensa täsmälleen yhdessä pisteessä. Näin päästään projektiivisen tason käsitteeseen. Annetaan kuitenkin ensin yleinen määritelmä n-ulotteiselle projektiiviselle avaruudelle: Määritelmä 2.1 Kaikkien pisteen (0, 0,..., 0) A n+1 kautta kulkevien suorien joukkoa kutsutaan projektiiviseksi n-ulotteiseksi avaruudeksi yli kunnan k. Sille käytetään merkintää P n (k) tai lyhyesti P n. Edellä mainittuja suoria kutsutaan projektiivisen avaruuden P n pisteiksi. Määritelmä 2.2 Joukkoa P 2 = P 2 (k) kutsutaan projektiiviseksi tasoksi yli kunnan k. Huomataan, että jokainen affiinin avaruuden piste (0, 0,..., 0) (x 1,..., x n+1 ) A n+1 määrittää yksikäsitteisen, pisteen (0, 0,..., 0) A n+1 kautta kulkevan suoran eli projektiivisen avaruuden P n yksikäsitteisen pisteen. Tämä suora on joukko {(λx 1,..., λx n+1 ) λ k)}. Pisteet (x) = (x 1,..., x n+1 ) A n+1 ja (y) = (y 1,..., y n+1 ) A n+1 määräävät saman suoran, mikäli on olemassa sellainen λ k, että y i = λx i (i = 1,..., n + 1). Merkitään tällöin (x) (y). Lause 2.1 Yllä määritelty relaatio on ekvivalenssi. Todistus. Selvästi (x) (x) (valitaan λ = 1), mikä tarkoittaa, että on refleksiivinen. Jos (x) (y), on olemassa sellainen λ 1 k, että y i = λ 1 x i (i = 1,..., n+1). Asetetaan λ 2 = λ 1 1. Koska x i = λ 2 y i, niin (y) (x). Siis on symmetrinen. Mikäli (x) (y) ja (y) (z), löytyy sellaiset alkiot λ 1, λ 2 k, että y i = λ 1 x i ja z i = λ 2 y i (i = 1,..., n+1). Merkitään λ 3 = λ 1 λ 2. Nyt z i = λ 3 x i, joten (x) (z), ja on transitiivinen. Lauseen 2.1 ja sitä edeltävän havainnon perusteella projektiivinen avaruus P n voidaan ajatella ekvivalenssiluokkien joukkona (A n+1 \ (0, 0,..., 0))/. 21

25 Kukin projektiivisen avaruuden P n piste vastaa selvästi yhtä tällaista ekvivalenssiluokkaa. Affiinin avaruuden pistettä (x 1,..., x n+1 ) A n+1 vastaavalle projektiivisen avaruuden P n pisteelle käytetään merkintää (x 1 :... : x n+1 ). Määritelmä 2.3 Pisteen (x 1 :... : x n+1 ) P n koordinaatteja sanotaan homogeenisiksi koordinaateiksi. Merkitään Helposti nähdään, että P n = Määritelmä 2.4 Joukkoa U i = {(x 1 :... : x n+1 ) P n x i 0}. n+1 i=1 U i. H i = P n \ U i = {(x 1 :... : x n+1 ) P n x i = 0} kutsutaan projektiivisen avaruuden P n äärettömyyspisteiden eli ideaalipisteiden joukoksi. 2.2 Projektiivinen tasokäyrä Nyt voidaan asettaa seuraava keskeinen määritelmä: Määritelmä 2.5 Olkoon F k[x, Y, Z] jaoton homogeeninen polynomi. Joukkoa C = {(a : b : c) P 2 F (a, b, c) = 0} kutsutaan polynomin F määräämäksi projektiiviseksi tasokäyräksi yli kunnan k. Määritelmässä 2.5 oleellista on, että polynomi F k[x, Y, Z] on homogeeninen. Jos nimittäin (a : b : c) P 2 ja F (a, b, c) = 0, niin kaikilla λ k on oltava myös F (λa, λb, λc) = 0. Tämä johtuu siitä, että projektiivisen tason pisteille pätee (a : b : c) = (λa : λb : λc). Homogeeniset polynomit toteuttavat yllä mainitun vaatimuksen, koska niille on voimassa F (λa, λb, λc) = λ deg(f ) F (a, b, c). Olkoon C jaottoman homogeenisen polynomin F k[x, Y, Z] määräämä projektiivinen tasokäyrä. Jokaisella P C \ H 3 on yksikäsitteinen esitys muotoa P = (x, y, 1). Täten P voidaan samastaa affiinin tason pisteen (x, y) A 2 kanssa. Näistä affiinin tason 22

26 pisteistä muodostuu joukko C U 3. Ideaalipisteiden joukko H 3 on se joukko, joka jää yli edellä muodostetusta käyrän C pisteiden ja tiettyjen affiinin tason A 2 pisteiden välisestä bijektiosta (x, y, 1) (x, y). Sama koskee myös joukkoja U 1 ja U 2. Homogeenisten polynomien yhteydessä todistettu apulause 1.9 osoittaa, että homogeenisen polynomin F k[x, Y, Z] jaottomuudesta seuraa myös dehomogenisaatioiden F (1, Y, Z) k[y, Z], F (X, 1, Z) k[x, Z], F (X, Y, 1) k[x, Y ] jaottomuus (mikäli ne eivät ole vakioita). Näin ollen joukot C U i, i = 1, 2, 3 ovat affiineja tasokäyriä (elleivät ne ole tyhjiä). Projektiivista tasokäyrää C : F (X, Y, Z) = 0 vastaa siis kolme affiinia tasokäyrää: ja C U 1 : F (1, Y, Z) = 0, C U 2 : F (X, 1, Z) = 0 C U 3 : F (X, Y, 1) = 0. Todistetaan seuraava apulause tapauksessa C U 3. Vastaava tulos pätee tietenkin myös käyrille C U 1 ja C U 2. Apulause 2.1 Olkoon C jaottoman homogeenisen polynomin F k[x, Y, Z] määräämä projektiivinen tasokäyrä. Nyt C U 3 = täsmälleen silloin,kun F = λz, λ k. Todistus. Jos F = λz, λ k, niin F = λ, jolloin C U 3 =. Oletetaan, että C U 3 =. Tästä seuraa, että F (a, b) 0 kaikilla (a, b) A 2. Kirjoitetaan F = F 0 + F F d, missä kukin F i k[x, Y ] on homogeeninen astetta i (i = 0,..., d). Koska myös F (0, 0) 0, niin F 0 0. Kaikilla i = 1,..., d on oltava F i = 0. Muuten ei nimittäin olisi C U 3 =. Siis F = F 0 = λ k. Polynomin F jaottomuuden perusteella F = (F ) = λz. 2.3 Homogeeninen koordinaattirengas ja funktiokunta Luvussa 1.6 annettu affiinin tasokäyrän koordinaattirenkaan määritelmä voidaan yleistää myös projektiivisille käyrille: 23

27 Määritelmä 2.6 Olkoon C jaottoman homogeenisen polynomin F k[x, Y, Z] määräämä projektiivinen tasokäyrä. Jäännösluokkarengasta k h [C] = k[x, Y, Z]/(F ) kutsutaan käyrän C homogeeniseksi koordinaattirenkaaksi yli kunnan k. Määritelmä 2.7 Alkiota g k h [C] kutsutaan d-asteiseksi muodoksi, mikäli on olemassa sellainen G k[x, Y, Z], että g = G + (F ) ja G on homogeeninen astetta d. Määritelmän 2.7 muoto g ei ole riippuvainen polynomin G valinnasta. Jos näet G k[x, Y, Z] on homogeeninen astetta d, g = G + (F ) ja G + (F ) = G + (F ), niin g = g. Apulause 2.2 Olkoon C jaottoman homogeenisen polynomin F k[x, Y, Z] määräämä projektiivinen tasokäyrä. Käyrän C homogeeninen koordinaattirengas k h [C] on kokonaisalue. Todistus. Väite todistetaan samoin kuin apulauseen 1.17 tapauksessa. Määritelmä 2.8 Olkoon C projektiivinen tasokäyrä. Homogeenisen koordinaattirenkaan k h [C] osamääräkuntaa k h (C) kutsutaan käyrän C homogeeniseksi funktiokunnaksi. Jos g = G + (F ) k h (C), G k[x, Y, Z], niin määritelmä g(p ) = G(P ) ei yleensä ole mielekäs. Päinvastoin kuin affiinien tasokäyrien tapauksessa, homogeenisen koordinaattirenkaan alkioita ei voida vakioita lukuunottamatta ajatella funktioina. Tämä johtuu siitä, että polynomin G arvo ja myös sitä vastaavan polynomifunktion g arvo pisteessä P riippuu pisteen P homogeenisten koordinaattien valinnasta. Myöskään homogeenisen funktiokunnan alkioita ei voida samasta syystä useimmissa tapauksissa pitää funktioina. Jos kuitenkin g, h k h [C] ovat samaa astetta d olevia muotoja, niin niissä pisteissä P C, joissa h(p ) 0, osamäärä g/h määrittelee funktion. Nimittäin jos P = (a : b : c) P 2, λ k, niin g(λa, λb, λc) h(λa, λb, λc) = λd g(a, b, c) λ d h(a, b, c) = g(a, b, c) h(a, b, c), joten osamäärän g/h arvo pisteessä P on riippumaton pisteen P homogeenisten koordinaattien valinnasta. Tällä perusteella rationaalifunktion käsite voidaan yleistää projektiivisille tasokäyrille: 24

28 Määritelmä 2.9 Olkoon C jaottoman homogeenisen polynomin F k[x, Y, Z] määräämä projektiivinen tasokäyrä. Käyrän C funktiokunta k(c) koostuu niistä osamääristä z = g h k h(c), joissa g, h k h [C] ovat samaa astetta olevia muotoja. Kunnan k(c) alkioita kutsutaan rationaalifunktioiksi. Rationaalifunktion z = g/h k(c) arvo pisteessä P C ja lokaali rengas O P (C) määritellään samoin kuin affiinien tasokäyrien tapauksessa määritelmissä 1.22 ja Selvästi k(c) on kunnan k h (C) alikunta. Lisäksi huomataan, että k k(c) k h (C), mutta k h (C) k(c). Itse asiassa projektiivisen käyrän funktiokunta vastaa affiinin tasokäyrän rationaalifunktioiden kuntaa: Lause 2.2 Olkoon C jaottoman homogeenisen polynomin F k[x, Y, Z] määräämä projektiivinen tasokäyrä. Valitaan sellainen i {1, 2, 3}, että C U i. Tällöin k(c) = k(c U i ). Todistus. Yleisyyttä rajoittamatta voidaan olettaa, että i = 3. Jaetaan todistus selkeyden vuoksi osiin. (1) Oletetaan, että z k(c). Määritelmän 2.9 perusteella löytyy sellaiset samaa astetta d olevat homogeeniset muodot g, h k h [C], että z = g h. Tällöin määritelmän 2.7 nojalla on olemassa sellaiset d-asteiset homogeeniset polynomit G, H k[x, Y, Z], että g = G + (F ), h = H + (F ). (2) Havaitaan, että polynomin F jaottomuuden perusteella (F ) = F. (Koska C U 3, niin apulauseen 2.1 mukaan F λz, λ k. Ollaan siis apulauseen 1.9 tapauksessa r = 0.) (3) Määritellään kuvaus ψ : k(c) k(c U 3 ) seuraavasti: G + (F ) H + (F ) G + (F ) H + (F ). Kuvaus ψ on tosiaan olemassa eli sen arvo ei riipu homogeenisten polynomien G ja H valinnasta. Jos nimittäin jollain homogeenisilla polynomeilla G, H k[x, Y, Z] on voimassa G + (F ) H + (F ) = G + (F ) H + (F ), 25

29 niin Tällöin ja apulauseen 1.7 mukaan Siis GH + (F ) = G H + (F ). (GH G H) (F ) (GH G H) (F ). (GH ) (G H) (F ), jolloin apulauseen 1.5 a)-kohtaa käyttämällä nähdään, että Tämä tarkoittaa, että eli Näin ollen G H G H (F ). G H + (F ) = G H + (F ) (G + (F )(H + (F ) = (G + (F )(H + (F ). G + (F ) H + (F ) = G + (F ) H + (F ). (4) Koska G G on homomorfismi, myös ψ on homomorfismi. (5) Osoitetaan, että ψ on surjektio huomaamalla, että jokaisella A + (F ) B + (F ) k(c U 3) on alkukuva kunnassa k(c). Jos deg(a) deg(b), valitaan alkukuvaksi Z deg(b) deg(a) A + (F ) B + (F ) k(c). Tapauksessa deg(a) > deg(b) alkukuvaksi kelpaa vastaavasti A + (F ) Z deg(a) deg(b) B + (F ) k(c). (6) Osoitetaan, että ψ on injektio toteamalla, että ehdosta ψ( G + (F ) H + (F ) ) = 0 26

30 seuraa, että Mikäli G + (F ) H + (F ) = 0. G + (F ) H + (F ) = 0, niin G + (F ) = 0. Tällöin G (F ). Siis G = AF jollain A k[x, Y ]. Käyttämällä apulauseen 1.5 b)-kohdan tulosta ja kohtaa (2) nähdään, että Apulauseen 1.6 a)-kohdan mukaan (G ) = (AF ) = A (F ) = A F. G = Z r (G ), missä r on suurin sellainen muuttujan Z potenssi, että Z r jakaa polynomin G. Koska F Z r G, niin polynomin F jaottomuuden perusteella F Z tai F G. Ei voi olla F Z. Muutoin nimittäin olisi F = λz, λ k, mikä on apulauseen 2.1 mukaisesti oletuksen C U 3 vastaista. On siis oltava F G. Tällöin G (F ), mikä merkitsee, että G + (F ) = 0. Täten myös G + (F ) H + (F ) = 0. Kohdista (4)-(6) seuraa, että ψ on isomorfismi, joten väite on saatu todistettua. Todistetaan seuraava lause 2.3 tapauksessa C U 3. Lauseen 2.3 tulos pätee toki myös käyrille C U 1 ja C U 2. Lause 2.3 Olkoon C jaottoman homogeenisen polynomin F k[x, Y, Z] määräämä projektiivinen tasokäyrä ja P = (a, b, 1) C. Tällöin O P (C) = O (a,b) (C U 3 ). Todistus. Halutaan osoittaa, että lauseen 2.2 isomorfismi ψ : k(c) k(c U 3 ), G + (F ) H + (F ) G + (F ) H + (F ). rajoittuu isomorfismiksi Olkoon O P (C) O (a,b) (C U 3 ). u v O P (C). 27

31 Koska u, v k h [C] ovat samaa astetta d olevia muotoja, määritelmän 2.7 perusteella on olemassa sellaiset d-asteiset homogeeniset polynomit U, V k[x, Y, Z], että u = U + (F ), v = V + (F ). Nyt ψ( U + (F ) V + (F ) ) = U + (F ) V + (F ). Renkaan O P (C) määritelmä edellyttää, että v(a, b, 1) 0. Lisäksi v(a, b, 1) = V (a, b, 1). Koska V (a, b) = V (a, b, 1), niin V (a, b, 1) 0 täsmälleen silloin, kun V (a, b) 0. Jos siis u v O P (C), niin ψ( u v ) O (a,b)(c U 3 ). Olkoon sitten g h O (a,b)(c U 3 ). Tällöin h(a, b) 0. On olemassa sellainen H k[x, Y ], että h(a, b) = H(a, b). Nyt H (a, b, 1) = H(a, b) 0. Tämä tarkoittaa, että ψ 1 ( g h ) O P (C). Jatkossa esitettävät rationaalifunktioiden kuntaa k(c) ja rengasta O P (C) koskevat tarkastelut voidaan lauseiden 2.2 ja 2.3 nojalla yleistää niin affiineille kuin projektiivisillekin tasokäyrille. 2.4 Projektiivinen koordinaattimuunnos Yleistetään koordinaattimuunnos myös projektiiviselle n-ulotteiselle avaruudelle: Määritelmä 2.10 Bijektiota T : P n P n, (x 1,..., x n+1 ) (T 1 (x 1,..., x n+1 ),..., T n+1 (x 1,..., x n+1 )), missä jokainen T i k[x 1,..., X n+1 ] (i = 1,..., n + 1) on homogeeninen ensimmäisen asteen polynomi, kutsutaan projektiiviseksi koordinaattimuunnokseksi. Merkitään symbolisesti T = (T 1,..., T n+1 ). 28

32 Mikäli T = (T 1,..., T n+1 ) : P n P n on projektiivinen koordinaattimuunnos ja G k[x 1,..., X n+1 ], niin polynomille G(T 1,..., T n+1 ) käytetään entuudestaan tuttua merkintää G T. On ilmeistä, että jos G on homogeeninen, niin myös G T on homogeeninen astetta deg(g). Olkoon C jaottoman homogeenisen polynomin F k[x, Y, Z] määräämä projektiivinen tasokäyrä sekä T = (T 1, T 2, T 3 ) : P 2 P 2 projektiivinen koordinaattimuunnos. Myös polynomi F (T 1, T 2, T 3 ) k[x, Y, Z] määrää projektiivisen tasokäyrän: Apulause 2.3 Olkoon F k[x, Y, Z] jaoton homogeeninen polynomi ja T = (T 1, T 2, T 3 ) : P 2 P 2 projektiivinen koordinaattimuunnos. Nyt myös polynomi F (T 1, T 2, T 3 ) k[x, Y, Z] on jaoton homogeeninen polynomi. Todistus. Selvästi F (T 1, T 2, T 3 ) on homogeeninen astetta deg(f ). Muutoin todistus suoritetaan samoin kuin affiinin tasokäyrän tapauksessa apulauseessa Myös käyrälle F (T 1 (X, Y, Z), T 2 (X, Y, Z), T 3 (X, Y, Z)) = 0 käytetään merkintää C T. Samoin kuin affiinien tasokäyrien yhteydessä havaitaan, että C T = T 1 (C). Apulause 2.4 Olkoon T : P n P n projektiivinen koordinaattimuunnos. Nyt T indusoi isomorfismin T : k[x 1,..., X n+1 ] k[x 1,..., X n+1 ], T (F ) = F (T 1,..., T n+1 ). Todistus. Samoin kuin affiinien tasokäyrien tapauksessa (kts. apulause 1.15). Apulause 2.5 Olkoot P 1, P 2, P 3 P 2 pisteitä, jotka eivät ole samalla suoralla sekä Q 1, Q 2, Q 3 P 2 pisteitä, jotka eivät ole samalla suoralla. Tällöin on olemassa sellainen yksikäsitteinen projektiivinen koordinaattimuunnos että T (P i ) = Q i, i = 1, 2, 3. Todistus. Merkitään T : P 2 P 2, P 1 = (a 1 : a 2 : a 3 ), P 2 = (b 1 : b 2 : b 3 ), P 3 = (c 1 : c 2 : c 3 ) sekä Q 1 = (d 1 : d 2 : d 3 ), Q 2 = (e 1 : e 2 : e 3 ), Q 3 = (f 1 : f 2 : f 3 ). 29

33 Mikäli T on olemassa, se on määritelmän 2.10 mukaan muotoa T = (T 1, T 2, T 3 ) = (A 1 X + B 1 Y + C 1 Z, A 2 X + B 2 Y + C 2 Z, A 3 X + B 3 Y + C 3 Z). Koordinaattimuunnoksen T olemassaolo on sama asia kuin se, että yhtälöryhmä (1) A 1 a 1 + B 1 a 2 + C 1 a 3 = d 1 (2) A 1 b 1 + B 1 b 2 + C 1 b 3 = e 1 (3) A 1 c 1 + B 1 c 2 + C 1 c 3 = f 1 (4) A 2 a 1 + B 2 a 2 + C 2 a 3 = d 2 (5) A 2 b 1 + B 2 b 2 + C 2 b 3 = e 2 (6) A 2 c 1 + B 2 c 2 + C 2 c 3 = f 2 (7) A 3 a 1 + B 3 a 2 + C 3 a 3 = d 3 (8) A 3 b 1 + B 3 b 2 + C 3 b 3 = e 3 (9) A 3 c 1 + B 3 c 2 + C 3 c 3 = f 3 Se, että yhtälöryhmä (1)-(9) on ratkeava, on sama asia kuin se, että yhtälöryhmän kerroinmatriisi a 1 a 2 a b 1 b 2 b c 1 c 2 c a 1 a 2 a A = b 1 b 2 b c 1 c 2 c a 1 a 2 a b 1 b 2 b c 1 c 2 c 3 on kääntyvä. Nyt A muodostuu yhdeksästä 3 3-lohkosta, joista toinen, kolmas, neljäs, kuudes, seitsemäs ja kahdeksas ovat nollalohkoja. Matriisin A determinantti on ensimmäisen, viidennen ja yhdeksännen lohkojen determinanttien tulo. Näiden lohkojen determinantit eroavat nollasta, sillä P 1, P 2 ja P 3 (Q 1, Q 2 ja Q 3 ) eivät ole samalla suoralla, minkä vuoksi lohkojen rivit ovat lineaarisesti riippumattomia. Siis det(a) 0, mikä tarkoittaa, että T on olemassa. Kertoimet A i, B i ja C i, i = 1, 2, 3 ratkeavat nyt yksikäsitteisesti yhtälöryhmästä (1)-(9). 30

34 2.5 Projektiivisen tasokäyrän säännöllisyys Affiineille tasokäyrille esitetty säännöllisen pisteen määritelmä on aivan vastaava projektiivistenkin käyrien tapauksessa: Määritelmä 2.11 Olkoon C jaottoman homogeenisen polynomin F k[x, Y, Z] määräämä projektiivinen tasokäyrä. Pistettä P C kutsutaan epäsäännölliseksi, jos F F F (P ) = (P ) = (P ) = 0. X Y Z Muutoin pisteen P sanotaan olevan säännöllinen. Käyrää C sanotaan säännölliseksi tai sileäksi, mikäli sen kaikki pisteet ovat säännöllisiä. Todistetaan seuraava apulause tapauksessa C U 3. Vastaava tulos on tietenkin voimassa myös tapauksissa C U 1 ja C U 2. Apulause 2.6 Olkoon C jaottoman homogeenisen polynomin F k[x, Y, Z] määräämä projektiivinen tasokäyrä. Piste P = (a, b, 1) C on säännöllinen, jos ja vain jos piste (a, b) C U 3 on säännöllinen. Todistus. Näytetään, että jos piste (a, b, 1) C on säännöllinen, niin piste (a, b) C U 3 on säännöllinen. Ketjusäännön perusteella F X (a, b, 1) = F (a, b) X ja F Y (a, b, 1) = F (a, b), Y joten määritelmän 1.17 vaatimukset toteutuvat, jos pystytään osoittamaan, että tai Tehdään vastaoletus, että F (a, b, 1) 0 X F (a, b, 1) 0. Y F F (a, b, 1) = (a, b, 1) = 0. X Y 31

35 Tällöin homogeenisille polynomeille voimassa olevan Eulerin kaavan deg(f )F (a, b, 1) = X F F (a, b, 1) + Y (a, b, 1) + 1 F (a, b, 1) X Y Z vasen puoli on = 0 (koska (a, b, 1) C) ja oikea puoli 0 (koska pisteen (a, b, 1) C säännöllisyyden perusteella F (a, b, 1) 0), Z ja päädytään ristiriitaan. Jos puolestaan piste (a, b) C U 3 on säännöllinen, niin F (a, b) 0 X tai F (a, b) 0. Y Pisteen (a, b, 1) C säännöllisyys seuraa nyt ketjusäännöstä. 32

36 3 Algebrallisista käyristä Tästä eteenpäin algebrallinen tasokäyrä on yleisnimitys affiinille ja projektiiviselle tasokäyrälle. 3.1 Noetherin rengas Algebrallisessa geometriassa on mielenkiintoista tarkastella sellaisia renkaita, joiden jokainen ideaali on äärellisen joukon virittämä. Otetaan käyttöön seuraava määritelmä: Määritelmä 3.1 Rengasta R kutsutaan Noetherin renkaaksi, jos sen jokainen ideaali on äärellisen joukon virittämä. Koska kunnan K ainoat ideaalit ovat {0} ja K = (1 K ), kunnat ovat Noetherin renkaita. Seuraavat seikat valmistelevat Noetherin renkaita koskevan Hilbertin kantalauseen todistusta: Määritelmä 3.2 Olkoon R rengas ja F = a d X d a 1 X + a 0 R[X], missä a d 0. Termiä a d X d kutsutaan polynomin F johtavaksi termiksi ja kerrointa a d polynomin F johtavaksi kertoimeksi. Apulause 3.1 Olkoon R Noetherin rengas ja I renkaan R[X] ideaali. Olkoon J m joukko, joka koostuu ideaalin I korkeintaan astetta m olevien polynomien johtavista kertoimista. Nyt J m on renkaan R ideaali. Todistus. Olkoon a, b J m ja r R. Oletetaan, että a on astetta k m olevan polynomin G 1 I johtava kerroin ja b astetta l m olevan polynomin G 2 I johtava kerroin. Koska polynomi rg 1 I on astetta k, niin ar J m. Nyt myös a + b J m. Jos näet k l, niin a + b on astetta l olevan polynomin X l k G 1 + G 2 I johtava kerroin. Apulauseen 3.1 eräs erikoistapaus on apulause 3.2: Apulause 3.2 Olkoon R Noetherin rengas ja I renkaan R[X] ideaali. Olkoon J joukko, joka koostuu kaikkien polynomien F I johtavista kertoimista. Nyt J on renkaan R ideaali. 33

37 Todistus. Tulos saadaan apulauseesta 3.1 asettamalla m deg(f ) kaikilla F I. Nyt pystytään todistamaan Hilbertin kantalause: Lause 3.1 (Hilbertin kantalause) Jos R on Noetherin rengas, niin polynomirengas R[X 1,..., X n ] on Noetherin rengas. Todistus. Käytetään induktioperiaatetta luvun n Z + suhteen. Perusaskeleessa oletetaan, että R on Noetherin rengas, ja osoitetaan, että R[X] on Noetherin rengas. Olkoon I renkaan R[X] ideaali ja J ideaalin I kaikkien polynomien johtavien kerrointen joukko. Apulauseen 3.2 mukaan J on renkaan R ideaali. Määritelmän 3.1 perusteella on olemassa äärellinen joukko polynomeja F 1,..., F r I, joiden johtavat kertoimet virittävät ideaalin J. Valitaan luku n N niin, että n > deg(f i ) (i = 1,..., r). Olkoon jokaista lukua m = 0,..., n kohti J m se joukko, joka koostuu sellaisten polynomien F I johtavista kertoimista, että deg(f ) m. Apulauseen 3.1 perusteella joukot J m ovat renkaan R ideaaleja. Olkoon lisäksi kullakin luvun m = 0,..., n arvolla {F mj } sellainen joukko ideaalin I polynomeja, että joukon {F mj } polynomien johtavat kertoimet virittävät ideaalin J m. Koska J m on renkaan R ideaali, joukot {F mj } ovat äärellisiä. Olkoon I polynomien F 1,..., F r ja polynomien F mj virittämä renkaan R[X] ideaali. Koska ideaalin I virittäjät ovat ideaalin I polynomeja, niin I I. Nyt I on äärellisen joukon virittämä, joten perusaskeleen todistamiseksi riittää osoittaa, että I = I. Tehdään vastaoletus, että I I. Olkoon G I pienintä mahdollista astetta oleva polynomi, jolle pätee G I. Jos deg(g) > n, on olemassa sellaiset polynomit Q i R[X] että polynomeilla r Q i F i ja G on sama johtava termi (i = 1,..., r). Täten i=1 r deg(g Q i F i ) < deg(g). i=1 34

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan 4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta. ALGEBRA II 27 on homomorfismi. Ensinnäkin G(a + b) a + b G(a)+G(b) (f), G(ab) ab G(a)G(b) G(a) G(b) (f), ja koska kongruenssien vasempien ja oikeiden puolten asteet ovat pienempiä kuin f:n aste, niin homomorfiaehdot

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

Avainsanat Nyckelord Keywords Nullstellensatz, Hilbertin nollajoukkolause, algebrallinen geometria

Avainsanat Nyckelord Keywords Nullstellensatz, Hilbertin nollajoukkolause, algebrallinen geometria HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Sampo

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

14. Juurikunnat Määritelmä ja olemassaolo.

14. Juurikunnat Määritelmä ja olemassaolo. 14. Juurikunnat Mielivaltaisella polynomilla ei välttämättä ole juuria tarkasteltavassa kunnassa. Tässä luvussa tutkitaan sellaisia algebrallisia laajennoksia, jotka saadaan lisäämällä polynomeille juuria.

Lisätiedot

[E : F ]=[E : K][K : F ].

[E : F ]=[E : K][K : F ]. ALGEBRA II 35 Lause 4.4 (Astelukulause). Olkoot E/K/Fäärellisiä kuntalaajennuksia. Silloin [E : F ]=[E : K][K : F ]. Todistus. Olkoon {α 1,...,α n } kanta laajennukselle E/K ja {β 1,...,β m } kanta laajennukselle

Lisätiedot

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Determinantti 1 / 30

Determinantti 1 / 30 1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen

Lisätiedot

15. Laajennosten väliset homomorfismit

15. Laajennosten väliset homomorfismit 15. Laajennosten väliset homomorfismit Rakenteiden väliset homomorfismit auttavat selvittämään rakenteiden suhteita toisiinsa. Rakenteen sisäiset isomorfismit niin sanotut automorfismit auttavat vastaavasti

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus. 1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

1 Algebralliset perusteet

1 Algebralliset perusteet 1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset

Lisätiedot

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l, 2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5.2 BCH-koodin dekoodaus Tarkastellaan t virhettä korjaavaa n-pituista BCH-koodia. Olkoon α primitiivinen n:s ykkösen juuri, c = c(x)

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot

Lisätiedot

ei ole muita välikuntia.

ei ole muita välikuntia. ALGEBRA II 41 Lause 4.15. F q m on polynomin x qm x hajoamiskunta kunnan F q suhteen. Todistus. Olkoon α kunnan F q m primitiivialkio. Nyt F qm =< α > muodostuu täsmälleen polynomin x qm 1 1nollakohdistajatäten

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä

Lisätiedot

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

Rollen lause polynomeille

Rollen lause polynomeille Rollen lause polynomeille LuK-tutkielma Anna-Helena Hietamäki 7193766 Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 015 Sisältö 1 Johdanto 1.1 Rollen lause analyysissä.......................

Lisätiedot

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo

Lisätiedot

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R. 11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ

Lisätiedot

15. Laajennosten väliset homomorfismit

15. Laajennosten väliset homomorfismit 15. Laajennosten väliset homomorfismit Rakenteiden väliset homomorfismit auttavat selvittämään rakenteiden suhteita toisiinsa. Rakenteen sisäiset isomorfismit eli niin sanotut automorfismit auttavat vastaavasti

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

Teemu Ojansivu Polynomien resultanteista

Teemu Ojansivu Polynomien resultanteista PRO GRADU -TUTKIELMA Teemu Ojansivu Polynomien resultanteista TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Matematiikka Helmikuu 2015 Tampereen yliopisto Matematiikan ja tilastotieteen laitos Ojansivu,

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

Lineaarinen yhtälöryhmä

Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.

Lisätiedot

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Ennakkotehtävän ratkaisu

Ennakkotehtävän ratkaisu Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on

Lisätiedot

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1). HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen

Lisätiedot

802320A LINEAARIALGEBRA OSA II

802320A LINEAARIALGEBRA OSA II 802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28

TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28 TOOLS Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 2018 TOOLS 1 / 28 Merkintöjä ja algebrallisia rakenteita Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset kokonaisluvut}. TOOLS

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

Äärelliset kunnat ja polynomien jako alkutekijöihin

Äärelliset kunnat ja polynomien jako alkutekijöihin TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heidi Kananoja Äärelliset kunnat ja polynomien jako alkutekijöihin Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Syyskuu 2007 Tampereen yliopisto

Lisätiedot

Polynomien suurin yhteinen tekijä ja kongruenssi

Polynomien suurin yhteinen tekijä ja kongruenssi Polynomien suurin yhteinen tekijä ja kongruenssi Pro gradu -tutkielma Outi Aksela 2117470 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Renkaat 3 1.1 Rengas...............................

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan Tehtävä 7 : 1 a) Olkoon G jokin epäyhtenäinen verkko. Tällöin väittämä V (G) 2 pätee jo epäyhtenäisyyden nojalla. Jokaisella joukolla X on ehto X 0 voimassa, joten ehdot A < 0 ja F < 0 toteuttavilla joukoilla

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen 802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen Algebran ja lukuteorian harjoitustehtäviä Versio 1.0 (27.1.2006) Turun yliopisto Lukuteoria 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen joukolla: a) C D

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus

Lisätiedot

Ominaisarvot ja ominaisvektorit 140 / 170

Ominaisarvot ja ominaisvektorit 140 / 170 Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin.

Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin. 18 ALGEBRA II missä r n (x) =syt(f(x),g(x)). Lause 2.7. Olkoot f(x),g(x) K[x]. Silloin syt(f(x),g(x)) = a(x)f(x)+b(x)g(x), joillakin a(x),b(x) K[x]. Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset

Lisätiedot

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista 29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5 BCH-, RS- ja Goppa-koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 15 5.1 BCH-koodien määrittely Olkoon jälleen F = F q, syt(n,

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

Tehtävä 4 : 2. b a+1 (mod 3)

Tehtävä 4 : 2. b a+1 (mod 3) Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot