Potenssisarja, suppenemissäde. Potenssisarja ja derivointi. Potenssisarja ja analyyttiset funktiot. Potenssisarja ja integrointi.

Koko: px
Aloita esitys sivulta:

Download "Potenssisarja, suppenemissäde. Potenssisarja ja derivointi. Potenssisarja ja analyyttiset funktiot. Potenssisarja ja integrointi."

Transkriptio

1 Matematiikan peruskurssi KP3 I OSA 4: Taylorin sarja, residymenetelmä A.Rasila J.v.Pfaler 26. syyskuuta 2007 Kompleksista sarjoista Jono, suppeneminen, summasarja Potenssisarja, suppenemissäde ja analyyttiset funktiot Taylorin sarja Taylorin lause Esimerkkejä sarjaesityksistä Laurentin lause 2 Analyyttisen funktion singulariteetit Singulariteettien luokittelu Nollakohta, kertaluku 3 Residymenetelmä Residyjen laskeminen A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta 2007 / 30 A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 Kertausta, suppeneva jono, summasarja Jonoompleksilukuja z, z 2,... merkitään (z n ). Jono (z n ) suppenee kohden lukua c, jos kaikilla ε > 0 on olemassa sellainen N, että z n c < ε, kun n > N. Merkitään lim n z n = c tai z n c, Sanomme, että jono hajaantuu jos se ei suppene. Tutkitaan jonoa s n = z + z z n. Jos jono (s n ) suppenee, eli lim n s n = s, niin kirjoitetaan Esimerkkejä sarjoista Jono,,,,... eli () suppenee. Sarja () hajaantuu. Jono (i k ) hajaantuu: s 4k =, s 4k+ = i, s 4k+2 =, s 4k+3 = i. Sarja (z k ) suppenee, zk = z, kun z <. s = z m = z + z 2 + z , m= jutsutaan lukua s sarjan (z n ) summaksi.. A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30

2 Potenssisarja, suppenemissäde Potenssisarja on sarja, joka on muotoa a n (z z 0 ) n = a 0 + a (z z 0 ) + a 2 (z z 0 ) Lukua z 0 sanotaan sarjan kehityskeskukseksi tai keskukseksi. Potenssisarja suppenee kiekossa D = {z : z z 0 < r} (uniformisti) jollakin r 0. Suurinta lukua R = sup r, jolla sarja suppenee, kutsutaan sarjan suppenemissäteeksi. R = lim a n { }. n a n+ Sarja hajaantuu suljetun kiekon ulkopuolella z D eli z z 0 > R. Potenssisarja ja derivointi Termeittäin derivoidulla potenssisarjalla d dz (z z 0) k = k (z z 0 ) k k= on sama suppenemissäde kuin alkuperäisellä sarjalloska (k ) lim k k = lim( k ) = lim = R Termeittäin derivoidun sarjan summa on sarjan summan derivaatta (yhteisessä suppenemisalueessaan): f (z) := (z z 0 ) k f (z) = k= d dz (z z 0) k Huomaa summausindeksin muutos sarjassa. A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 Potenssisarja ja analyyttiset funktiot Potenssisarja ja integrointi Potenssisarjaa f (z) voidaan integroida termeittäin, kaikilla z D: Seuraus Potenssisarjan summa (z z0) k on analyyttinen funktio suppenemisalueessaan. f (z) dz = f (z) := mielivaltaiselle käyrälle D. (z z 0 ) k (z z 0 ) k dz = k + (z z 0) k+ A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30

3 Potenssisarja ja analyyttiset funktiot... Derivoimalla potenssisarjaa f (z) := (z z 0 ) k saadaan suppenemisalueessa f (n) (z) = = k=n = n! a n + d n dz n (z z 0) k k! (k n)! (z z 0 ) k n k= joten kun z = z 0, erityisesti a 0 = f (z 0 ) ja yleisesti a n = n! f (n) (z 0 ). (k + n)! a n+k (z z 0 ) k k! Taylorin sarja Funktion f (z) kompleksinen Taylorin sarjehityskeskuksessa z 0 on a n (z z 0 ) n, missä a n = n! f (n) (z 0 ). n= auchyn integraalilauseen nojalla toisaalta a n = f (w) dw, 2πi (w z 0 ) n+ missä f on analyyttinen yhdesti yhtenäisessä alueessa D ja integrointi suoritetaan vastapäivään pitkin yksinkertaista suljettua polkua D, joka sulkee sisäänsä pisteen z 0. Jos z 0 = 0, niin Taylorin sarjautsutaan Maclaurinin sarjaksi. A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 Taylorin lause Esimerkki, geometrinen sarja Lause Oletetaan, että f (z) on analyyttinen alueessa D, z 0 D. Tällöin on olemassa täsmällen yksi Taylorin sarja, jonkeskipiste on z 0, joka edustaa funktiota f (z). Sarja suppenee kaikissa z 0 -keskisessä kiekossa jossa f on analyyttinen. B(z 0, r) := {z : z z 0 < r}, Taylorin sarjan kertoimet toteuttavat epäyhtälön r n a n max{ f (z) : z z 0 = r}. Tarkastellaan funktiota /( z) kehityskeskuksena z 0 = 0. Saadaan f (n) (z) = n!/( z) n+ ja c n = n! f (n) (0) =. Maclaurinin sarjaksi saadaan z = z n = + z + z Suppenemissäde R =. Toisaalta f :llä on singulariteetti pisteessä z =. Tämä piste on suppenemisäteisen kiekon reunalla. Todistus. Sivuutetaan A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta 2007 / 30 A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30

4 Esimerkki, geometrinen sarja... Esimerkki, geometrinen sarja... Tarkastellaan funktiota /( z) kehityskeskuksena z 0 =. Saadaan f (n) (z) = n!/( z) n+ ja c n = n! f (n) ( ) = 2 n, Taylor sarjaksi pisteessä z 0 = saadaan z = (z + ) n 2 n+ = 2 + z + (z + ) Suppenemissäde R = lim 2 n 2 n = 2. Toisaalta f :llä on singulariteetti pisteessä z =. Tämä piste on suppenemisäteisen kiekon reunalla, z 0 = 2. Tarkastellaan funktiota /( z) kehityskeskuksena z 0 = i. Saadaan f (n) (z) = n!/( z) n+ ja c n = n! f (n) ( i) = ( + i) n. Taylor sarjaksi pisteessä z 0 = i saadaan z = ( + i) n (z + i) n Suppenemissäde R = lim n (+i) n+ (+i) n = limn + i = 2. Toisaalta f :llä on singulariteetti pisteessä z =. Tämä piste on suppenemisäteisen kiekon reunalla, z 0 = 2. A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 Esimerkki 2, eksponenttifunktio Tarkastellaan funktiota e z. Funktio f on kokonainen (entire) eli analyyttinen koko kompleksitasossa, ja f (z) = e z. Maclaurinin sarjaksi, z 0 = 0, saadaan e z = jonka suppenemissäde on z n n! = + z + z2 2! + z3 3! +... (n + )! R = lim = lim (n + ) = n n! n Laurentin lause Lause 3 Oletetaan, että f (z) on analyyttinen kahden samankeskisen ympyrän, 2 väliin jäävässä alueessa D = {z : r < z z 0 < r 2 }. Tällöin f : D voidaan esittää Laurentin sarjana n= a n (z z 0 ) n Huomaa indeksointi! Sarjan kertoimet a n saadaan kaavasta a n = f (w) dw, 2πi (w z 0 ) n+ missä integrointi suoritetaan vastapäivään pitkin polkua, joka kiertää sisemmän ympyrän kerran vastapäivään alueessa D. Todistus. Sivuutetaan. A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30

5 Analyyttisen funktion singulariteetit Singulariteettien luokittelu Oletetaan, että f (z) ei ole analyyttinen (mahdollisesti ei edes määritelty) pisteessä z 0. Oletetaan lisäksi, että jokainen z 0 :n ympäristö sisältää pisteitä, joissa f on analyyttinen. Tällöin sanomme pistettä z 0 f (z):n singulaariseksi pisteeksi. Pistettä z 0 kutsutaan f (z):n isoloiduksi singulariteetiksi, jos z 0 :lla on ympäristö, jossa ei ole muita pisteitä, joissa f olisi singulaarinen. Esimerkki: tan z:lla on isoloitu singulariteetti pisteissä ±π/2, ±3π/2,..., mutta tan(/z):lla on ei-isoloitu singulariteetti 0:ssa, sen singulariteetit ovat pisteissä ±2 kπ 0, k =, 3, 5,.... Idea: Laurentin sarjaa voidaan käyttää funktion f (z) isoloitujen singulariteettien luokitteluun pisteessä z 0. n= a n (z z 0 ) n = a n (z z n= 0 ) n }{{} principal part + a n (z z 0 ) n. } {{ } analytical part Jos singulariteetti z 0 on isoloitu, löytyy (riittävän pieni) R jolla sarjaesitys on voimassa alueessa D = {z : 0 < z z 0 < R}. Huomaa että z 0 D. Sarjaesityksen esimmäistä, negatiivisia potensseja sisältävää osaa kutsutaan sarjan olennaiseksi osaksi (principal part). Jälkimmäinen, vain ei negatiivisia exponentteja sisältä osa on analyyttinen funktio, erään funktion Taylor sarja. A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 Singulariteettien luokittelu, jatkoa Jos olennaisessa osassa on vain äärellinen määrä termejä, (a n = 0, kun n > m) olennainen osa (principal part) voidaan kirjoittaa äärellisenä summana: a n (z z n= 0 ) n }{{} principal part = a z z a m (z z 0 ) m, (a m 0). f (z):n singulariteettia z 0 kutsutaan f :n navaksi (pole) ja m:ää navan asteeksi. Kun m = sanomme, että kyseessä on yksinkertainen napa (simple pole). Jos olennaisessa osassa on ääretön määrä termejä, singulariteettia kutsutaan olennaiseksi (essential). Ei-isoloituja singulariteetteja ei tarkastella tässä. Lause Olkoon f kompleksimuuttujan kompleksiarvoinen funktio. Seuraavat kolme kohtaa ovat ekvivalentit a) Funktiolla f on napa pisteessä z 0 astetta m. b) Funktiolla f on Laurent esitys pisteen z 0 ympäristössä: k= m (z z 0 ) k jossa a m 0 ja 0 < z z 0 < r jollakin säteellä r > 0. c) Funktio g, { (z z0 ) g(z) = m f (z), z z 0 lim z z0 (z z 0 ) m f (z), z = z 0 on analyyttinen pisteen z 0 avoimessa ympäristössä; 0 z z 0 < r jollakin säteellä r > 0. A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30

6 Huomaa erityisesti edellä että: a) Napa tarkoittaa että singulariteetti on myös isoloitu. b) Jos esitys on olemassa, mutta a m = 0, sinulariteetti z 0 on korkeintaan astetta m. c) Funktiolla g on Taylor-sarja g(z) = m (z z 0 ) k koska g(z) = (z z 0 ) m k= m (z z 0 ) k (z z 0 ) m c) Jos jo tiedämme, että z 0 on isoloitu singulariteetti, riittää tarkastella raja-arvoa lim(z z0) m f (z). Jos se on määritelty, g on analyyttinen, ja piste on z 0 on singulariteetti korkeintaan astetta m, koska... c) g(z 0 ) = a m. Esimerkki 3 Funktiolla z(z 2) z(z 2)3 = (z 2) 2 z(z 2) 5 on yksinkertainen napa pisteessä z = 0, koska lim z z Vertailun vuoksi: (lim z 0 f (z) ei ole olemassa, ja lim z ei ole olemassa. Funktiolla on kertalukua 5 oleva napa pisteessä z = 2: lim (z + 2(2 z 2 2)5 2)3 2 = 2 0, A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 Nollakohta, kertaluku Nollakohta, kertaluku... Analogisesti Laurent -sarjan ja napojen yhteyden kanssa, Analyyttisen funktion nollakohta on piste z 0, jossa f (z 0 ) = 0. Nollakohta on kertalukua m, jos kaikill = 0,..., m f (k) (z 0 ) = 0, ja f (m) (z 0 ) 0. Kertalukua olevia nollakohtiutsutaan myös yksinkertaisiksi. Lause Olkoon funktio f on analyyttinen z 0 ympäristössä. Ekvivalentisti Funktiolla on m-asteen nollakohtohdassa z 0. Funktiolla on Taylor-sarja muotoa (z z 0 ) k, a m 0. k=m Funktio g : z (z z 0 ) m f (z) on analyyttinen z 0 ympäristössä ja g(z 0 ) 0. A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30

7 Residymenetelmä, johdanto auchyn residymenetelmän etsimme tapaa laskea muotoa f (z) dz, olevompleksinen käyräintegraali. Oletetaan jatkossa, että on suunnattu vastapäivää jiertää kunkin pisteen vain kerran. Tämä vain helpottaa merkintöjä. Residymenetelmä, johdanto... Oletetaan, että f on analyyttinen rajaamalla alueella, lukuunottamatta napoja z, z 2,..., z n. Analyyttisyyden nojalla voimme kirjoittaa, joillekin suljetuille käyrille i, kukin kiertäen vain singulariteetin z i, n f (z) dz = f (z) dz. j j= A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 Residymenetelmä, johdanto... jatkuu... Tarkastelaan vain yhtä osakäyrää i. Olkoon z i napertalukua m i. Kehittämällä f Laurent-sarjaksi jossakin muotoa D = {z : 0 < z z i < R i } olevassa alueessa (joka sisältää i :n). saamme f (z) dz = (z z i ) k dz = 2πi a i i k= m i Residyjen laskeminen Lause Jos f :llä on m-kertainen napohdassa z 0 niin Res z=z0 (f ) = lim z z0 g (m ) (z), Merkitsemme a =: Res z=zi f (z). Kutsumme lukua Res z=zi f (z) funktion f residyksi pisteessä z i. Saamme f (z) dz = n j= j f (z) dz = 2πi n Res z=zj f (z) j= Residue (engl,fr); murto-osa, jäljelle jäävä osa (integroinnin jälkeen). jossa g(z) = (z z 0 ) m f (z). A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30

8 Residyjen laskeminen... Todistus seuraa suoraan Laurent-sarjasta. Olkoon f :llä Laurent sarja (z z 0 ) k k= m tällöin g:llä on Taylor-sarja g(z) = (z z 0 ) m (z z 0 ) k = = m k= m (z z 0 ) k g (k) (z 0 )(z z 0 ) k. Selvästi g (m ) (z 0 ) = a, sillä k m =, jos k = m. Residyjen laskeminen... Vaihtoehtoinen todistus suoraan auchyn integraalilauseella f (z) dz = (z z 0 ) }{{ m (z z 0 ) m f (z) }{{}} =:g(z) singuilar analytic = 2πi g (m ) (z 0 ) dz A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30 A.Rasila, J.v.Pfaler () KP3 Kompleksiluvut 26. syyskuuta / 30

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

Kompleksiset sarjat ja potenssisarjat

Kompleksiset sarjat ja potenssisarjat MS-C1300 Kompleksianalyysi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto K Kytölä & A Gutiérrez Syksy 2018 Ratkaisut 3A 3A Kompleksiset sarjat ja potenssisarjat 3A1 Laske seuraavien sarjojen

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan

Lisätiedot

Kompleksitermiset jonot ja sarjat

Kompleksitermiset jonot ja sarjat Kompleksitermiset jonot ja sarjat Aalto MS-C300, 205, v., Kari Eloranta Tutkitaan kompleksitermisten jonojen ja sarjojen ominaisuuksia. Päätavoite on kompleksifunktioiden sarjakehitelmien ymmärrys. Määritelmä

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 11. Integrointi erillisen erikoispisteen ympäri Olkoot f analyyttinen punkteeratussa kiekossa D(z 0.r\{z 0 }. Funktiolla f on erikoispiste z 0.

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

Mat-1.1331 Matematiikan pk KP3-i - kertaus

Mat-1.1331 Matematiikan pk KP3-i - kertaus Mat-.33 Matematiikan pk KP3-i - kertaus J.v.Pfaler TKK 24. lokakuuta 2007 Kurssin ensimmäisen puoliskon selkäranka on Kompleksitason funktioiden teoria, sisältäen analyyttiset funktiot, auchy integraali

Lisätiedot

Reaalisten funktioiden integrointia kompleksianalyysin keinoin

Reaalisten funktioiden integrointia kompleksianalyysin keinoin TAMPEREEN YLIOPISTO Pro gradu -tutkielma Mervi Paavola Reaalisten funktioiden integrointia kompleksianalyysin keinoin Informaatiotieteiden yksikkö Matematiikka Tampereen yliopisto Informaatiotieteiden

Lisätiedot

Mat Matematiikan peruskurssi KP3-i. Osa I. Kompleksiluvut. TKK lokakuuta Määritelmä ja perusominaisuuksia

Mat Matematiikan peruskurssi KP3-i. Osa I. Kompleksiluvut. TKK lokakuuta Määritelmä ja perusominaisuuksia Mat-1.1331 Matematiikan peruskurssi KP3-i A.Rasila J.v.Pfaler TKK27 19. lokakuuta 27 A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 19. lokakuuta 27 1 / 353 A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 5. joulukuuta 2016 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujonot Lukujonot Z-muunnoksen ominaisuuksia

Lisätiedot

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z 5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon

Lisätiedot

Diskreetin LTI-systeemin stabiilisuus

Diskreetin LTI-systeemin stabiilisuus Diskreetin LTI-systeemin stabiilisuus LuK-tutkielma Johannes Ylitalo 2372956 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 Merkintöjä 2 1 Kompleksifunktiot 3 2 Signaalianalyysi

Lisätiedot

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 1. joulukuuta 2015 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujono Lukujono on diskreetti funktio

Lisätiedot

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,

Lisätiedot

Residylaskenta ja sen sovelluksena äärettömien sarjojen summien laskeminen ja Mittag-Leerin laajennuslause

Residylaskenta ja sen sovelluksena äärettömien sarjojen summien laskeminen ja Mittag-Leerin laajennuslause Residylaskenta ja sen sovelluksena äärettömien sarjojen summien laskeminen ja Mittag-Leerin laajennuslause Pro Gradu-tutkielma Urho Erkkilä Matemaattisten tieteiden laitos Oulun Yliopisto Kevät 03 Sisältö

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan

Lisätiedot

1. Viikko. K. Tuominen MApu II 1/17 17

1. Viikko. K. Tuominen MApu II 1/17 17 1. Viikko Keskeiset asiat ja tavoitteet: 1. Kompleksiluvut, kompleksitaso, polaariesitys, 2. Kompleksilukujen peruslaskutoimitukset, 3. Eulerin ja De Moivren kaavat, 4. Potenssi ja juuret, kompleksinen

Lisätiedot

Kuinka määritellään 2 3?

Kuinka määritellään 2 3? Kuinka määritellään 2 3? y Nyt 3 = 1,7320508.... Luvut 3 2 x x 3 2 x 2 1 = 2, 2 1,7 3,2490, 2 1,73 3,3173, 2 1,732 3,3219,... ovat hyvin määriteltyjä koska näihin tarvitaan vain rationaalilukupotenssin

Lisätiedot

Kompleksianalyysi, viikko 4

Kompleksianalyysi, viikko 4 Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,

Lisätiedot

Kaavoja: Aalto-yliopisto. Hyperboliset ja trigonometriset funktiot: coshz = ez +e z. , sinhz = ez e z. 1. (a) Esitä polaarimuodossa kompleksiluku

Kaavoja: Aalto-yliopisto. Hyperboliset ja trigonometriset funktiot: coshz = ez +e z. , sinhz = ez e z. 1. (a) Esitä polaarimuodossa kompleksiluku Aalto-yliopisto Rasila/Murtola Mat-1.130 peruskurssi S3 Syksy 011 1. välikoe Ti 11.10.011 klo 16.00-19.00 Kokeessa saa käyttää ylioppilaskirjoituksessa sallittua laskinta mutta ei taulukkokirjaa. 1. (a)

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava

Lisätiedot

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa 1 ja perusominaisuuksia 2 Laskutoimitukset kompleksiluvuilla 3 Reaaliluvut ja kompleksiluvut Matematiikan peruskurssi KP3 I OSA 1: Johdatus kompleksilukuihin 4 Kompleksilukujen algebraa 5 Kompleksitaso

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, kevät 2015 / ORMS1010 Matemaattinen Analyysi 7. harjoitus, viikko 17 R1 ma 16 18 D115 (20.4.) R2 ke 12 14 B209 (22.4.) 1. Määritä funktiolle f (x) 1 + 0,1x Taylorin sarja kehityskeskuksena

Lisätiedot

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246 Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 Sarjojen suppeneminen Kiinnostuksen kohteena on edelleen sarja a k = a + a 2 + a 3 + a 4 +... k= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

MATEMATIIKAN PERUSKURSSI II kevät 2018 Ratkaisut 1. välikokeen preppaustehtäviin. 1. a) Muodostetaan osasummien jono. S n =

MATEMATIIKAN PERUSKURSSI II kevät 2018 Ratkaisut 1. välikokeen preppaustehtäviin. 1. a) Muodostetaan osasummien jono. S n = MATEMATIIKAN PERUSKURSSI II kevät 208 Ratkaisut. välikokeen preppaustehtäviin. a) Muodostetaan osasummien jono S n = n ( k k) k= josta saadaan = ( 0 ) + ( 2) + ( 2 3) + ( n 2 n ) + ( n n) = n, n =, 2,...,

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1 Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................

Lisätiedot

Positiivitermisten sarjojen suppeneminen

Positiivitermisten sarjojen suppeneminen Positiivitermisten sarjojen suppeneminen Jono (b n ) n= on kasvava, jos b n+ b n kaikilla n =, 2,... Lemma Jokainen ylhäältä rajoitettu kasvava jono (b n ) n= raja-arvo on lim n b n = sup n Z+ b n. suppenee

Lisätiedot

Reaalimuuttujan kompleksiarvoisen funktion integraali

Reaalimuuttujan kompleksiarvoisen funktion integraali Reaalimuuttujan kompleksiarvoisen funktion integraali Määritelmä 1 Olkoon f(t) = u(t) + jv(t) jatkuva funktio välillä [a, b]. Tällöin (1) b b b f(t)dt = u(t)dt + j v(t)dt. a a a Jatkossa oletetaan, että

Lisätiedot

Sarjoja ja analyyttisiä funktioita

Sarjoja ja analyyttisiä funktioita 3B Sarjoja ja analyyttisiä funktioita 3B a Etsi funktiolle z z 5 potenssisarjaesitys kiekossa B0, 5. b Etsi funktiolle z z potenssisarjaesitys kiekossa, jonka keskipiste on z 0 4. Mikä on tämän potenssisarjan

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos September 13, 2017 Pekka Alestalo,

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 14.9.2016 Pekka Alestalo, Jarmo Malinen

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat M-A010{2,3,4,5} (CI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: arjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos eptember 12, 2018 Pekka

Lisätiedot

z-muunnos ja differenssiyhtälöt

z-muunnos ja differenssiyhtälöt TAMPEREEN YLIOPISTO Pro gradu -tutkielma Martti Helenius z-muunnos ja differenssiyhtälöt Informaatiotieteiden yksikkö Matematiikka Joulukuu 204 Tampereen yliopisto Informaatiotieteiden yksikkö HELENIUS,

Lisätiedot

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen. Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering

Lisätiedot

Kompleksianalyysi viikko 3

Kompleksianalyysi viikko 3 Kompleksianalyysi viikko 3 Jukka Kemppainen Mathematics Division Derivaatta Oletetaan seuraavassa, että joukko A C on avoin, eli jokaista z 0 A kohti on olemassa sellainen ǫ > 0, että z z 0 < ǫ z A. f

Lisätiedot

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0 TKK, Matematiian laitos v.pfaler/pursiainen Mat-.33 Matematiian perusurssi KP3-i sysy 2007 Lasuharjoitus 4 viio 40 Tehtäväsarja A viittaa aluviion ja L loppuviion tehtäviin. Valmistauu esittämään nämä

Lisätiedot

Taylorin sarja ja Taylorin polynomi

Taylorin sarja ja Taylorin polynomi Taylorin sarja ja 1 Potenssisarja c k (x a) k = f (x) määrittelee x:n funktion. Seuraavaksi toteamme mikä yhteys potenssisarjalla on sen määrittelemän funktion derivaattoihin f (a),f (a),f (a),f (3) (a),...

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 212 RITVA HURRI-SYRJÄNEN 6.1. Poluista. 6. Kompleksinen integrointi Olkoon [α, β] suljettu reaaliakselin väli, α < β, ja olkoon A kompleksitason avoin joukko. Polku on

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1 FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 7. Integaalilauseita 7.1. Gousatin lemma. (Edouad Jean-Baptiste Gousat, 1858-1936, anskalainen matemaatikko) Olkoon R tason suljettu suoakaide,

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu. Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

Residylause ja sen sovelluksia

Residylause ja sen sovelluksia TAMPEREEN YLIOPISTO Pro gradu -tutkielma Henry Joutsijoki Residylause ja sen sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Marraskuu 7 Tampereen yliopisto Matematiikan, tilastotieteen

Lisätiedot

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste, Reaaliluvuista Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät tiivistelmän reaaliluvuista ja niihin liittyvistä käsitteistä.

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 01 RITVA HURRI-SYRJÄNEN 5. Eksponenttifunktio ja sini- ja kosinifunktiot Kertausta. (1 Reaaliselle eksponenttifunktiolle e x : R R + pätee e x x k = kaikilla x R. k! (

Lisätiedot

RIEMANNIN KUVAUSLAUSE. Sirpa Patteri

RIEMANNIN KUVAUSLAUSE. Sirpa Patteri RIEMANNIN KUVAUSLAUSE Sirpa Patteri 2 RIEMANNIN KUVAUSLAUSE Johdanto Georg Bernhard Riemann (826-866) esitti kuvauslauseen väitöskirjassaan vuonna 85. Hän käytti todistuksessaan Dirichlet n periaatetta,

Lisätiedot

3 Lukujonon raja-arvo

3 Lukujonon raja-arvo ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen

Lisätiedot

Kompleksianalyysi ja integraalimuunnokset. Seppo Hassi

Kompleksianalyysi ja integraalimuunnokset. Seppo Hassi Kompleksianalyysi ja integraalimuunnokset Seppo Hassi Syksy 6 iii Esipuhe Tämä on Kompleksianalyysi ja integraalimuunnokset -kurssille laadittu opetusmoniste, jonka sisältö perustuu Vaasan yliopistossa

Lisätiedot

1 Kompleksitason geometriaa ja topologiaa

1 Kompleksitason geometriaa ja topologiaa 1 Kompleksitason geometriaa ja topologiaa Tavallisessa analyyttisessä geometriassa käyrien yhtälöt esitetään x-koordinaattien ja y-koordinaattien avulla, esimerkiksi y = 1 x esittää tasasivuista hyperbeliä,

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi, kurssikerta 5 Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause 91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan

Lisätiedot

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat

Lisätiedot

3 Lukujonon raja-arvo

3 Lukujonon raja-arvo ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n

Lisätiedot

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2 BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden

Lisätiedot

Sarjojen suppenemisesta

Sarjojen suppenemisesta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Terhi Mattila Sarjojen suppenemisesta Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R.

(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R. Calculus Kurssikoe..7. Laske (a) x sin x, (b) x x + x. (a) Merkitään u(x) = x ja v (x) = sin x, jolloin u (x) =, v(x) = cos x ja osittaisintegroimalla saadaan x sin x = u(x)v (x) = u(x)v(x) u (x)v(x) =

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

1 Reaaliset lukujonot

1 Reaaliset lukujonot Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Yleisiä integroimissääntöjä

Yleisiä integroimissääntöjä INTEGRAALILASKENTA, MAA9 Yleisiä integroimissääntöjä Integroiminen eli annetun funktion f integraalifunktion F määrittäminen (löytäminen) on yleisesti haastavaa. Joskus joutuu jopa arvata tai kokeilla.

Lisätiedot

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ).

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Jonot Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Lukujonon täsmällinen tulkinta on funktio f : N R, jolle f

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

Kompleksiluvut Kompleksitaso

Kompleksiluvut Kompleksitaso . Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, evät 05 / ORMS00 Matemaattinen Analyysi 6. harjoitus. Approsimoi toisen asteen polynomilla P(x) = b 0 +b x+b x oheisen tauluon muaisia havaintoja. (Teorian löydät opetusmonisteen sivuilta

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1) Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )

Lisätiedot

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja

Lisätiedot

2. Funktiot. Keijo Ruotsalainen. Mathematics Division

2. Funktiot. Keijo Ruotsalainen. Mathematics Division 2. Funktiot Keijo Ruotsalainen Mathematics Division Kompleksimuuttujan funktio Kompleksimuuttujan z kompleksiarvoinen funktio f(z) voi olla yksiarvoinen tai moniarvoinen, esimerkiksi f(z) = e z f(z) =

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

Kompleksiluvut Kompleksitaso Kompleksifunktiot ja kuvaukset Funktioiden raja-arvo, jatkuvuus ja derivaatta Eräitä kompleksifun.

Kompleksiluvut Kompleksitaso Kompleksifunktiot ja kuvaukset Funktioiden raja-arvo, jatkuvuus ja derivaatta Eräitä kompleksifun. 17. lokakuuta 2016 Kompleksiluvut Kompleksiluku Kompleksiluku z on järjestetty reaalilukupari missä x ja y ovat reaalilukuja. z = (x, y), Lukuparin reaaliosa on x ja imaginaariosa on y. Lukuparin reaaliosa

Lisätiedot

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

x 4 e 2x dx Γ(r) = x r 1 e x dx (1) HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot