Jaksollisen signaalin spektri

Koko: px
Aloita esitys sivulta:

Download "Jaksollisen signaalin spektri"

Transkriptio

1 Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215

2 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä Symmetrian vaikutuksesta Fourier-sarjaan Lähdeluettelo 13 1

3 Johdanto Tässä tutkielmassa käydään läpi Fourier-sarjaa ja jaksollisen signaalin muuttamista spektrin muotoon sen avulla. Fourier-sarja on matemaattinen menetelmä, jolla signaali voidaan esittää sinimuotoisten komponenttien summana. Spektrissä signaali on taajuustasossa. Jaksollisella signaalilla ja sen spektrin analysoinnilla on useita käyttötarkoituksia ja käytännön sovelluksia. Fouriersarjan avulla signaalin muuttamista spektrimuotoon voidaan käyttää hyväksi esimerkiksi valoa tai ääntä analysoitaessa. 1 Jaksollisuudesta Tässä työssä käsitellään jaksollisen funktion spektriä, joten määritellään ensin jaksollisen funktion käsite. Havainnollisesti jaksollinen funktio on funktio, joka saa samoja arvoja tietyn jakson välein. Funktion kuvaaja esiintyy samanlaisena tietyn jakson välein. Muodollinen jaksollisuuden määritelmä on seuraava. Määritelmä 1.1. Funktio g on jaksollinen, jos on olemassa positiivinen luku T niin, että g(t) = g(t+t) (1) kaikilla t R. Pienintä positiivista lukua T, jolle (1) toteutuu kaikilla t R sanotaan funktion g perusjaksoksi. Fourier n sarja eli Fourier-sarja on tapa, jolla voidaan esittää jokin jaksollinen funktio trigonometristen sini- ja kosinifunktioiden avulla äärettömänä summana. Sinimuotoiset funktiot eli sini- ja kosinifunktiot ovat keskenään identtisiä, mutta niillä on vaihe-ero π 2, sillä sin(t) = cos(t π 2 ). Signaalin aaltomuodolla kuvataan signaalin käyttäytymistä aikatasossa eli ajan funktiona. Sinimuotoinen signaali toimii perustana kaikkien signaalien taajuussisällön käsittelyssä, sillä periaatteessa mikä tahansa signaali voidaan esittää sinimuodossa olevien signaalien summana. Sinimuotoinen signaali on muotoa tai Asin(ωt+φ) = Asin(2πft+φ) Acos(ωt+φ) = Acos(2πft+φ). 2

4 Sinimuotoinen signaali värähtelee yhdellä kulmataajuudella ω ja perussuureet ovat f = 1/T, T = jakson pituus [s], f = taajuus [Hz], ω = 2πf, ω = kulmataajuus [rad], T = 2π/ω, A i = amplitudi, f i = taajuus, φ i = vaihe. Käytännössä jaksollinen signaali voidaan esittää kosinisignaalien summana valitsemalla kosinisignaalit sopivasti. Esimerkiksi funktio g voidaan siis esittää muodossa g(t) A i cos(2πf i t+φ i ) = A cos(2πf t+φ )+A 1 cos(2πf 1 t+φ 1 )+A 2 cos(2πf 2 t+φ 2 )+... missä merkinnällä tarkoitetaan, että funktio g ei välttämättä yhdy sarjaesitykseen jokaisella t:n arvolla. Termien lukumäärä summalausekkeessa riippuu esitettävästä signaalista ja esitystarkkuudesta. 2 Spektristä Spektri tarkoittaa mitattavan suureen jakautumista komponentteihin taajuuden tai energian suhteen. Spektrianalyysiä käytetään esimerkiksi fysiikassa ilmiöiden tulkitsemiseen. Jaksollisen signaalin tapauksessa spektri saadaan aaltomuodon Fourier-sarjasta. Fourier-sarja on tapa esittää jaksollinen funktio trigonometristen sini- ja kosinifunktioiden avulla sarjakehitelmänä eli äärettömänä summana. Määritellään Fourier-sarja muodollisesti seuraavaksi. Määritelmä 2.1. Olkoon f : R R T-jaksollinen funktio. Sarjaa missä a a n = 2 T 2 + (a n cos( 2πnt T )+b nsin( 2πnt T )), n=1 T g(t)cos( 2πnt )dt, n =,1,2,... T 3

5 ja b n = 2 T T g(t)sin( 2πnt )dt, n = 1,2,... T sanotaan funktion f Fourier-sarjaksi. Kertoimia a n ja b n sanotaan funktion f Fourier-kertoimiksi. Huomautus 2.2. Määritelmässä 2.1 ei ole oleellista, minkä välin yli funktio integroidaan, sillä T-jaksolliselle funktiolle mille tahansa t R. T f(x)dx = t +T t f(x)dx Fourier-sarjan määritelmän avulla voidaan määritellä työn pääkäsitteet amplitudispektri ja vaihespektri. Määritelmä 2.3. Olkoon f : R R T-jaksollinen funktio. Joukkoa {( k a T, 2 k +b2 k ) k =,1,2,...}, missä luvut a k ja b k ovat funktion f Fourier-kertoimia, sanotaan funktion f amplitudispektriksi. Määritelmä 2.4. Olkoon f : R R T-jaksollinen funktio. Joukkoa {( k T,φ k) k =,1,2,...}, missä φ k = arctan(b k /a k ) ja luvut a k ja b k ovat funktion f Fourier-kertoimia, sanotaan funktion f vaihespektriksi. Kiinnitetään vaihekulma φ k = arctan(b k /a k ) ] π,π] seuraavasti. 1. φ k [, π 2 [, jos b k ja a k >, 2. φ k ] π 2,π], jos b k ja a k <, 3. φ k ] π, π 2 [, jos b k < ja a k <, 4. φ k ] π 2,[, jos b k < ja a k >. Lisäksi sovitaan, että 5. φ k = π 2, jos b k > ja a k =, 4

6 6. φ k = π 2, jos b k < ja a k =. Jos a k = b k =, niin tällöin φ k ei ole määritelty. Amplitudispektri liittää kuhunkin taajuuteen kyseisellä taajuudella värähtelevän kosinisignaalin amplitudin. Vastaavasti vaihespektri liittää kuhunkin taajuuteen kyseisellä taajuudella värähtelevän kosinisignaalin vaihekulman. Jaksollisen signaalin spektri on luonteeltaan diskreetti eli koostuu erillisistä komponenteista, joiden taajuudet saadaan signaalin perustaajuuden f = 1/T harmonisina monikertoina f n = n/t. Fourier-sarja koostuu siis perustaajuudella ja sen monikerroilla värähtelevistä sini- ja kosinikomponenteista. Esimerkki 2.5. Olkoon f(t) = 3 sin(2π2t). Lasketaan funktion f(t) amplitudispektri. Ratkaisu: Koska funktio on muotoa missä a f(t) = 3sin(2π2t) 2 + (a k cos( 2πkt T )+b ksin( 2πkt T )), k=1 T = 1, b 2 = 3, a k = kaikilla k, niin funktion f(t) = sin(2π2t) Fourier-sarja on funktio itse. Näiden nojalla funktio f(t) = 3sin(2π2t) voidaan esittää Fourier-sarjana a 2 + (a k cos(2πkt)+b k sin(2πkt)). k=1 Määritelmän 2.3 nojalla amplitudispektriksi saadaan {(2,3)} {(k,) k 2}. Parametri a k = kaikilla k ja ainoa nollasta poikkeava parametri b k on b 2. Määritelmän 2.4 kohdan 5 perusteella φ 2 = π. Määritelmän 2.4 nojalla 2 vaihespektriksi saadaan {(2, π 2 )}. 5

7 Kuva 1: Funktio f(t):n kuvaaja ja amplitudispektri. 6

8 Esimerkki 2.6. Olkoon f(t) = sin(2t)+3sin(5t)+4cos(5t). Lasketaan funktion f(t) amplitudi ja vaihespektri. Ratkaisu: Jaetaan funktio f(t) kahteen osaan värähtelevän kulmataajuuden mukaan eli olkoon f 1 (t) = sin(2t) ja f 2 (t) = 3sin(5t)+4cos(5t). Lasketaan ensin funktion f 1 (t) = sin(2t) spektrit. Sijoitetaan luvut paikalleen aiemmin esiteltyyn amplitudispektrin kaavaan, jolloin saadaan amplitudispektriksi {( 2 2π, )} = {( 1 π,1)}. Vaihespektri saadaan vastaavasti ja tehdään sijoitus, josta saadaan, että Vaihespektri on siis 2 2π = 1 π,arctan(1 ) = π 2. {( 1 π, π 2 )}. Lasketaan sitten funktion f 2 (t) amplitudi- ja vaihespektri. Koska = 5, voidaan kirjoittaa muodossa f 2 (t) = 3sin(5t)+4cos(5t) f 2 (t) = 5 ( 3 5 sin(5t)+ 4 5 cos(5t)). Merkitään x = 5t ja ratkaistaan y yhtälöparista { cos(y) = 4 5 sin(y) = 3 5 ja käytetään kosinin yhteenlaskukaavaa cos(x y) = cosxcosy +sinxsiny, josta saadaan, että f 2 (t) voidaan kirjoittaa muodossa f 2 (t) = 5 cos(5t φ), missä φ = arctan

9 Tästä saadaan, että komponentin f 2 (t) amplitudi on 5 ja vaihe on φ = arctan 3. Funktion f amplitudispektriksi saadaan edellisestä 4 ja vaihespektriksi {( 2 2π,1)} {( 5 2π,5)} {( k,) k 2,5} 2π {( 2 2π, π 2 )} {( 5 2π,arctan 3 4 )} Funktion f(t) amplitudispektri Kuva 2: Funktio f(t):n kuvaaja ja amplitudispektri. Kuvan amplitudispektrissä näkyvät epätarkkuudet johtuvat käytetystä piirto-ohjelmasta, joka laskee spektrin Fourier-muunnoksen avulla. Esimerkki 2.7. Olkoon f(x) = x, π < x < π Lasketaan funktion f Fourier-sarja ja määrätään amplitudi- ja vaihespektri. 8

10 Ratkaisu: Funktio on muotoa f(x) = a 2 + (a n cos(nx)+b n (sin(nx)). n=1 Lasketaan ensin kerroin a, joksi saadaan a = 1 π π x dx = 2 π x dx = π, jonka jälkeen kerroin a n = 1 π = 2 π [ π/ π x cos(nx)dx = 2 π xsin(nx) n xcos(nx)dx sin(nx) dx] = 2 n π = 2( 1)n πn 2 2 πn 2 = 2(( 1)n 1) πn 2, ja lopuksi kerroin π/ cos(nx) n 2 b n = 1 π = 1 π [ / π π x sin(nx)dx = 1 π xcos(nx) n = 1 π [π( 1)n n / π π π xsin(nx)dx+ 1 π cos(nx) dx]+ 1 π/ n n [ x cos(nx) + n π/ sin(nx) ]+ 1 n 2 π [ π( 1)n + n = 1 π( 1) n + 1 π( 1) n =. π n π n sin(nx) n 2 ] xsin(nx)dx cos(nx) dx] n Jokainen pariton luku n on muotoa n = 2k+1 jollakin k =,1,2,..., joten a 2k+1 = 4 kaikilla k =,1,2,... π(2k+1) 2 Parillisilla n:n arvoilla a n =, kun n 1 ja b n = kaikilla n = 1,2,... 9

11 Amplitudispektri on {( 2n+1 2π, 4 π(2n+1) 2) n =,1,...} {(2n,) n = 1,2,...}. 2π Vaihespektriä tarkastellessa huomataan, että nyt a 2n+1 < ja b 2n+1 =. Määritelmän 2.3 perusteella φ 2n+1 ] π,π] ja yksikköympyrän perusteella 2 tästä seuraa, että φ 2n+1 = π. Vaihe φ 2n ei ole määritelty millään luvun n arvolla. Näin ollen vaihespektri on {( 2n+1,π) n =,1,...}. 2π 1

12 2.1 Symmetrian vaikutuksesta Fourier-sarjaan Fourier-sarjan kertoimien laskeminen yksinkertaistuu, jos funktio on parillinen tai pariton. Esimerkin 2.7 funktio oli parillinen ja kertoimiena n laskemisessa hyödynnettiin parillisuutta. Parillisuutta voidaan hyödyntää yleisemminkin. Jokaiselle T-jaksolliselle parilliselle funktiolle g saadaan kerroin a n = 4 T T/2 g(t)cos( 2πnt )dt, n =,1,2,..., T sillä kosini on parillinen ja kahden parillisen funktion tulo on parillinen. Vastaavasti, koska sini on pariton ja parittoman funktion tulo parillisen funktion kanssa on pariton, saadaan kertoimiksi b n =. Jos funktio g on pariton, eli g( t) = g(t) kaikilla t, niin edellä esitetyn päättelyn mukaan kertoimiksi saadaan b n = 4 T T/2 g(t)sin( 2πnt )dt, n = 1,2,... T Parittomalle funktiolle a n = kaikilla n. Parilliselle funktiolle g( t) = g(t) kaikilla t, josta kertoimeksi a saadaan a = 2 T T/2 g(t)dt. Vastaavalla tavalla kertoimeksi a n saadaan a n = 4 T/2 ( ) 2πnt g(t) cos dt. T T Parittomalle funktiolle saadaan nollakertoimet Esimerkki 2.8. Olkoon a = ja a n = sekä kerroin b n = 2 g(x) = 2 T Lasketaan funktion g Fourier-sarja. T /2 g(t)sinn 2π T tdt { 1, kun π < x < 1, kun < x < π. 11

13 Ratkaisu: Valitaan T = 2π ja jatketaan g 2π-jaksolliseksi. Funktio g on pariton, joten edellä esitetyn nojalla kertoimet a n ovat nollia kaikilla n =,1,2,... Kertoimiksi b n saadaan b n = 1 π π g(x)sinnxdx = 2 π koska g(x) sin nx on parillinen. Tämän nojalla b n = 2 π sinnxdx = 2 nπ Koska cosnπ = ( 1) n niin seuraa, että 2/ g(x) sin nxdx, cosnx = 2 nπ (1 cosnπ). on auki kirjoitettuna b n = 2 nπ (1 ( 1)n ) Koska cosnπ = ( 1) n, niin (b n ) = 4 π (1,, 1 3,, 1 5,...). b n = 2 nπ (1 ( 1)n ). Nähdään, että kertoimet b n ovat nollia parillisilla n:n arvoilla. Kertoimista b n saadaan jono (b n ) n=1 = ( 4 π 1,, 1,, 1,...). 3 5 Fourier-sarja on siis eli g(x) 4 π (sinx+ 1 3 sin3x+ 1 5 sin5x+...) g(x) 4 π n=1 sin(2k 1)x. 2k 1 Aiemmassa esimerkissä 2.7 symmetriaa olisi voitu käyttää hyväksi siten, että funktion f Fourier-sarjan sinikertoimet eli kertoimet b n menevät nollaksi parillisuuden nojalla. Tällöin kertoimia ei olisi tarvinnut laskea, koska funktion symmetrisyys varmistaa kertoimien b n nollautumisen kaikilla n:n arvoilla. 12

14 Lähdeluettelo [1] Antti Koivumäki: Johdatus tietoliikennesignaalien Fourier-analyysiin 4_johdatus.tietoliikennesignaalien.Fourier-analyysiin.pdf [2] Antti Kosonen: Signaalien taajuusanalyysi https://noppa.lut.fi/noppa/opintojakso/ bl4a4/materiaali/luentokalvot_4.pdf [3] Jyrki Laitinen: Signaalit aika- ja taajuustasossa [4] Seppo Seikkala: Signaalit ja järjestelmät 13

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT 3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008 Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t

Lisätiedot

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu 2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.

Lisätiedot

Fourier-sarjat ja -muunnos

Fourier-sarjat ja -muunnos 24. marraskuuta 2016 Jaksolliset funktiot, trigonometriset sarjat, parilliset ja p Jaksolliset funktiot Funktio f : R R on jaksollinen, jos on olemassa p > 0 siten, että f (x + p) = f (x) kaikilla x R

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia

Lisätiedot

SIGNAALITEORIAN KERTAUSTA OSA 1

SIGNAALITEORIAN KERTAUSTA OSA 1 1 SIGNAALITEORIAN KERTAUSTA OSA 1 Millainen on signaalin spektri ja miten se lasketaan? SIGNAALIEN JA SPEKTRIN PERUSKÄSITTEITÄ 2 Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka graafinen

Lisätiedot

Sini- ja kosinifunktio

Sini- ja kosinifunktio Sini- ja kosinifunktio Trigonometriset funktio voidaan määritellä muun muassa potenssisarjana tai yksikköympyrän avulla. Yksikköympyrään pohjautuvassa määritelmässä sini- ja kosinifunktion muuttujana pidetään

Lisätiedot

Äärettömät raja-arvot

Äärettömät raja-arvot Äärettömät raja-arvot Määritelmä Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on + mikäli kaikilla R > 0 löytyy sellainen δ > 0 että f (x) > R aina kun x 0 < x < x 0 + δ. Funktion f oikeanpuoleinen

Lisätiedot

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1. Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df) ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari

Lisätiedot

Radiaanit. Kun kulman α suuruus nyt mitataan tämän kaaren pituutena, saadaan kulmaan arvo radiaaneissa.

Radiaanit. Kun kulman α suuruus nyt mitataan tämän kaaren pituutena, saadaan kulmaan arvo radiaaneissa. Radiaanit Kulmia mitataan matematiikassa paitsi asteissa, myös radiaaneissa. Radiaanien taustaideana on, että kun kulmaa α asetetaan yksikköympyrään, kulmien kylkien välille muodostuu ympyrän kehälle kaari

Lisätiedot

Trigonometriset funktiot

Trigonometriset funktiot Peruskäsitteet Y-peilaus X-peilaus Pistepeilaus Muistikulmat Muistikolmio 1 Muistikolmio 2 Jaksollisuus Esimerkki 5.A Esimerkki 5.B1 Esimerkki 5.B2 Esimerkki 5C.1 Esimerkki 5C.2 (1/2) (2/2) Muunnelmia

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

e ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0,

e ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0, Harjoitus 5 1. Olkoot a > 0. Laske vaimenevan pulssin e ax, kun x > 0 fx) = 0, kun x < 0, ja voimistuvan pulssin gx) = konvoluution g f Fourier-muunnos. 0, kun x > 0 e ax, kun x < 0 apa 1: Konvoluution

Lisätiedot

Spektri- ja signaalianalysaattorit

Spektri- ja signaalianalysaattorit Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

1.6. Yhteen- ja vähennyslaskukaavat

1.6. Yhteen- ja vähennyslaskukaavat Yhteen- ja vähennyslaskukaavoiksi sanotaan trigonometriassa niitä kaavoja, jotka sisältävät kehitelmät kahden reaaliluvun summan tai erotuksen trigonometriselle funktiolle, kuten sin( + y) sin cos y +

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246 Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto: 4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x

Lisätiedot

Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa. Pentti Romppainen

Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa. Pentti Romppainen Diskreetti Fourier-muunnos ja sen hyödyntäminen signaalien spektrien muodostamisessa Pentti Romppainen Kajaanin ammattikorkeakoulu Oy Kajaani University of Applied Sciences Diskreetti Fourier-muunnos ja

Lisätiedot

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2) MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Trigonometrian kaavat 1/6 Sisältö ESITIEDOT: trigonometriset funktiot

Trigonometrian kaavat 1/6 Sisältö ESITIEDOT: trigonometriset funktiot Trigonometrian kaavat 1/6 Sisältö Ulkoa muistettavat peruskaavat Trigonometrisia funktioita koskevia kaavoja on paljon. Seuraavassa esitetään tärkeimmät ja lyhyet ohjeet niiden muistamiseen. Varsinaisesti

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää

Lisätiedot

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt Epäyhtälöt 1/7 Sisältö Epäyhtälö Epäyhtälöllä tarkoitetaan ehtoa, missä kahdesta lausekkeesta toinen on suurempi tai mahdollisesti yhtä suuri kuin toinen: f(x) < g(x), f(x) g(x).merkit voidaan luonnollisesti

Lisätiedot

Fysiikan matematiikka P

Fysiikan matematiikka P Fysiikan matematiikka 763101P Luennoija: Kari Rummukainen, Fysikaalisten tieteiden laitos Tavoite: tarjota opiskelijalle nopeasti fysikaalisten tieteiden tarvitsemia matematiikan perustietoja ja taitoja.

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Sinin ja kosinin erilaiset määrittelytavat

Sinin ja kosinin erilaiset määrittelytavat Sinin ja kosinin erilaiset määrittelytavat Anu Pääkkö Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 01 Tiivistelmä: Pääkkö, A. 01, Sinin ja kosinin erilaiset määrittelytavat,

Lisätiedot

6.8 Erityisfunktioiden sovelluksia

6.8 Erityisfunktioiden sovelluksia 6.8 Erityisfunktioiden sovelluksia Tässä luvussa esitellään muutama esimerkki, joissa käytetään hyväksi eksponentti-, logaritmi- sekä trigonometrisia funktioita. Ensimmäinen esimerkki juontaa juurensa

Lisätiedot

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut 0. Kertausta Luvut, lukujoukot (tavalliset) N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut Rationaaliluvut n/m, missä n,m Z Reaaliluvut R muodostavat jatkumon fysiikan lukujoukko Kompleksiluvut C:z

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian

Lisätiedot

H5 Malliratkaisut - Tehtävä 1

H5 Malliratkaisut - Tehtävä 1 H5 Malliratkaisut - Tehtävä Eelis Mielonen 30. syyskuuta 07 a) 3a (ax + b)3/ + C b) a cos(ax + b) + C a) Tässä tehtävässä päästään harjoittelemaan lukiosta tuttua integrointimenetelmää. Ensimmäisessä kohdassa

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( ) Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat

Lisätiedot

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia 1. a) Muodosta Matlab-ohjelmistossa kosinisignaali x(t) = Acos(2πft+θ), jonka amplitudi on 1V, taajuus hertseinä sama kuin ikäsi vuosina (esim. 2 v = 2 Hz) ja vaihekulma +π/2. Piirrä signaali ja tarkista

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. Vastaus: a) 90 b) 60 c) 216 d) 1260 e) 974,03 f) ,48

Päähakemisto Tehtävien ratkaisut -hakemisto. Vastaus: a) 90 b) 60 c) 216 d) 1260 e) 974,03 f) ,48 Trigonometriset funktiot 169. Muutetaan asteet radiaaneiksi. 180 astetta on radiaaneina π eli 180 = π rad Tällöin 1 rad. 180 45 1 a) 45 180 4 4 65 1 b) 65 180 6 10 c) 10 180 5 5 d) 5 180 4 40 7 e) 40 180

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo 1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo Olkoot a, b, c mielivaltaisesti valittuja reaalilukuja eli reaaliakselin pisteitä. Ne toteuttavat seuraavat laskulait (ns. kunta-aksioomat):

Lisätiedot

Laskuharjoitus 2 ( ): Tehtävien vastauksia

Laskuharjoitus 2 ( ): Tehtävien vastauksia TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I 1 Johdanto MS-C142 Fourier-analyysi osa I G Gripenberg 2 Fourier-integraali Fourier-muunnos ja derivaatta Konvoluutio Fourier-käänteismuunnos eliöintegroituvat funktiot Aalto-yliopisto 29 tammikuuta 214

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C142 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa I 29. tammikuuta 214 1 / 3 1 Johdanto 2 Fourier-integraali Fourier-muunnos

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =

Lisätiedot

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

= vakio = λ. V (x) V (0) = V (l) = 0.

= vakio = λ. V (x) V (0) = V (l) = 0. 6. Aatoyhtäö I 6.1. Ratkaisu Fourier-sarjojen avua. Oetetaan, että värähteevän angan muodon hetkeä t = määrää funktio u ja nopeuden funktio u 1. Otetaan tehtäväksi määrätä seuraavan akuarvo- reuna-arvotehtävän

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Kompleksiluvut signaalin taajuusjakauman arvioinnissa Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

= 9 = 3 2 = 2( ) = = 2

= 9 = 3 2 = 2( ) = = 2 Ratkaisut 1.1. (a) + 5 +5 5 4 5 15 15 (b) 5 5 5 5 15 16 15 (c) 100 99 5 100 99 5 4 5 5 4 (d) 100 99 5 100 ( ) 5 1 99 100 4 99 5 1.. (a) ( 100 99 5 ) ( ( 4 ( ) ) 4 1 ( ) ) 4 9 4 16 (b) 100 99 ( 5 ) 1 100

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista Matematiikan johdantokurssi, sks 07 Harjoitus 8, ratkaisuista. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa hdistetstä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Ratkaisu.

Lisätiedot

6.2.3 Spektrikertymäfunktio

6.2.3 Spektrikertymäfunktio ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden

Lisätiedot

= vaimenevan värähdysliikkeen taajuus)

= vaimenevan värähdysliikkeen taajuus) Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 7: MEKAANINEN VÄRÄHTELIJÄ Teoriaa Vaimeneva värähdysliike y ŷ ŷ ŷ t T Kuva. Vaimeneva värähdysliike ajan funktiona.

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa!

Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa! Aalto yliopiston teknillinen korkeakoulu Mat-1.1040 L4 Tentti ja välikokeiden uusinta 21.5.2010 Gripenberg, Arponen, Siljander Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin

Lisätiedot

Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta. VASTAUS: ...

Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta. VASTAUS: ... 4 Alkeisfunktiot 41 Potenssifunktio 42 Polynomit ja rationaalifunktiot 102 Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta 103 Olkoon p()

Lisätiedot

exp(x) = e x x n n=0 v(x, y) = e x sin y

exp(x) = e x x n n=0 v(x, y) = e x sin y 4 Alkisfunktioita 41 Eksponnttifunktio Eksponnttifunktio xp : R R on määritlty khitlmällä xp(x) = x x n = n! Pyrimm laajntamaan määritlmän koko tasoon C sitn, ttä 1 xp : C C on analyyttinn ja xp(x) = x,

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

u(0, t) = 0 kaikille t > 0: lämpötila pidetään vakiona pisteessä x = 0;

u(0, t) = 0 kaikille t > 0: lämpötila pidetään vakiona pisteessä x = 0; 3. Lämmönjohtumisyhtälö I Yksiulotteisessa lämmönjohtumisyhtälössä u t = u γ x tuntematon funktio u = u(x, t) kuvaa lämpötilaa yksiulotteisen kappaleen (ohut sauva; x-akseli) kohdassa x hetkellä t. Kun

Lisätiedot

TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT

TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT ARI LEHTONEN. Trigonometriset funktiot.. Peruskaavat. tan x := sin x cos x, cos x cot x := sin x Anglosaksisissa maissa käytössä ovat myös funktiot sekantti sec

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42 Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät 8.5.2013 1 / 42 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien

Lisätiedot

MS-C1420 Fourier-analyysi osa II

MS-C1420 Fourier-analyysi osa II MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta 214 1 / 36 1 Fourier-sarjat ja Fourier-integraalit

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C1420 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-C1420 Fourier-analyysiosa I 29. tammikuuta 2014 1 / 29 Fourier-muunnoksia Jatkuva-aikaisen

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 30.1.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri

Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri Luento 4 Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 9 Oppenheim 3.3, 3.4 4.1 Fourier-sarja Kompleksi F-sarja F-sinisarja Sinc-funktio 4. Viivaspektri, tehospektri Viivaspektri Parsevalin teoreema

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan

Lisätiedot