Luento 18: Kertausluento
|
|
- Ari-Matti Lehtonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Luento 18: Kertausluento Värähdysliike Harmoninen värähtely Vaimennettu värähtely Pakkovärähtely Mekaaniset aallot Eteneminen Seisovat aallot Ääniaallot
2 Luennon sisältö Värähdysliike Harmoninen värähtely Vaimennettu värähtely Pakkovärähtely Mekaaniset aallot Eteneminen Seisovat aallot Ääniaallot
3 Käsitteet Amplitudi (amplitude) A Siirtymän maksimiarvo Jaksonaika (period) T Yhteen värähdykseen kulunut aika Taajuus (frequency) f Värähdysten lukumäärä aikayksikössä Kulmataajuus (angular frequency) ω f = 1 T ω = 2πf
4 Lisää käsitteitä Vaimennettu (damped) värähtely Jos kappaleeseen vaikuttaa palauttavan voiman lisäksi häviöllinen voima, värähdysliikkeen energia pienenee ajan funktiona Pakkovärähtely (forced/driven oscillation) Kappaleeseen vaikuttaa palauttavan voiman lisäksi ajan suhteen periodinen voima, joka pakottaa kappaleen värähtelemään omalla taajuudellaan
5 Luennon sisältö Värähdysliike Harmoninen värähtely Vaimennettu värähtely Pakkovärähtely Mekaaniset aallot Eteneminen Seisovat aallot Ääniaallot
6 Vaimentamaton harmoninen värähtely Matemaattisesti yksinkertaisin värähtely Palauttava voima suoraan verrannollinen poikkeamaan tasapainoasemasta Esim jousi F = kx = ma = m d 2 x dt 2 = d 2 x dt 2 + k m x = 0 Tämän toisen kertaluvun differentiaaliyhtälön yleinen ratkaisu on k > 0 = x = A cos ωt + B sin ωt (lisälappu differentiaaliyhtälöistä MyCoursesissa) Ratkaisussa kaksi vakiota A ja B, joiden määräämiseen tarvitaan kaksi alkuehtoa, esim tieto sijainnista ja nopeudesta jollain ajanhetkellä Mitä on ei-harmoninen värähtely?
7 Harmoninen värähtely Yhtälö voidaan esittää myös muodossa x = A cos(ωt + φ), koska A cos(ωt+φ) = A cos φ cos ωt A sin φ sin ωt = A cos ωt+b sin ωt Värähtelijän nopeus Kiihtyvyys a = dv dt v = dx dt Sijoitetaan liikeyhtälöön = Aω sin(ωt + φ) = Aω 2 cos(ωt + φ) = ω 2 x ω 2 x + k m x = 0 = ω = k m
8 Harmoninen värähtely Kulmanopeus ω määräytyy massasta ja jousivakiosta Lähtövaihe φ määräytyy kappaleen sijainnista kun t = 0
9 Matemaattinen heiluri Kappale heilahtelee massattoman langan varassa Maan vetovoiman aiheuttama palauttava voima on F T = mg sin θ mgθ (kulma θ pieni) Kappaleen tangentiaalikiihtyvyys on Liikeyhtälö a T = Lα = L d 2 θ dt 2 ma T = ml d 2 θ dt 2 = F T = mgθ d 2 θ dt 2 + g L θ = 0 θ F t m g F r
10 Matemaattisen heilurin kulmataajuus Harmonisen värähtelyn yhtälö, jossa värähtelykulmataajuus g ω = L Taajuus riippuu vain langan pituudesta, ei kappaleen massasta Yhtälö approksimaatio, mutta toimii hyvin jopa 15 heilahteluille virhe < 0.5% Yksinkertaista heiluria voidaan käyttää g:n mittaamiseen tai kellona
11 Fysikaalinen heiluri Fysikaalisella heilurilla (physical pendulum) on äärellinen koko Jäykkä kappale heilahtelee jonkin pisteensä O ympäri Painovoiman vaikutus redusoituu massakeskipisteeseen, jolloin painovoiman aiheuttama vääntömomentti O:n suhteen on τ = d w τ = mgd sin θˆk
12 Fysikaalisen heilurin liikeyhtälö Kun kulma θ pieni, vääntömomentti on Kappaleen liikeyhtälö on tällöin τ mgdθ dl = diω = I d 2 θ = τ mgdθ = dt dt dt2 d 2 θ dt + mgd θ = 2 0 I mgd ω = I I on hitausmomentti heilahdusakselin suhteen
13 Lokaalit potentiaalienergiaminimit ja niiden approksimointi paraabelilla Luonnossa monet voimat eivät riipu lineaarisesti siirtymästä Pienet siirtymät voidaan approksimoida harmonisella värähtelyllä Lokaalin minimin ympäristössä kaikki funktiot voidaan kehittää Taylorin kaavan f (x) = f (x 0 ) + f (x 0 ) (x x 0 ) +... = a ± bx ±... Ensimmäinen siirtymästä riippuva termi bx on lineaarinen Joissakin tapauksissa kerroin b = 0 tai b on hyvin pieni Tällöin värähtely ei ole harmonista
14 Luennon sisältö Värähdysliike Harmoninen värähtely Vaimennettu värähtely Pakkovärähtely Mekaaniset aallot Eteneminen Seisovat aallot Ääniaallot
15 Vaimennettu värähtely Jos kappaleeseen vaikuttaa palauttavan voiman lisäksi häviöllinen voima, värähdysliikkeen energia pienenee ajan funktiona Matemaattisesti helpointa analysoida tapausta, jossa kitkavoima suoraan verrannollinen kappaleen nopeuteen F k = bv Kappaleen liikeyhtälö F = kx bv = ma = m d 2 x dt + 2 b dx dt + kx = 0 Merkitään γ = b/2m ja ω 2 = k/m d 2 x dt 2 dx + 2γ dt + ω2 x = 0
16 Ratkaisu DY:ssä funktio ja sen 1. ja 2. derivaatta lineaaritermeinä, joten ratkaisussa eksponenttifunktio Käytetään yritettä x = e λt Sijoitetaan tämä derivaattoineen liikeyhtälöön, jolloin saadaan karakteristinen yhtälö josta edelleen λ 2 + 2γλ + ω 2 λ = 0, λ 1,2 = γ ± γ 2 ω 2 Ratkaisu periaatteessa muotoa x(t) = e λ 1t + e λ 2t
17 Kolme ratkaisuvaihtoehtoa Termin (γ 2 ω 2 ) etumerkistä riippuen yhtälöllä on kolme erityyppistä ratkaisua Alivaimennus ω > γ: harmonisen värähtelijän liikeyhtälö x = e λt = ( A cos(ω t) + B sin(ω t) ) e γt = A cos(ω t + φ) e γt, Kriittinen vaimennus γ = ω : x = (A + Bt) e γt Ylivaimennus γ > ω : x = A e ω t +B e ω t missä ω 2 = ω 2 γ 2
18 Alivaimennetun värähtelyn kulmataajuus A cos(ω t + φ) e γt, missä ω 2 = ω 2 γ 2 kuvaa värähtelijää, jolla kulmataajuus ω ja joka vaimenee eksponentiaalisesti aikavakiolla γ Vaimentamattomalla systeemillä ominais- tai luonnollinen kulmataajuus ω Vaimennetun värähtelijän kulmataajuus siis pienempi kuin vaimentamattoman
19 Luennon sisältö Värähdysliike Harmoninen värähtely Vaimennettu värähtely Pakkovärähtely Mekaaniset aallot Eteneminen Seisovat aallot Ääniaallot
20 Pakkovärähtely Vaimennettu värähtelijä pysähtyy ajan kuluessa Jos värähtelijään kohdistetaan pakkovoima (driving force), se pysyy liikkeessä Liikettä kutsutaan pakkovärähtelyksi (forced/driven oscillation) Yksinkertaisimmassa tilanteessa pakkovoima sinimuotoinen F = F 0 cos ω d t Pakkovoiman taajuus ei tarvitse olla sama kuin systeemin ominaiskulmataajuus Mielivaltainen voima voidaan Fourier-analyysin avulla esittää eritaajuisten ja -amplitudisten sinimuotoisten värähtelyjen summana
21 Pakkovärähtelijän DY Liikeyhtälö d 2 x dt 2 dx + 2γ dt + ω2 x = F 0 m cos ω Dt = Epähomogeeninen DY Yhtälön ratkaisu on homogeenisen yhtälön d 2 x dx + 2γ dt 2 dt + ω2 x = 0 yleinen ratkaisu + epähomogeenisen yhtälön erityisratkaisu Erityisratkaisun yrite: ratkaisulla sama kulmataajuus kuin pakkovoimalla x = A cos(ω D t + φ)
22 Erityisratkaisun yhteenveto Pakkovärähtelyn erityisratkaisun amplitudi F 0 /m A = [(ω2 ) ωd 2 2 ( ) ] 2 + 2γωd Pakkovärähtelyn erityisratkaisun vaihe φ = arctan 2γω d ω 2 ωd 2 Pakkovärähtelyn kokonaislauseke siis vaimennetun värähtelyn yleinen lauseke + tämä erityisratkaisu Erityisratkaisu kuvaa systeemiä homogeenisen yhtälön vaimenevien, ns. transienttiratkaisujen sammuttua
23 Resonanssista Pakkovärähtelijän amplitudi A ja värähtelyn vaihe (vrt. pakkovärähtelyn vaiheeseen) riippuvat voimakkaasti kulmataajuuksista ω ja ω d Resonanssi tarkalleen ottaen kun ω 2 d = ω 2 2γ 2 Jos vaimennus γ pieni, värähtelyn amplitudi suuri Resonanssin leveys määräytyy γ:n arvosta Tehonsiirron puoliarvon leveys (FWHM full width at half maximum) ω = 2γ joten vaimennustermi γ tunnetaan myös nimellä resonanssin puoliarvon leveys Värähtelijän hyvyysarvo eli Q-arvo (quality) on resonanssikulmataajuuden ja kaistanleveyden osamäärä Q = ω 2γ
24 Luennon sisältö Värähdysliike Harmoninen värähtely Vaimennettu värähtely Pakkovärähtely Mekaaniset aallot Eteneminen Seisovat aallot Ääniaallot
25 Pitkittäinen ja poikittainen aaltoliike Mekaaninen aalto syntyy, kun systeemiä poikkeutetaan tasapainoasemastaan Jos häiriö kulkeutuu systeemissä materiaalin eli väliaineen (medium) välityksellä, kyseessä aaltopulssi (wave pulse) Poikittainen aaltoliike (transverse) Väliaineen osaset siirtyvät kohtisuoraan aaltoliikkeen etenemissuuntaan Pitkittäinen aaltoliike (longitudinal) Liike yhdensuuntaista aaltoliikkeen etenemisen kanssa Aaltoliike voi myös olla pitkittäisen ja poikittaisen aaltoliikkeen superpositio
26 Luennon sisältö Värähdysliike Harmoninen värähtely Vaimennettu värähtely Pakkovärähtely Mekaaniset aallot Eteneminen Seisovat aallot Ääniaallot
27 Aallon eteneminen Väliaineessa vaikuttaa voimia, jotka pyrkivät palauttamaan systeemin tasapainotilaan Mekaanisen aallon synnyttämiseksi väliaine on poikkeutettava tasapainoasemastaan Mekaaninen aalto etenee kussakin systeemissä tietyllä nopeudella Väliaine itse ei liiku, vaan sen osaset liikkuvat tasapainoasemansa ympärillä Systeemiin tuotu energia etenee aaltoliikkeen mukana
28 Periodinen aalto Heilutetaan langan päätä jaksollisesti Jokainen langan piste liikkuu myös jaksollisesti Tietty aallon vaihe toistuu väliaineessa säännöllisin välimatkoin = Aallonpituus λ Periodinen aalto = vakio etenemisnopeus v (mikä liikkuu?) = T = 1 f = λ v = v = λf λ x
29 Etenemisnopeus ja aallonpituus Useimmiten aallon nopeus riippuu vain systeemin ominaisuuksista Kaikki taajuudet etenevät samalla nopeudella, eli ω = vk (paitsi ns. dispersiivisessa materiaalissa, jossa ω = ω(k)) Jokaista taajuutta vastaa joku aallonpituus λ = v f Jos liike on harmonista värähtelyä, jonka amplitudi on A, niin väliaineen jokainen piste värähtelee samalla taajuudella
30 Aaltofunktio = Antaa systeemin jokaisen osan paikan kaikkina ajanhetkinä Tarkastellaan langassa eteneviä sinimuotoisia aaltoja Langan yksittäisen osan liike harmonista värähdysliikettä Olkoon aallon etenemissuunta x-akselin suunta Värähdysliike y-akselin suuntaista Kukin langan piste y = y(x, t) Kunkin pisteen liikkeen vaihe eroaa viereisten pisteiden liikkeen vaiheesta
31 Harmoninen aalto Jos langan toinen pää (x = 0) on harmonisessa liikkeessä y(x = 0, t) = A sin ωt Ajanhetkellä t = 0 : y(0, 0) = 0 Oletus: vaihe etenee nopeudella v +x-suuntaan Ajanhetkellä t = x/v pisteen x täytyy olla samassa vaiheessa Tällöin aaltofunktio on [ ( )] y(x, t) = A sin ω t x v! Tämä aaltofunktio toteutuu vain alkuehdolla y(0, 0) = 0 λ x
32 Aallon vaihetekijä Muiden alkuehtojen tapauksessa aaltofunktioon tarvitsee lisätä vaihetekijä φ Yksinkertaisuuden vuoksi, oletetaan φ = 0 aina ei voi näin tehdä! Käyttäen hyväksi etenemisnopeuden yhteyttä taajuuteen saadaan [ y(x, t) = A sin 2π (ft fv )] [ ( t x = A sin 2π T x )] λ
33 Aaltoluku Määritellään suure aaltoluku (wave number) k = 2π λ = v = f λ = ω 2π Nyt aaltofunktio voidaan kirjoittaa muotoon 2π k = ω k y(x, t) = A sin(ωt kx)
34 Vaihenopeus Jos aalto etenee negatiivisen x-akselin suuntaan [ ( t y(x, t) = A sin 2π T x )] = A sin (ωt + kx) λ ωt kx kuvaa aallon vaihetta Seurataan erästä vaihetta φ = ωt kx = vakio, joka kuvaa positiivisen x-akselin suuntaan etenevää tiettyä aallon osaa (esim. maksimi) Vaiheen etenemisnopeus v p = dφ/dt = ω k dx dt = 0 = v = dx dt = ω k = Vaihenopeus (phase velocity) tai aallon etenemisnopeus Kun aalto koostuu useista eri taajuuksista, on mielekkäämpää puhua ryhmänopeudesta (group velocity) v = dω/dk
35 Aaltofunktion osittaisderivaatat aaltoyhtälö Osittaisderivoitaessa aaltofunktiota paikan suhteen saadaan y(x, t) x = ka cos(ωt kx) Aaltofunktion toinen derivaatta paikan suhteen 2 y(x, t) x 2 = k 2 A sin(ωt kx) = k 2 y(x, t)
36 Aaltoyhtälö Yhdistetään edelliset tulokset 2 y(x, t) = x 2 k 2 y(x, t) = k 2 2 y(x, t) ω 2 t 2 Aikaisemmin saatiin tulos v = ω/k = 2 y(x, t) = 1 2 y(x, t) x 2 v 2 t 2 AALTOYHTÄLÖ Toisen kertaluvun osittaisdifferentiaaliyhtälö (partial differential equation) Aaltofunktion toteutettava aaltoyhtälö riippumatta aaltoliikkeen suunnasta Myös muutkin etenevät aallot kuin sinimuotoiset toteuttavat aaltoyhtälön
37 Aaltoliikkeeseen liittyvä teho Esimerkiksi sinimuotoinen aalto Hetkellinen teho y(x, t) = A sin(ωt kx) y(x, t) = ka cos(ωt kx) x y(x, t) = ωa cos(ωt kx) t P(x, t) = Fv Yhtälöillä k = ω/v ja v = F/µ saadaan teho muotoon P(x, t) = µfω 2 A 2 cos 2 (ωt kx)
38 Keskimääräinen teho Tehon maksimiarvo P max = µfω 2 A 2 cos 2 -funktion keskiarvo yli yhden jakson on tasan 1 2 P ave = 1 µfω 2 A 2 2 Keskiarvo saadaan integroimalla: t 2 f T = 1 f (t)dt, T = t 2 t 1 t 2 t 1 t 1
39 Luennon sisältö Värähdysliike Harmoninen värähtely Vaimennettu värähtely Pakkovärähtely Mekaaniset aallot Eteneminen Seisovat aallot Ääniaallot
40 Seisova aaltoliike Aalto ja sen heijastuksen superpositio muodostavat jouseen kohtia jotka värähtelevät (kupu, antinode) ja kohtia jotka eivät liiku ollenkaan (solmu, node) Superpositioperiaatteen avulla voidaan analysoida kuinka kuvut ja solmut muodostuvat Solmujen kohdalla tapahtuu destruktiivinen interferenssi Kupujen kohdalla konstruktiivinen interferenssi
41 Poikittainen seisova aalto Olkoot alkuperäinen ja heijastunut aalto y 1 (x, t) = A sin(ωt + kx) y 2 (x, t) = A sin(ωt kx) ( k kuvaa suunnanvaihdosta) Superpositioperiaatteen mukaan 1 y(x, t) = A [sin(ωt + kx) sin(ωt kx)] = [ ] A sin ωt cos kx + cos ωt sin kx sin ωt cos kx + cos ωt sin kx = (A sw sin kx) cos ωt Jokainen piste värähtelee kuten harmoninen oskillaattori Kerroin A sw sin kx ilmaisee harmonisen värähtelyn amplitudin paikan funktiona 1 sin(α ± β) = sin α cos β ± cos α sin β
42 Seisovan aallon taajuudet Solmukohtien paikat sin kx = 0 = kx = nπ, n = 0, 1, 2,... x = nπ k = n λ 2 Jousella (pituus L), kiinnitetty molemmista päistään, pitää olla päissä solmukohta Koska v = f λ = L = n λ 2 = λ n = 2L n = f n = v λ n = n v 2L = nf 1
43 Luennon sisältö Värähdysliike Harmoninen värähtely Vaimennettu värähtely Pakkovärähtely Mekaaniset aallot Eteneminen Seisovat aallot Ääniaallot
44 Ääniaallot Tähän asti pitkittäisen aallot esitettiin hiukkasten siirtyminä Ääniaallot ilmassa (tai muussa väliaineessa) eteneviä pitkittäisiä aaltoja Ääniaaltoja kätevämpi esittää paineen vaihteluina Infraäänet Alle 20 Hz taajuudet Ultraäänet Yli 20 khz taajuudet Kuuloalue Ihmiskorvan aistima taajuusalue: Hz Tarkastellaan sinimuotoista ääniaaltoa, joka etenee x-akselin suuntaan. Kuvataan hiukkasen y-suuntaista poikkeamaa aaltofunktiolla y(x, t) = A sin(ωt kx)
45 Pitkittäinen aalto kiinteässä aineessa Tarkastellaan pientä tangon osaa (pituus dx) Osan liikeyhtälö F(x + dx) F(x) dx = F x = y(x, t) ρa 2 t 2 Kiinteän aineen muodonmuutos l. deformaatio F = σa = YAɛ = YA l l 0 l 0 ( YA ) = ρa 2 y x x t 2 = YA y x = 2 y x = ρ 2 y = 2 Y t 2 v = Y ρ! Pitkittäinen aaltoliike poikkeama x-akselin suuntainen Intensiteetti I = 1 ρy ω 2 A 2 2
46 Pitkittäinen aalto kaasussa Aallon nopeus riippuu väliaineesta ja sen ympäristöstä Tarkastellaan väliaineella täytettyä sylinteriä Toisessa päässä on liikkuva mäntä Väliaine on levossa (paine p) t = 0: mäntä lähtee liikkumaan nopeudella v y Häiriö (painetihentymä) etenee väliaineessa vakionopeudella v
47 Pitkittäinen aalto väliaineessa Mäntä etenee nopeudella v y Piste P kohdassa x = vt ajanhetkellä t: Vasemmalla puolella väliaine liikkuu nopeudella v y Oikealla puolella on levossa Liikkuvan väliaineen massa m = ρavt
48 Väliaineen liikemäärä Liikkuvaan väliaineosaan vaikuttaa voimat (p + p)a männän puolelta pa levossa olevan väliaineen puolelta Nettovoima pa aiheuttaa ajanhetkeen t mennessä impulssin J y = pa t Väliaineella ei alussa liikemäärää p y = p f p i = p f = mv y = ρavt v y
49 Paine-ero p Tilavuuskimmokertoimen määritelmästä Impulssi on siis B = p = V /V 0 p = B V V 0 V 0 = B Av yt Avt J y = B v y v At Koska J y = p y (p y liikemäärä!) niin = B v y v J y = B v y v At = p y = ρavt v y = v 2 = B ρ = v = B ρ
50 Painefluktuaatiot Merkitään painevaihtelua p(x, t):llä = paikallisen ja ulkoisen keskiarvopaineen erotus Väliainesylinterin lepopituus dx, poikkipinta-ala S Sylinterin tilavuus muuttuu paikallisesti aallon edetessä dv (x, t) = Sy 2 Sy 1 = S [ y(x + dx, t) y(x, t) ] Tilavuuden suhteellinen muutos dv V S [y(x + dx, t) y(x, t)] y(x, t) = = Sdx x
51 Painefluktuaatiofunktio Tilavuuskimmokertoimen määritelmästä p(x, t) B = dv /V Ratkaistaan painefluktuaatiofunktio p(x, t) p(x, t) = B dv V = B y(x, t) x
52 Paineamplitudi Sijoitetaan sinimuotoinen aaltofunktio paineen lausekkeeseen y(x, t) p(x, t) = B = BkA cos(ωt kx) x Suurin paineen fluktuaatio paineamplitudi (pressure amplitude) p max = BkA
53 Ääniaallon intensiteetti Etenevän aallon intensiteetti = aallon kuljettaman energian aikakeskiarvo pinta-ala- ja aikayksikköä kohden W (x, t) P(x, t) I = = = St S F(x, t)vy (x, t) = p(x, t)v y (x, t) S Hiukkasten siirtymänopeus v y (x, t) = y(x,t) t, yhdistetään painefunktioon p(x, t) p(x, t)v y (x, t) = BkωA 2 cos 2 (ωt kx) = I = BkωA 2 cos 2 (ωt kx) = 1 2 BkωA2 koska cos 2 1 2
54 Intensiteetti ja paineamplitudi Käytetään yhtälöitä v = B/ρ ja ω = vk (ρ tiheys, v aallon nopeus, k aaltoluku) I = 1 2 BkωA2 = 1 2 ω2 ρv 2 v A2 = 1 2 ρvω2 A 2 = 1 ρbω 2 A 2 2 Paineamplitudin p max avulla I = 1 2 BkωA2 = p2 max 2 ρb
Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r
Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely
LisätiedotLuento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic
LisätiedotLuento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot
Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa
LisätiedotLuento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan
LisätiedotLuento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile
LisätiedotLuento 13: Periodinen liike
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista
LisätiedotLuento 14: Periodinen liike, osa 2
Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi F ~ µ ~F t F ~ d ~F r m~g Ajankohtaista Poimintoja palautekyselystä Oli mukava luento. Mukavaa että luennoitsija mahdollisti
LisätiedotLuento 15: Mekaaniset aallot
Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Ajankohtaista Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus
LisätiedotLuento 14: Ääniaallot ja kuulo
Luento 14: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan Ääniaallot Luennon sisältö Pikajohdanto elastisuusteoriaan Ääniaallot Miksi pikajohdanto? Osa ääniaaltojen käsittelystä perustuu elastisuusteoriaan
LisätiedotLuento 14: Ääniaallot ja kuulo
Luento 14: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan Ääniaallot Luennon sisältö Pikajohdanto elastisuusteoriaan Ääniaallot Miksi pikajohdanto? Osa ääniaaltojen käsittelystä perustuu elastisuusteoriaan
LisätiedotBM30A0240, Fysiikka L osa 4
BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,
LisätiedotLuento 16: Ääniaallot ja kuulo
Luento 16: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan* Ääniaallot* Aaltojen interferenssi Doppler* Laskettuja esimerkkejä 1 / 48 Luennon sisältö Pikajohdanto elastisuusteoriaan* Ääniaallot* Aaltojen
LisätiedotPakotettu vaimennettu harmoninen värähtelijä Resonanssi
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
Lisätiedot2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).
2 Mekaaninen aalto Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 1 Mekaanisten aaltojen vastakohtana ovat sähkömagneettiset allot, jotka kulkevat
LisätiedotJakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina
Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.
LisätiedotLuento 16: Ääniaallot ja kuulo
Luento 16: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan* Ääniaallot* Aaltojen interferenssi Doppler* Laskettuja esimerkkejä Ajankohtaista Luennon sisältö Pikajohdanto elastisuusteoriaan* Ääniaallot*
LisätiedotSEISOVA AALTOLIIKE 1. TEORIAA
1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus
LisätiedotYLEINEN AALTOLIIKEOPPI
YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen
LisätiedotEsimerkki 1 Ratkaise differentiaaliyhtälö
Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi
LisätiedotLuento 15: Ääniaallot, osa 2
Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa
LisätiedotBM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen
BM30A0240, Fysiikka L osa 4 Värähtelyfysiikkaa 1 Luennot: Heikki Pitkänen Oppikirja: Young & Freedman: University Physics Periodic motion Mechanical waves Sound and hearing Muuta - Diffraktio, interferenssi,
LisätiedotEpähomogeenisen yhtälön ratkaisu
Epähomogeenisen yhtälön ratkaisu Lause Olkoot a = a(x), b = b(x) ja f = f(x) jatkuvia funktioita välillä I R ja olkoot y 1 = y 1 (x) ja y 2 = y 2 (x) eräs homogeeniyhtälön y + a(x)y + b(x)y = 0 ratkaisujen
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /
Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x
LisätiedotVärähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.
Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)
Lisätiedot= vaimenevan värähdysliikkeen taajuus)
Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 7: MEKAANINEN VÄRÄHTELIJÄ Teoriaa Vaimeneva värähdysliike y ŷ ŷ ŷ t T Kuva. Vaimeneva värähdysliike ajan funktiona.
Lisätiedot3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.
3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.
LisätiedotLiikemäärän säilyminen Vuorovesivoimat Jousivoima
Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten
LisätiedotHARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE
HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta
Lisätiedot- suurempi voima aiheuttaa nopeampaa liikettä kuin pieni voima - samanlainen voima aiheuttaa samalle kappaleelle aina samanlaisen vaikutuksen
3 Dynamiikka 3.1 Voima (force) - Jos työnnät jotain kevyttä kappaletta, se alkaa liikkua - jos työnnät sitä kovemmin, se liikkuu nopeammin Kyseinen suure on voima - suurempi voima aiheuttaa nopeampaa liikettä
LisätiedotHARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE
HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta
LisätiedotKerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)
Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman
Lisätiedot1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT
1 1 PERUSKÄSITTEITÄ Luonto on täynnä aaltoja. Aaltoliikettä voi syntyä kimmoisissa systeemeissä, jotka poikkeutettuna tasapainotilastaan pyrkivät palaamaan siihen takaisin. Aalto etenee, kun poikkeama
Lisätiedota 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0
6. Lineaariset toisen kertaluvun yhtälöt Toisen kertaluvun differentiaaliyhtälöt ovat tuntuvasti hankalampia ratkaista kuin ensimmäinen. Käsittelemmekin tässä vain tärkeintä erikoistapausta, toisen kertaluvun
Lisätiedot16 Ääni ja kuuleminen
16 Ääni ja kuuleminen Ääni on väliaineessa etenevää pitkittäistä aaltoliikettä. Ihmisen kuuloalue 20 Hz 20 000 Hz. (Infraääni kuuloalue ultraääni) 1 2 Ääniaallon esittämistapoja: A = poikkeama-amplitudi
LisätiedotIhmiskorva havaitsee ääniaallot taajuusvälillä 20 Hz 20 khz.
3 Ääni ja kuulo 3.1 Intro e1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
Lisätiedot2 AALTOLIIKKEIDEN YHDISTÄMINEN
1 AALTOLIIKKEIDEN YHDISTÄMINEN Kun aalto osuu väliaineen rajapintaan, se heijastuu siitä takaisin joko osittain tai kokonaan. Esimerkiksi äänen osuessa talon seinään se palaa takaisin kaikuna. Missä määrin
LisätiedotFYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio
FYS03: Aaltoliike kurssin muistiinpanot Rami Nuotio päivitetty 24.1.2010 Sisältö 1. Mekaaninen aaltoliike 2 1.1. Harmoninen voima 2 1.2. Harmoninen värähdysliike 2 1.3. Mekaaninen aalto 3 1.4. Mekaanisen
LisätiedotMekaniikan jatkokurssi Fys102
Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,
LisätiedotDissipatiiviset voimat
Dissipatiiviset voimat Luennon tavoitteena Mitä on energian dissipaatio? Ilmanvastus ja muita vastusvoimia, analyyttinen käsittely Toinen tärkeä differentiaaliyhtälö: eksponentiaalinen vaimeneminen Vaimennettu
Lisätiedot- 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista)
1/2 KURSSIN ARVOSTELU - 3 välikoetta, jokaisessa 4 tehtävää, yht. 12 teht. - 6 pistettä yhdestä tehtävästä - max pisteet 72 (+ lisät harjoituksista) pisteet arvosana 00,00 35,25-35,50 41,25 1 1/2 maksimista
LisätiedotLuento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat
Lisätiedot2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.
2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
LisätiedotKuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus
Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan
LisätiedotLuento 2: Liikkeen kuvausta
Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä
LisätiedotEi-inertiaaliset koordinaatistot
orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}
LisätiedotDerivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r
Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.
Lisätiedoton radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).
H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika
LisätiedotTheory Finnish (Finland)
Q1-1 Kaksi tehtävää mekaniikasta (10 pistettä) Lue yleisohjeet ennen tehtävien aloittamista. Osa A: Piilotettu kiekko (3,5 pistettä) Tässä tehtävässä käsitellään umpinaista puista sylinteriä, jonka säde
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
LisätiedotEnsimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa
LisätiedotUseita oskillaattoreita yleinen tarkastelu
Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää
LisätiedotMS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
LisätiedotLuento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotVapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
LisätiedotFononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa
Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan
LisätiedotJakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti
Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi
LisätiedotKERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1
KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen
Lisätiedoty (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
Lisätiedot5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
LisätiedotVoima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
LisätiedotLiike pyörivällä maapallolla
Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän
Lisätiedot5 Differentiaaliyhtälöryhmät
5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =
LisätiedotTietoliikennesignaalit & spektri
Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia
LisätiedotMS-A Differentiaali- ja integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko
MS-A0107 - Differentiaali- integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko 1 Tehtävä Etsi seuraavien yhtälöiden yleiset ratkaisut: Ratkaisu: a) y y 2y = 4x, b) y + 4y = sin 3x, c) y + 2y + 5y = e x
Lisätiedot4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.
LisätiedotSIGNAALITEORIAN KERTAUSTA 1
SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotNormaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa
Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat
Lisätiedot4 Korkeamman kertaluvun differentiaaliyhtälöt
Differentiaaliyhtälöt c Pekka Alestalo 2015 Tässä monisteessa käydään läpi tavallisiin differentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Luennolla lasketaan esimerkkitehtäviä
Lisätiedot1 Peruskäsitteet. Dierentiaaliyhtälöt
Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
LisätiedotTfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Aalto köydessä Kohdassa x olevan ainehiukkasen poikkeama tasapainosta y ajan funktiona on y( x, t) Asin( kx t 0) Ketjusääntö: Ainehiukkasen
LisätiedotLuku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia
Luku 7 Työ ja energia Muuttuvan voiman tekemä työ Liike-energia Tavoitteet: Selittää työn käsite Mallittaa voiman tekemä työ Mallittaa liike-energian ja työn keskinäinen riippuvuus Esitiedot Newtonin lait
LisätiedotLuento 6: Liikemäärä ja impulssi
Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste
LisätiedotE p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis
763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion
LisätiedotScanned by CamScanner
Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
LisätiedotLuento 4: Liikkeen kuvausta, differentiaaliyhtälöt
Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa Matlab-esittelyä 1 / 20 Luennon sisältö Digress: vakio-
LisätiedotAikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
LisätiedotLineaarialgebra MATH.1040 / Piirianalyysiä 2
Lineaarialgebra MATH.1040 / Piirianalyysiä 2 1 Seuraavat tarkastelut nojaavat trigonometrisille funktioille todistettuihin kaavoihin. sin(α + β) = sinα cosβ + cosα sinβ (1) cos(α + β) = cosα cosβ sinα
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
LisätiedotKompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava
Kompleksiluvun logaritmi: ln z = w z = e w Jos nyt z = re iθ = re iθ e inπ, missä n Z, niin saadaan w = ln z = ln r + iθ + inπ, n Z Logaritmi on siis äärettömän moniarvoinen funktio. Helposti nähdään että
Lisätiedota(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus 1, Syksy 015 1. (a) Kiihtyvyys on nopeuden derivaatta, eli a(t) v (t) 3 t 1 + 1 Nyt on siis selvitettävä, milloin kiihtyvyys kasvaa itseisarvoltaan
LisätiedotPotentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
Lisätiedot3 Toisen kertaluvun lineaariset differentiaaliyhtälöt
3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)
Lisätiedot9 VALOAALTOJEN SUPERPOSITIO
09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta
LisätiedotLuento 10: Työ, energia ja teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin
Lisätiedotläheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?
BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
Lisätiedot