SIGNAALITEORIAN KERTAUSTA 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "SIGNAALITEORIAN KERTAUSTA 1"

Transkriptio

1 SIGNAALITEORIAN KERTAUSTA 1 1 (26)

2 Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä kompleksinen spektri jaetaan kahdeksi osakuvaajaksi, amplitudi- ja vaihespektriksi sen esittämiseksi osissa 2D-kuvaajina. Tehotiheysspektri kuvaa tehon jakautumista taajuuden yli, eli sen taajuusintegraali on kokonaislähetysteho. Spektrin Fourier-laskenta riippuu signaalin tyypistä: energia- tai tehosignaali. Energiasignaaleilla on äärellinen energia, eli ne ovat eräänlaisia kertailmioitä tyypillisesti äärellisen kestoisia signaaleja. Energiasignaalille s(t) sen spektri S(f) lasketaan Fouriermuunnoksen + avulla: S( j πft = F{ s( t)} = s( t) e 2 dt Kyseessä on jatkuva-arvoinen kompleksinen taajuuden funktio. Se voidaan esittää amplitudi- ja vaihespektrin avulla (kts. Z&T s ): S( f ) f jθ ( f ) = S( f ) e, θ ( f ) ) = S( f ) 2 (26)

3 Fourier-muunnos ja käänteismuunnos 3 (26)

4 Fourier-sarjat ja viivaspektri Tehosignaaleilla on äärellinen keskimääräinen teho ja ääretön energia. Tyypillisiä ovat periodisesti toistuvat signaalit (esim. sini). Koska tehosignaalilla on periodinen komponentti, spektrisisältö lasketaan Fourier-sarjakehitelmän avulla. Olkoon esim. y(t) T -periodinen tehosignaali (perustaajuus f = 1/T ), joka voidaan esittää Fourier-sarjan kertoimien avulla: 2 T y( t) T + 2 = a 2 [ a cos(2πnf t) + b sin(2πnf t ] + ) n n n= 1 T + 2 an = y( t)cos(2πnf t) dt bn = T 2 Eulerin kaavaa käyttäen voidaan kirjoittaa spektri muotoon: 1 2 cos(2πnf t) 2 2 T T 2 y( t)sin(2πnf t) dt [ e j nf t e j nf t ] + 2π π = + nf t [ e j nf t e j nf t ] + 2π π sin(2π ) = 1 2 j 2 4 (26)

5 Fourier-sarjat ja viivaspektri a y( t) = + n 2 n n n + n= 1 n= 1 [ ] + j2πnf t [ ] j2πnf t a jb e + a jb e positiiviset taajuudet negatiiviset taajuudet Kompleksiset kertoimet z n = a n ± jb n kuvaavat tehon jakautumisen. Huomataan, että periodisesti toistuvan signaalin kompleksinen tehospektri on diskreettiarvoinen viivaspektri esiintyen vain perustaajuuden f välein (ns. harmoonisilla taajuuksilla). Z n Vain nämä komp. esiintyvät puhtaalla sinimuotoisella signaalilla. -5f -4f -3f -2f -f f 2f 3f 4f 5f f Jos em. tavalla lasketaan esim. kosini- ja sinisignaalien spektrit, jää yo. sarjaan vain kaksi termiä taajuuksille ±f. 5 (26)

6 Fourier-sarjat ja viivaspektri Kompleksisen kertoimen itseisarvo Z n = a n ± jb n on sama kuin kutakin taajuuskomponenttia vastaavan sinimuotoisen aallon amplitudi. 6 (26)

7 Mitä ihmettä ovat negatiiviset taajuudet? Trigonometrian kaavoja (mm. Eulerin kaava) käyttäen voidaan ilmasta negatiivisen taajuuden ω omaava sinimuotoinen signaali: e ± jω t cos( ω t) Eräs tapa ymmärtää ± -taaj. on huomio, että Fourier -sarjan kompleksiset komponentit e j n ω ω t ja e +j n ω ω t matemaattisesti yhdessä muodostavat reaalimaailmassa esiintyvän sinimuotoisen signaalin taajuudella n ω. Matemaattisen sarja-analyysin kannalta välttämättömät negatiiviset taajuudet n ω merkitsevät, että komponentti e j n ω ω t on mukana sarjassa. Vrt. hiukkanen & antihiukkanen ja niiden ominaisuudet (esim. varaus, spin). Kannattaa muistaa myös eräs matematiikan kauneimmista kaavoista, jossa on kaikki matematiikalla pelaamiseen tarvittavat tärkeimmät peruspalikat nätissä paketissa, ts. 1, +1,, e, π, j: e ±j π = cosω t = cos( ω t) π + 1 =, e ±j π = 1 ± j sinω t 7 (26)

8 Exp( 2πt) 1 Function exp(-2*pii*t) Time axis [seconds] 8 (26)

9 Exp(+2πt) 4.5 x 113 Function exp(+2*pii*t) Time axis [seconds] 9 (26)

10 Exp( j2πt) Function exp(-j*2*pii*t) (angular frequency = 1 rad/s) Imaginary axis Real axis Time axis [seconds] 1 (26)

11 Exp(+j2πt) Function exp(+j*2*pii*t) (angular frequency = 1 rad/s) Imaginary axis Real axis Time axis [seconds] 11 (26)

12 Periodiset signaalit Fourier-sarjan avulla esitettynä 12 (26)

13 Periodiset signaalit Fourier-sarjan avulla esitettynä 13 (26)

14 Sakarapulssijonon amplitudispektri 14 (26)

15 Sakarapulssijonon amplitudispektri 15 (26)

16 Sakarapulssijonon amplitudispektri 16 (26)

17 Sakarapulssijonon amplitudispektri Sakarapulssijonon spektriviivat esiintyvät vain parittomilla perustaajuuden harmoonisilla. 17 (26)

18 Sakarapulssijono Fourier-sarjan avulla esitettynä Fourier-sarjan komponenteilla voidaan approksimoida mitä tahansa periodista signaalia. Esim. alla kantataajuinen sakarapulssijono saadaan sarjan termien summana, kun n. 18 (26)

19 Sakarapulssijono Fourier-sarjan avulla esitettynä Kukin harmoninen komponentti edustaa pyörivää kompleksista osoitinta taajuudella n ω (erilaiset pyörimisnopeudet). Mitä pitempi osoitinvektori, sitä suurempi on spektrikomponentin itseisarvo amplitudispektrissä. 19 (26)

20 Sakarapulssijono Fourier-sarjan avulla esitettynä Toisin kuin edellä, tässä kuvassa sakarapulssijonolla on nollasta poikkeava keskiarvo (summautuva DC-komponentti). 2 (26)

21 Sakarapulssijono Fourier-sarjan avulla esitettynä Trigonometrisen Fouriersarjan katkaisusta aiheutuu ns. Gibbsin oskillaatioilmiö 21 (26)

22 Pulssijonon pulssin keston ja toistotaajuuden vaikutus 22 (26)

23 Pulssijonon pulssin keston ja toistotaajuuden vaikutus 23 (26)

24 Pulssijonon pulssin keston ja toistotaajuuden vaikutus Pulssijonoja esiintyy mm. pulssitettujen tutkasignaalien yhteydessä (RF-modulaation jälkeen näkyy tietenkin kosinipulssien sarja jollakin duty-cycle:llä, mahdollisesti vielä vaihekoodattuna). Alla olevan viivaspektrin verhokäyrä on tärkeä sinc-funktio: sinc(x) = sin(πx)/(πx) 24 (26)

25 Pulssijonon pulssin keston τ vaikutus 25 (26)

26 Pulssijonon pulssin toistotaajuuden 1/T vaikutus Huomaa viivaspektrin mielenkiintoinen rajatapaus: Kun T, niin diskreetti amplitudispektri muuttuu jatkuvaksi funktioksi. 26 (26)

SIGNAALITEORIAN KERTAUSTA OSA 1

SIGNAALITEORIAN KERTAUSTA OSA 1 1 SIGNAALITEORIAN KERTAUSTA OSA 1 Millainen on signaalin spektri ja miten se lasketaan? SIGNAALIEN JA SPEKTRIN PERUSKÄSITTEITÄ 2 Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka graafinen

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

SIGNAALITEORIAN KERTAUSTA OSA 2

SIGNAALITEORIAN KERTAUSTA OSA 2 1 SIGNAALITEORIAN KERTAUSTA OSA 2 Miten spektri lasketaan moduloiduille ja näytteistetyille tietoliikennesignaaleille? KONVOLUUTIO JA KERTOLASKU 2 Kantataajuussignaali (baseband) = sanomasignaali ilman

Lisätiedot

Jaksollisen signaalin spektri

Jaksollisen signaalin spektri Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta

Lisätiedot

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( ) Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat

Lisätiedot

Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri

Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri Luento 4 Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 9 Oppenheim 3.3, 3.4 4.1 Fourier-sarja Kompleksi F-sarja F-sinisarja Sinc-funktio 4. Viivaspektri, tehospektri Viivaspektri Parsevalin teoreema

Lisätiedot

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla

4. Fourier-analyysin sovelletuksia. Funktion (signaalin) f(t) näytteistäminen tapahtuu kertomalla funktio näytteenottosignaalilla 4.1 Näytteenottolause 4. Fourier-analyysin sovelletuksia Näyttenottosignaali (t) = k= δ(t kt). T on näytteenottoväli, ja ω T = 1 T on näyttenottotaajuus. Funktion (signaalin) f(t) näytteistäminen tapahtuu

Lisätiedot

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246 Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df) ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari

Lisätiedot

Spektri- ja signaalianalysaattorit

Spektri- ja signaalianalysaattorit Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden

Lisätiedot

6.2.3 Spektrikertymäfunktio

6.2.3 Spektrikertymäfunktio ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa. Pentti Romppainen

Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa. Pentti Romppainen Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa Pentti Romppainen Kajaanin ammattikorkeakoulu Oy Kajaani University of Applied Sciences Diskreetti Fourier-muunnos ja

Lisätiedot

Kotitehtävät 1-6: Vastauksia

Kotitehtävät 1-6: Vastauksia /V Integraalimuunnokset Metropolia/. Koivumäki Kotitehtävät -6: Vastauksia. Merkitse kompleksitasoon näiden kompleksilukujen sijainti: a = 3 j b = 3 35 (3 kulmassa 35 ) jπ / c = d = 3 e j 9.448 e cos(

Lisätiedot

spektri taajuus f c f c W f c f c + W

spektri taajuus f c f c W f c f c + W Kaistanpäästösignaalit Monet digitaaliset tiedonsiirtosignaalit ovat keskittyneet jonkin tietyn kantoaaltotaajuuden f c ympäristöön siten, että signaali omaa merkittäviä taajuuskomponetteja vain kaistalla

Lisätiedot

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008 Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t

Lisätiedot

Signaalimallit: sisältö

Signaalimallit: sisältö Signaalimallit: sisältö Motivaationa häiriöiden kuvaaminen ja rekonstruointi Signaalien kuvaaminen aikatasossa, determinisitinen vs. stokastinen Signaalien kuvaaminen taajuustasossa Fourier-muunnos Deterministisen

Lisätiedot

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely

Lisätiedot

Kapeakaistainen signaali

Kapeakaistainen signaali Tiedonsiirrossa sellaiset signaalit ovat tyypillisiä, joilla informaatio jakautuu kapealle taajuusalueelle jonkun keskitaajuuden ympäristöön. Tällaisia signaaleja kutustaan kapeakaistaisiksi signaaleiksi

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

Fourier-sarjat ja -muunnos

Fourier-sarjat ja -muunnos 24. marraskuuta 2016 Jaksolliset funktiot, trigonometriset sarjat, parilliset ja p Jaksolliset funktiot Funktio f : R R on jaksollinen, jos on olemassa p > 0 siten, että f (x + p) = f (x) kaikilla x R

Lisätiedot

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian

Lisätiedot

Luento 4 Fourier muunnos

Luento 4 Fourier muunnos Luento 4 Luento 4 Fourier muunnos 4. F muunnos F muunnos Oppenheim 4. 4. Energiaspektri (spektritiheys) Rayleigh'n energia teoreema, energiaspektri Kaistanleveys Boden diagrammi 4.3 F muunnoksen ominaisuudet,

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I 1 Johdanto MS-C142 Fourier-analyysi osa I G Gripenberg 2 Fourier-integraali Fourier-muunnos ja derivaatta Konvoluutio Fourier-käänteismuunnos eliöintegroituvat funktiot Aalto-yliopisto 29 tammikuuta 214

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C142 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa I 29. tammikuuta 214 1 / 3 1 Johdanto 2 Fourier-integraali Fourier-muunnos

Lisätiedot

Joukot. Georg Cantor ( )

Joukot. Georg Cantor ( ) Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

Laskuharjoitus 2 ( ): Tehtävien vastauksia

Laskuharjoitus 2 ( ): Tehtävien vastauksia TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti

Lisätiedot

Luento 5. tietoverkkotekniikan laitos

Luento 5. tietoverkkotekniikan laitos Luento 5 Luento 5 Jaksolliset signaalit epälineaarisissa muistittomissa järjestelmissä 5.1 Muistittomat epälineaariset komponentit Pruju Taylor-sarjakehitelmä ja konvoluutio taajuustasossa Särö Keskinäismodulaatio

Lisätiedot

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu 2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.

Lisätiedot

Organization of (Simultaneous) Spectral Components

Organization of (Simultaneous) Spectral Components Organization of (Simultaneous) Spectral Components ihmiskuulo yrittää ryhmitellä ja yhdistää samasta fyysisestä lähteestä tulevat akustiset komponentit yhdistelyä tapahtuu sekä eri- että samanaikaisille

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia 1. a) Muodosta Matlab-ohjelmistossa kosinisignaali x(t) = Acos(2πft+θ), jonka amplitudi on 1V, taajuus hertseinä sama kuin ikäsi vuosina (esim. 2 v = 2 Hz) ja vaihekulma +π/2. Piirrä signaali ja tarkista

Lisätiedot

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Kompleksiluvut signaalin taajuusjakauman arvioinnissa Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos

Lisätiedot

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen Ohjelmistoradio tehtävät 4 P: Ekvalisointi ja demodulaatio Tässä tehtävässä dekoodata OFDM data joka on sijotetty synknonontisignaalin lälkeen. Synkronointisignaali on sama kuin edellisessä laskutehtävässä.

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 30.1.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C1420 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-C1420 Fourier-analyysiosa I 29. tammikuuta 2014 1 / 29 Fourier-muunnoksia Jatkuva-aikaisen

Lisätiedot

Luento 9. tietoverkkotekniikan laitos

Luento 9. tietoverkkotekniikan laitos Luento 9 Luento 9 Jaksolliset signaalit epälineaarisissa muistittomissa järjestelmissä 9.1 Muistittomat epälineaariset komponentit Pruju Taylor-sarjakehitelmä ja konvoluutio taajuustasossa Särö Keskinäismodulaatio

Lisätiedot

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt Epäyhtälöt 1/7 Sisältö Epäyhtälö Epäyhtälöllä tarkoitetaan ehtoa, missä kahdesta lausekkeesta toinen on suurempi tai mahdollisesti yhtä suuri kuin toinen: f(x) < g(x), f(x) g(x).merkit voidaan luonnollisesti

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT 3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään

Lisätiedot

Säätötekniikan ja signaalinkäsittelyn työkurssi

Säätötekniikan ja signaalinkäsittelyn työkurssi Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) Tavoitteet (teoria): Ymmärtää kausivaihtelun käsite ja sen yhteys otoshetkiin. Oppia käsittelemään periodogrammia.. Tavoitteet (R): Periodogrammin,

Lisätiedot

Trigonometriset funktiot 1/7 Sisältö ESITIEDOT: reaalifunktiot

Trigonometriset funktiot 1/7 Sisältö ESITIEDOT: reaalifunktiot Trigonometriset funktiot 1/7 Sisältö Trigonometriset funktiot suorakulmaisessa kolmiossa a c b Olkoon suorakulmaisen kolmion terävä kulma, a tämän vastainen kateetti, b viereinen kateetti ja c kolmion

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

= 2 L L. f (x)dx. coshx dx = 1 L. sinhx nπ. sin. sin L + 2 L. a n. L 2 + n 2 cos. tehdään approksimoinnissa virhe, jota voidaan arvioida integraalin

= 2 L L. f (x)dx. coshx dx = 1 L. sinhx nπ. sin. sin L + 2 L. a n. L 2 + n 2 cos. tehdään approksimoinnissa virhe, jota voidaan arvioida integraalin BMA7 - Integraalimuunnokset Harjoitus 9. Määritä -jaksollisen funktion f x = coshx, < x < Fourier-sarja. Funktion on parillinen, joten b n = kun n =,,3,... Parillisuudesta johtuen kertoimet a ja a n saadaan

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 9..006: tehtävät,3,5,7,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.

Lisätiedot

Fysiikan matematiikka P

Fysiikan matematiikka P Fysiikan matematiikka 763101P Luennoija: Kari Rummukainen, Fysikaalisten tieteiden laitos Tavoite: tarjota opiskelijalle nopeasti fysikaalisten tieteiden tarvitsemia matematiikan perustietoja ja taitoja.

Lisätiedot

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I MS-C140 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 014 G. Gripenberg (Aalto-yliopisto MS-C140 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta

Lisätiedot

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I

MS-C1420 Fourier-analyysi Esimerkkejä, perusteluja, osa I MS-C14 Fourier-analyysi Esimerkkejä, perusteluja, osa I G. Gripenberg Aalto-yliopisto 3. tammikuuta 14 G. Gripenberg (Aalto-yliopisto MS-C14 Fourier-analyysiEsimerkkejä, perusteluja, osa3. I tammikuuta

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen

Lisätiedot

e ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0,

e ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0, Harjoitus 5 1. Olkoot a > 0. Laske vaimenevan pulssin e ax, kun x > 0 fx) = 0, kun x < 0, ja voimistuvan pulssin gx) = konvoluution g f Fourier-muunnos. 0, kun x > 0 e ax, kun x < 0 apa 1: Konvoluution

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Osatentti

Osatentti Osatentti 3 1.4.016 Nimi: Opiskelijanumero: Ohjeet: Kirjoita vastaukset paperissa annettuun tilaan. Lisävastaustilaa on paperin lopussa. Käytä selvää käsialaa. Laskin EI ole sallittu. Tenttikaavasto jaetaan.

Lisätiedot

DSP:n kertausta. 1 Spektri, DFT, DTFT ja aika-taajuusresoluutio

DSP:n kertausta. 1 Spektri, DFT, DTFT ja aika-taajuusresoluutio DSP:n kertausta Kerrataan/käydään läpi: ffl Spektri, DFT, DTFT ja FFT ffl signaalin jaksollisuuden ja spektrin harmonisuuden yhteys ffl aika-taajuusresoluutio Spektri, DFT, DTFT ja aika-taajuusresoluutio

Lisätiedot

VAIHEKOHERENTIT BINÄÄRISET KANTOAALTOMODULAATIOT JA NIIDEN VIRHETODENNÄKÖISYYDET

VAIHEKOHERENTIT BINÄÄRISET KANTOAALTOMODULAATIOT JA NIIDEN VIRHETODENNÄKÖISYYDET 1 VAIHEKOHERENTIT BINÄÄRISET KANTOAALTOMODULAATIOT JA NIIDEN VIRHETODENNÄKÖISYYDET Millaiset aaltomuodot s 1 (t) ja s (t) valitaan erilaisten kantoaatomodulaatioiden toteuttamiseksi? SYMBOLIAALTOMUODOT

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

MS-C1420 Fourier-analyysi osa II

MS-C1420 Fourier-analyysi osa II MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta 214 1 / 36 1 Fourier-sarjat ja Fourier-integraalit

Lisätiedot

Signaalien datamuunnokset. Digitaalitekniikan edut

Signaalien datamuunnokset. Digitaalitekniikan edut Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena

Lisätiedot

Signaalien datamuunnokset

Signaalien datamuunnokset Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Signaalien digitaalinen käsittely

Signaalien digitaalinen käsittely Signaalien digitaalinen käsittely Antti Kosonen Syksy 25 LUT Energia Sähkötekniikka Alkulause Luentomoniste pohjautuu kirjaan Digital Signal Processing: Principles, Algorithms, and Applications, Proakis

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42 Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät 8.5.2013 1 / 42 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien

Lisätiedot

LUKU 3 ANALOGISET KANTOAALTO- JA PULSSIMODULAATIOMENETELMÄT

LUKU 3 ANALOGISET KANTOAALTO- JA PULSSIMODULAATIOMENETELMÄT LUKU 3 ANALOGISET KANTOAALTO- JA PULSSIMODULAATIOMENETELMÄT 1 (7) Luku 3 Analogiset perusmodulaatiomenetelmät Modulaatiomenetelmien jaottelu Lineaariset modulaatiot Kaksisivukaistamodulaatio (DSB) Amplitudimodulaatio

Lisätiedot

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut 0. Kertausta Luvut, lukujoukot (tavalliset) N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut Rationaaliluvut n/m, missä n,m Z Reaaliluvut R muodostavat jatkumon fysiikan lukujoukko Kompleksiluvut C:z

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/37 S-114.770 Kieli kommunikaatiossa...

Lisätiedot

Ch4 NMR Spectrometer

Ch4 NMR Spectrometer Ch4 NMR Spectrometer Tässä luvussa esitellään yleistajuisesti NMR spektrometrin tärkeimmät osat NMR-signaalin mittaaminen edellyttää spektrometriltä suurta herkkyyttä (kykyä mitata hyvin heikko SM-signaali

Lisätiedot

Luento 7. LTI-järjestelmät

Luento 7. LTI-järjestelmät Luento 7 Lineaaristen järjestelmien analyysi taajuustasossa Taajuusvaste Stabiilisuus..7 LTI-järjestelmät u(t) h(t) y(t) Tarkastellaan lineaarista aikainvarianttia järjestelmää n n m m d d d d yt () =

Lisätiedot

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä? BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

Signaaliavaruuden kantoja äärellisessä ajassa a

Signaaliavaruuden kantoja äärellisessä ajassa a ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 3: Kompleksiarvoiset signaalit, taajuus, kantoaaltomodulaatio Olav Tirkkonen, Jari Lietzen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos Signaaliavaruuden

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

Sähkötekniikka ja elektroniikka

Sähkötekniikka ja elektroniikka Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Vaihtovirta ja osoitinlaskenta Luento Sinimuotoinen virta ja jännite Tehollisarvo, huippuarvo, vaihekulma Ajan vai taajuuden funktiona? Viime viikon kytkentäilmiöt

Lisätiedot

Äärettömät raja-arvot

Äärettömät raja-arvot Äärettömät raja-arvot Määritelmä Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on + mikäli kaikilla R > 0 löytyy sellainen δ > 0 että f (x) > R aina kun x 0 < x < x 0 + δ. Funktion f oikeanpuoleinen

Lisätiedot

Petri Kärhä 04/02/04. Luento 2: Kohina mittauksissa

Petri Kärhä 04/02/04. Luento 2: Kohina mittauksissa Kohinan ominaisuuksia Kohinamekanismit Terminen kohina Raekohina 1/f kohina (Kvantisointikohina) Kohinan käsittely Kohinakaistanleveys Kohinalähteiden yhteisvaikutus Signaali-kohina suhde Kohinaluku Kohinalämpötila

Lisätiedot

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu

Lisätiedot

S Signaalit ja järjestelmät

S Signaalit ja järjestelmät dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä

Lisätiedot

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1. Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa

Lisätiedot

Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta. VASTAUS: ...

Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta. VASTAUS: ... 4 Alkeisfunktiot 41 Potenssifunktio 42 Polynomit ja rationaalifunktiot 102 Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta 103 Olkoon p()

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa

Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 5. joulukuuta 2016 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujonot Lukujonot Z-muunnoksen ominaisuuksia

Lisätiedot

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.

Lisätiedot

Potenssisarja, suppenemissäde. Potenssisarja ja derivointi. Potenssisarja ja analyyttiset funktiot. Potenssisarja ja integrointi.

Potenssisarja, suppenemissäde. Potenssisarja ja derivointi. Potenssisarja ja analyyttiset funktiot. Potenssisarja ja integrointi. Matematiikan peruskurssi KP3 I OSA 4: Taylorin sarja, residymenetelmä A.Rasila J.v.Pfaler 26. syyskuuta 2007 Kompleksista sarjoista Jono, suppeneminen, summasarja Potenssisarja, suppenemissäde ja analyyttiset

Lisätiedot