KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

Koko: px
Aloita esitys sivulta:

Download "KOMPLEKSIANALYYSI I KURSSI SYKSY 2012"

Transkriptio

1 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain yhden kompleksimuuttujan kompleksiarvoisia funktioita. Siis meillä f : A C, missä A on kompleksitason osajoukko, ellemme erityisesti toisin mainitse. Tällaisten funktioiden käyttäytymisen tutkimiseen voidaan käyttää ainakin kolmea eri lähestymistapaa. (1) Yksi tapa perustuu kompleksiseen derivoitumiseen ja sisältää Cauchyn-Riemannin yhtälöt. Tämä tapa yleensä liitetään Riemanniin. (2) Toinen tapa perustuu integroimiseen ja silloin peruslause on Cauchyn integraaliteoreema. Tämä tapa yleensä liitetään Cauchy iin. (3) Kolmas tapa perustuu potenssisarjojen käyttöön ja se yleensä liitetään Weierstrassiin. Ensin kuitenkin kompleksitason topologiaa Avoimista ja suljetuista joukoista. Määritellään kuvaus asettamalla d : C C [0, ) (2.1) d(z 1, z 2 ) := z 1 z 2. Tämä kuvaus on metriikka, sillä kaikilla z, w, u C pätee (1) d(z, w) d(z, u) + d(u, w) (2) d(z, w) = d(w, z) (3) d(z, w) = 0, jos ja vain jos z = w. Date:

2 2 Kompleksianalyysin kurssi/rhs Luku d(z 1, z 2 ) on pisteiden z 1 C ja z 2 C välinen etäisyys. Olkoot a C ja r R +. Joukko D(a, r) = {z C : z a < r} on kiekko, jonka keskipiste on a ja säde on r. Kompleksitason epätyhjä osajoukko A on avoin, jos jokaisella a A on olemassa positiivinen reaaliluku r a siten, että D(a, r a ) A. Sovimme, että tyhjä joukko on avoin. Erityisesti jokainen kiekko D(a, r) on avoin. Joukko B C on suljettu kompleksitasossa, jos sen komplementti C\B on avoin. Esimerkiksi, joukko D(a, r) = {z C : z a r} on suljettu, ja se on a-keskinen, r-säteinen suljettu kiekko. Lisäksi, koko kompleksitaso C ja tyhjä joukko ovat sekä suljettuja että avoimia kompleksitasossa Esimerkki. (1) D(z 0, r) on avoin. (2) D(z 0, r)\{0} on avoin. (3) C\D(z 0, r) on avoin. (4) H + = {z C : Im(z) > 0} on avoin. (5) n N {z C : z n < 1/3} on avoin Esimerkki. (1) D(z 0, r) on suljettu kompleksitasossa C. (2) Kiekon kehä D(z 0, r) on suljettu kompleksitasossa C. (3) R on suljettu kompleksitasossa C. (4) H + = {z C : Im(z) 0} on suljettu kompleksitasossa C. (5] Olkoon n 1. Leikkaus n N D(0, 1/n) = {0} on suljettu Kasautumispiste. Luku z 0 on kompleksitason joukon S kasautumispiste, jos jokaisella ɛ > 0 on olemassa piste p ɛ z 0 siten, että p ɛ S D(z 0, ɛ) Huomautus. Siis luku z 0 on kompleksitason joukon S kasautumispiste, jos jokaisessa kiekossa D(z 0, ɛ), ɛ > 0 on joukon S jokin piste, joka ei ole z 0. Huomaa, että luku z 0 ei itse ole välttämättä joukon S piste. Oleellista on, että joukon S kasautumispisteellä z 0 on joukon S pisteitä mielivaltaisen lähellä sitä. Itse asiassa jokaisessa kiekossa D(z 0, ɛ) on oltava äärettömän monta joukon S pistettä Lause. Kompleksitason joukko B on suljettu, jos ja vain jos se sisältää kaikki kasautumispisteensä Huomautus. Suljettujen joukkojen mielivaltainen leikkaus on suljettu.

3 Kompleksianalyysin kurssi/rhs Määritelmä. (1) Kompleksitason joukon A sulkeuma on A = {F : A F ja F on suljettu}. (2) Piste z 0 on kompleksitason joukon A sisäpiste, jos on olemassa luku δ > 0 siten, että D(z 0, δ) A. Sisäpisteiden joukon merkintä on int A. (3) Kompleksitason joukon A reuna on A = Ā\ int A. (4) Joukko U on pisteen z 0 ympäristö (eli ystö), jos piste z 0 on joukon U sisäpiste. Tässä määrittelyssä ystön ei tarvitse olla avoin. Huomaa: Väisälän Topologia I kirjassa ympäristö (eli ystö) on aina avoin joukko. Ystön määrittely Väisälän Topologia I kirjassa: Joukko U X on pisteen z 0 X ystö, jos z 0 U ja U on X :n avoin osajoukko Esimerkki. (1) H + = R. (2) D(z 0, r) = {z C : z z o = r} on kiekon D(z 0, r) kehä. (3) (D(z 0, r)\{0}) = D(z 0, r) {z 0 }. (4) A on suljettu. (5) int A on avoin. Joskus merkitään int A = A Huomautus. Pisteet, jotka eivät ole joukon S kasautumispisteitä, ovat joukon S erillisiä pisteitä. Olkoon S = {z C z = 0 tai z = 1/n positiivisella kokonaisluvulla n}. Joukon S ainoa kasautumispiste on 0 ja 0 S, siis S on suljettu. Kaikki muut joukon S pisteet ovat erillisiä pisteitä. Erillisellä pisteellä z 0 on avoin ystö D(z 0, ɛ), missä ei ole muita joukon S pisteitä: Valitaan nyt ɛ = 1/n 1/(n + 1) = 1/n(n + 1). Silloin D(1/n, 1/n(n + 1)) ei sisällä muita joukon S pisteitä kuin 1/n Huomautus. (1) Avoimen joukon jokainen piste on sen kasautumispiste. (2) Piste z A, jos ja vain jos z on joukon A erillinen piste tai joukon A kasautumispiste Lukujonon raja-arvosta Määritelmä. Olkoon (z n ) = (z n ) n=1 jono kompleksilukuja. Luku z on jonon (z n ) raja-arvo, jos jokaisella ɛ > 0 on olemassa luku N(ɛ) siten, että kun n > N(ɛ), niin z z n < ɛ. Jos raja-arvo on olemassa, niin se on yksikäsitteinen. Merkitsemme z n = z ja lyhyesti z n = z ja käytämme myös merkintää z n z, kun n.

4 4 Kompleksianalyysin kurssi/rhs Lause. Olkoon (z n ) jono kompleksilukuja. Silloin jos ja vain jos z n = z, Re(z n) = Re(z) ja Im(z n ) = Im(z) Esimerkki. Määrää z n, kun z n = ( n + i 1 1 ). n Ratkaisu: kun n. z n 1 + i, Esimerkki. Lukujonolla (z n ), missä ( ) n 1 + i z n =, 1 i ei ole raja-arvoa, kun n. Nimittäin, 1, jos n = 0 mod 4, ( ) n 1 + i i, jos n = 1 mod 4, = 1 i 1, jos n = 2 mod 4, i, jos n = 3 mod Lause. Kompleksitaso C varustettuna metriikalla (2.1) on täydellinen metrinen avaruus. Todistus. Olkoon (z n ) n=1 Cauchy-jono kompleksitasossa C. Siis kaikilla ɛ > 0 on olemassa n ɛ N siten, että z n z m < ɛ. kunhan n, m n ɛ. Jos z n = x n + iy n kaikilla n N, missä x n R ja y n R, niin Siis z n z m = x n + iy n x m iy m = x n x m + i(y n y m ). z n z m 2 = x n x m 2 + y n y m 2. Näin ollen (x n ) ja (y n ) ovat reaalisia Cauchy-jonoja ja siten ne suppenevat reaalilukujen joukossa R. Siis on olemassa x R ja y R siten, että x = x n ja y = y n.

5 Kompleksianalyysin kurssi/rhs 5 Siis z n = x + iy eli kompleksilukujono (z n ) suppenee kohti kompleksilukua x+iy, missä x R ja y R, kompleksitason metriikan suhteen. Siis kompleksitaso on täydellinen metriikan (2.1) suhteen Lause. Olkoot (z n ) ja (w n ) kompleksilukujen muodostamia lukujonoja ja olkoon λ C. Olkoot z n = z 0 ja w n = w 0. Silloin Jos lisäksi w 0 0, niin z n = z 0, z n = z 0, (λz n) = λz 0, (z n + w n ) = z 0 + w 0, (z nw n ) = z 0 w 0. (z n/w n ) = z 0 /w Huomautus. Viimeisessä kohdassa w 0 0, joten silloin vain äärellisen monella n voi olla w n = 0. Jätetään nämä luvut w n pois, kun muodostetaan osamäärä (z n /w n ) Esimerkki. Olkoon u n = i n /n, n = 1, 2,. Onko raja-arvo u n olemassa? Jos raja-arvo on olemassa, niin määrää se. Ratkaisu: Lukujono i, 1/2, i/3, 1/4, i/5,. Tällöin u n = 0. Nimittäin: Olkoon ɛ > 0 annettu. Silloin in n 0 i n = n kunhan luku n > 1/ɛ Funktion raja-arvosta. = i n n = 1 n < ɛ, Olkoon A kompleksitason osajoukko. Funktiolle f : A C määritellään reaaliosa Re f : A R ja imaginaariosa Im f : A R asettamalla (Re f)(z) = Re(f(z)) ja (Im f)(z) = Im(f(z)), z A Määritelmä. Olkoot A kompleksitason osajoukko, z 0 joukon A kasautumispiste ja f : A C kuvaus. Silloin funktiolla f on olemassa

6 6 Kompleksianalyysin kurssi/rhs raja-arvo w pisteessä z 0 joukon A suhteen, jos jokaisella annetulla ɛ > 0 on olemassa δ ɛ > 0 siten, että (2.2) z A, 0 < z z 0 < δ ɛ pätee f(z) w < ɛ. Merkitsemme w = z z0,z A f(z) tai w = z z0 f(z) Lause. Jos z 0 on joukon A kasautumispiste ja raja-arvo w = z z0,z A f(z) on olemassa, niin raja-arvo on yksikäsitteinen Huomautus. Luku z 0 ei ole välttämättä joukon A piste, joten f(z 0 ) ei ole välttämättä määritelty. Jos taas z 0 A, niin voi olla, että f(z 0 ) w. Esimerkki 1: Tyypillinen tilanne on, että A on avoin ja z 0 A. funktio f(z) = ei ole määritelty origossa, f : C\{0} C. z 2 z z ) z 0,z 0 sillä 1 z(z 1) + 1 z kun z 0. Esimerkki 2: ( 1 z 2 z + 1 z = 1 + (z 1) z(z 1) f(z) = Siis z 0 f(z) = 0 f(0). Esimerkki 3: g(z) = Siis z i g(z) = 1 g(i). { 0, z 0, 1, z = 0. { z 2, z i, 0, z = i. = 1, = 1 z 1 1, Esimerkki. Onko seuraava raja-arvo olemassa 1 z z 1 1 z? Ratkaisu: Ei ole. Nimittäin, kun z = 1 x, missä x R\{0}, 1 z z 1 1 z = 1. Toisaalta, kun z = 1 + iy, missä y R\{0}, 1 z z 1 1 z = 1.

7 Kompleksianalyysin kurssi/rhs Esimerkki. Olkoon f(z) = z. Funktiolla f ei ole raja-arvoa z origossa, nimittäin, kun x R ja y R, x 0+ x 0 y 0+ x x = x 0+ x x = x 0 iy iy = y 0+ x x = 1 x x = 1 iy y = i Huomautus. Oleellista on, että z 0 on joukon A kasautumispiste. Muutoin olisi tilanne, että on olemassa δ > 0 siten, että punkteerattu avoin kiekko {z C 0 < z z 0 < δ} ei sisällä joukon A pisteitä Funktion jatkuvuudesta Määritelmä. Olkoon A kompleksitason osajoukko. Olkoon a A. Funktio f : A C on jatkuva pisteessä z 0 A, jos jokaisella annetulla ɛ > 0 on olemassa δ ɛ > 0 siten, että f(z) f(z 0 ) < ɛ, kunhan z A ja z z 0 < δ ɛ. Funktio f on jatkuva joukossa A, jos f on jatkuva jokaisessa joukon A pisteessä Lause. Olkoon A kompleksitason osajoukko ja olkoon z 0 A. Funktio f : A C on jatkuva pisteessä z 0 A, jos ja vain jos funktion f reaaliosa Re f ja imaginaariosa Im fovat jatkuvia pisteessä z Huomautus. Jos piste z 0 on joukon A kasautumispiste, niin f on jatkuva pisteessä z 0, jos ja vain jos z z 0,z A f(z) ja f(z) = f(z 0). z z 0,z A Jos z 0 on joukon A erillinen piste, niin on olemassa ystö D(z 0, δ), jossa ei ole muita joukon A pisteitä kuin z 0, joten z A, z z 0 < δ implikoi z = z 0, mistä seuraa f(z) f(z 0 ) = 0. Siis kompleksifunktio on aina jatkuva erillisessä pisteessä tämän määritelmän nojalla Huomautus. Olkoon f : A C. Funktio f voi olla jatkuva pisteessä a tai f voi olla epäjatkuva pisteessä a vain jos a A. Siis, jos esimerkiksi f(z) = 1/z, niin ei käytetä termiä epäjatkuva origossa, koska tätä funktiota f ei edes ole määritelty origossa Lause. Olkoon A kompleksitason osajoukko. Seuraavat väitteet ovat yhtäpitävät funktiolle f : A C.

8 8 Kompleksianalyysin kurssi/rhs (1) Funktio f on jatkuva pisteessä a A. (2) Jokaisella avoimella kompleksitason osajoukolla V, jolle f(a) V, on olemassa kompleksitason avoin osajoukko U siten, että a U ja A U f 1 (V ). (3) Joukon A jokaiselle jonolle (z n ), jolle z n a, kun n, pätee f(z n) = f(a) Huomautus. Topologin määritelmä jatkuvuudelle: kompleksifunktio f : A C on jatkuva, jos ja vain jos jokaiselle avoimelle joukolle U alkukuva f 1 (U) on avoin joukossa A. (Erityisen hyödyllinen, kun A on avoin.) Esimerkki. Olkoon f(z) = z, kun z 0 ja f(0) = 1. Funktio z f ei ole jatkuva origossa: jos valitaan z 2n = 1/n ja z 2n+1 = i/n, niin z n 0, kun n, mutta jono (f(z n )) n=1 ei suppene, sillä f(z 2n ) = 1 ja f(z 2n+1 ) = 1. Siis f ei voi olla jatkuva origossa Lause. Olkoot funktiot f : A C ja g : A C jatkuvia pisteessä a A. Silloin (1) Summafunktio f + g on jatkuva pisteessä a. (2) Tulofunktio fg on jatkuva pisteessä a. (3) Jos g(a) 0, niin osamääräfunktio f on määritelty ja jatkuva g jossakin pisteen a ympäristössä Lause. Olkoot A C ja B C. Olkoot f : A C ja g : B C ja f(a) B. Jos funktio f on jatkuva pisteessä a A ja funktio g on jatkuva pisteessä f(a) B, niin silloin yhdistetty funktio g f on jatkuva pisteessä a Korollaari. (1) Kompleksiset polynomit P : C C, P (z) = a 0 + a 1 z + + a n 1 z n 1 + a n z n, a 0, a 1,, a n 1, a n C, ovat jatkuvia koko kompleksitasossa. (2) Rationaalifunktiot R(z) = P (z) Q(z), missä P ja Q ovat kompleksisia polynomeja, ovat jatkuvia kaikissa niissä kompleksitason pisteissä z, joissa Q(z) 0. Viitteet [Väisälä] Jussi Väisälä, Topologia I. Limes ry.

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 212 RITVA HURRI-SYRJÄNEN 6.1. Poluista. 6. Kompleksinen integrointi Olkoon [α, β] suljettu reaaliakselin väli, α < β, ja olkoon A kompleksitason avoin joukko. Polku on

Lisätiedot

1 Kompleksitason geometriaa ja topologiaa

1 Kompleksitason geometriaa ja topologiaa 1 Kompleksitason geometriaa ja topologiaa Tavallisessa analyyttisessä geometriassa käyrien yhtälöt esitetään x-koordinaattien ja y-koordinaattien avulla, esimerkiksi y = 1 x esittää tasasivuista hyperbeliä,

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 11. Integrointi erillisen erikoispisteen ympäri Olkoot f analyyttinen punkteeratussa kiekossa D(z 0.r\{z 0 }. Funktiolla f on erikoispiste z 0.

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

Joukot metrisissä avaruuksissa

Joukot metrisissä avaruuksissa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saara Lahtinen Joukot metrisissä avaruuksissa Informaatiotieteiden yksikkö Matematiikka Elokuu 2013 Sisältö 1 Johdanto 1 2 Metriset avaruudet 1 2.1 Tarvittavia

Lisätiedot

(a) avoin, yhtenäinen, rajoitettu, alue.

(a) avoin, yhtenäinen, rajoitettu, alue. 1. Hahmottele seuraavat tasojoukot. Mitkä niistä ovat avoimia, suljettuja, kompakteja, rajoitettuja, yhtenäisiä, alueita? (a) {z C 1 < 2z + 1 < 2} (b) {z C z i + z + i = 4} (c) {z C z + Im z < 1} (d) {z

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus

Lisätiedot

Funktioteoria I. Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2009

Funktioteoria I. Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2009 Funktioteoria I Helsingin yliopisto Matematiikan ja tilastotieteen laitos Syyslukukausi 2009 Kari Astalan muistiinpanoista (2005) muokannut Pekka Nieminen Kuvat: Martti Nikunen Funktioteorian eli kompleksianalyysin

Lisätiedot

1 Reaaliset lukujonot

1 Reaaliset lukujonot Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot

Lisätiedot

Kompleksianalyysi viikko 3

Kompleksianalyysi viikko 3 Kompleksianalyysi viikko 3 Jukka Kemppainen Mathematics Division Derivaatta Oletetaan seuraavassa, että joukko A C on avoin, eli jokaista z 0 A kohti on olemassa sellainen ǫ > 0, että z z 0 < ǫ z A. f

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

Kompleksitermiset jonot ja sarjat

Kompleksitermiset jonot ja sarjat Kompleksitermiset jonot ja sarjat Aalto MS-C300, 205, v., Kari Eloranta Tutkitaan kompleksitermisten jonojen ja sarjojen ominaisuuksia. Päätavoite on kompleksifunktioiden sarjakehitelmien ymmärrys. Määritelmä

Lisätiedot

1 Analyyttiset funktiot

1 Analyyttiset funktiot Analyyttiset funktiot. Kompleksimuuttujan kompleksiarvoinen funktio Olkoot A ja B kompleksitason C osajoukkoja. Kuvausta f : A B sanotaan kompleksimuuttujan kompleksiarvoiseksi funktioksi. Usein on B C..Vakiokuvaus.

Lisätiedot

Kompleksianalyysi Funktiot

Kompleksianalyysi Funktiot Kompleksianalyysi Funktiot Jukka Kemppainen Mathematics Division Kompleksimuuttujan funktio Aloitetaan funktion määritelmällä. Määr. 1 Kompleksimuuttujan funktio f : C C on sääntö, joka liittää joukkoon

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.

Lisätiedot

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus 1. (5:7) Olkoon E normiavaruus, I = [0, 1] ja f, g : I E jatkuvia. Osoita, että yhtälön h(s, t) = (1 t)f(s) + tg(s) määrittelemä kuvaus h : I 2 E on

Lisätiedot

1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet.

1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet. BM0A5700 - Integraalimuunnokset Harjoitus 1 1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet. a Piste z 1 i. Ympyrä z 1 i. Avoin kiekko z 1 i

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Topologia Syksy 2010 Harjoitus 9

Topologia Syksy 2010 Harjoitus 9 Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,

Lisätiedot

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, Topologia Syksy 2010 Harjoitus 4 (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, i=1 A i = R 1, ja f : R 1 R 1 ei ole jatkuva. Lause

Lisätiedot

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00 1 Metriset avaruudet Erno Kauranen 1 Versio: 10. lokakuuta 2016, 00:00 1. Sisätulo ja normiavaruus................................................. 3 2. Metrinen avaruus........................................................

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa 1 ja perusominaisuuksia 2 Laskutoimitukset kompleksiluvuilla 3 Reaaliluvut ja kompleksiluvut Matematiikan peruskurssi KP3 I OSA 1: Johdatus kompleksilukuihin 4 Kompleksilukujen algebraa 5 Kompleksitaso

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

Diskreetin LTI-systeemin stabiilisuus

Diskreetin LTI-systeemin stabiilisuus Diskreetin LTI-systeemin stabiilisuus LuK-tutkielma Johannes Ylitalo 2372956 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 Merkintöjä 2 1 Kompleksifunktiot 3 2 Signaalianalyysi

Lisätiedot

Reaalisten funktioiden integrointia kompleksianalyysin keinoin

Reaalisten funktioiden integrointia kompleksianalyysin keinoin TAMPEREEN YLIOPISTO Pro gradu -tutkielma Mervi Paavola Reaalisten funktioiden integrointia kompleksianalyysin keinoin Informaatiotieteiden yksikkö Matematiikka Tampereen yliopisto Informaatiotieteiden

Lisätiedot

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1) Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )

Lisätiedot

Vastauksia. Topologia Syksy 2010 Harjoitus 1

Vastauksia. Topologia Syksy 2010 Harjoitus 1 Topologia Syksy 2010 Harjoitus 1 (1) Olkoon X joukko ja (T j ) j J perhe X:n topologioita. Osoita, että T = {T j : j J} on X:n topologia. (2) Todista: Välit [a, b) muodostavat R 1 :n erään topologian kannan.

Lisätiedot

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista. JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva

Lisätiedot

RIEMANNIN KUVAUSLAUSE. Sirpa Patteri

RIEMANNIN KUVAUSLAUSE. Sirpa Patteri RIEMANNIN KUVAUSLAUSE Sirpa Patteri 2 RIEMANNIN KUVAUSLAUSE Johdanto Georg Bernhard Riemann (826-866) esitti kuvauslauseen väitöskirjassaan vuonna 85. Hän käytti todistuksessaan Dirichlet n periaatetta,

Lisätiedot

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

2. Funktiot. Keijo Ruotsalainen. Mathematics Division

2. Funktiot. Keijo Ruotsalainen. Mathematics Division 2. Funktiot Keijo Ruotsalainen Mathematics Division Kompleksimuuttujan funktio Kompleksimuuttujan z kompleksiarvoinen funktio f(z) voi olla yksiarvoinen tai moniarvoinen, esimerkiksi f(z) = e z f(z) =

Lisätiedot

Luku 2. Jatkuvien funktioiden ominaisuuksia.

Luku 2. Jatkuvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 21 Risto Silvennoinen Luku 2. Jatkuvien funktioiden ominaisuuksia. Jatkossa väli I tarkoittaa jotakin seuraavista reaalilukuväleistä: ( ab, ) = { x a< x< b} = { x a

Lisätiedot

Kompleksianalyysin luentomoniste; johdanto

Kompleksianalyysin luentomoniste; johdanto Kompleksianalyysin luentomoniste; johdanto Tässä luentomonisteessa on esitetty kompleksianalyysin kursseilla käsiteltävät asiat yhtenä tekstinä Vaikka näitä kursseja on nimellisesti kaksi (eli ykkönen

Lisätiedot

Tasainen suppeneminen ja sen sovellukset

Tasainen suppeneminen ja sen sovellukset Tasainen suppeneminen ja sen sovellukset Tuomas Hentunen Matematiikan pro gradu tutkielma Kesäkuu 2014 Tiivistelmä: Tuomas Hentunen, Tasainen suppeneminen ja sen sovellukset (engl. Uniform convergence

Lisätiedot

Kompleksianalyysi, viikko 4

Kompleksianalyysi, viikko 4 Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,

Lisätiedot

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1 FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Analyysi I. Visa Latvala. 3. joulukuuta 2004

Analyysi I. Visa Latvala. 3. joulukuuta 2004 Analyysi I Visa Latvala 3. joulukuuta 004 95 Sisältö 6 Kompleksiluvut 96 6.1 Yhteen- ja kertolasku.............................. 96 6. Napakoordinaattiesitys............................. 10 96 6 Kompleksiluvut

Lisätiedot

Poistumislause Kandidaatintutkielma

Poistumislause Kandidaatintutkielma Poistumislause Kandidaatintutkielma Mikko Nikkilä 013618832 26. helmikuuta 2011 Sisältö 1 Johdanto................................... 2 2 Olemassaolon ja yksikäsitteisyyden historiaa............ 3 3 Esitietoja..................................

Lisätiedot

Kompaktisuus ja filtterit

Kompaktisuus ja filtterit Kompaktisuus ja filtterit Joukkoperheellä L on äärellinen leikkausominaisuus, mikäli jokaisella äärellisellä L L on voimassa L. Nähdään helposti, että perheellä L on äärellinen leikkausominaisuus ja L

Lisätiedot

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin

Lisätiedot

Topologia Syksy 2010 Harjoitus 11

Topologia Syksy 2010 Harjoitus 11 Topologia Syksy 2010 Harjoitus 11 (1) Tarkastellaan tason (a, )-topologiaa. (Tässä topologiassa A R 2 on avoin jos ja vain jos A =, A = R 2 tai A = {(x, y) R 2 x > a ja y > b} joillekin a, b R.) Jokaiselle

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b. 2 Lukujonot 21 Lukujonon määritelmä 16 Fibonacci n luvut määritellään ehdoilla Osoita: 17 a 1 = a 2 = 1; a n+2 = a n+1 + a n, n N a n = 1 [( 1 + ) n ( 2 1 ) n ] 2 Olkoon a 1 = 3, a 2 = 6, a n+1 = 1 n (na

Lisätiedot

Raja arvokäsitteen laajennuksia

Raja arvokäsitteen laajennuksia Raja arvokäsitteen laajennuksia Näitä ei ole oppikirjassa! Raja arvo äärettömyydessä: Raja arvo äärettömyydessä on luku, jota funktion arvot lähestyvät, kun muuttujan arvot kasvavat tai vähenevät rajatta.

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 1. ALUKSI. Joukko-oppia

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 1. ALUKSI. Joukko-oppia DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 1. ALUKSI Joukko-oppia Lyhenteitä ja merkintöjä. A = B A:sta seuraa B. Implikaatio. A B A ja B yhtäpitävät. Ekvivalenssi.

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Derivaatta. Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen.

Derivaatta. Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen. Derivaatta Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen. Määritelmä Funktio f : A C on derivoituva pisteessä z 0 A jos raja-arvo (riippumatta

Lisätiedot

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

Funktiojonon tasainen suppeneminen

Funktiojonon tasainen suppeneminen TAMPEREEN YLIOPISTO Pro gradu -tutkielma Taina Saari Funktiojonon tasainen suppeneminen Matematiikan ja tilastotieteen laitos Matematiikka Elokuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause FUNKTIONAALIANALYYSIN PERUSKURSSI 125 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Sarjojen suppenemisesta

Sarjojen suppenemisesta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Terhi Mattila Sarjojen suppenemisesta Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Riemannin kuvauslause

Riemannin kuvauslause TAMPEREEN YLIOPISTO Pro gradu -tutkielma Veli-Matti Ek Riemannin kuvauslause Matematiikan ja tilastotieteen laitos Matematiikka Tammikuu 2008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos Ek,

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

Kompleksiluvut Kompleksitaso

Kompleksiluvut Kompleksitaso . Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen

Lisätiedot

Johdatus matemaattisen analyysin teoriaan

Johdatus matemaattisen analyysin teoriaan Kirjan Johdatus matemaattisen analyysin teoriaan harjoitustehtävien ratkaisuja 18. maaliskuuta 2005 Ratkaisut ovat laatineet Jukka Ilmonen ja Ismo Korkee. Ratkaisuissa olevista mahdollisista virheistä

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

MS-C1540 Euklidiset avaruudet

MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet III-periodi, kevät 2016 Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu 1 / 30 Euklidiset

Lisätiedot

Johdatus topologiaan (4 op)

Johdatus topologiaan (4 op) 180305 Johdatus topologiaan (4 op) Kevät 2009 1. Alkusanat Sana topologia on johdettu kreikan kielen sanoista topos ja logos, jotka merkitsevät paikkaa ja tietoa. Jo 1700-luvun alussa käytettiin latinan

Lisätiedot

y z = (x, y) Kuva 1: Euklidinen taso R 2

y z = (x, y) Kuva 1: Euklidinen taso R 2 Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z

Lisätiedot

Metriset avaruudet 2017

Metriset avaruudet 2017 Metriset avaruudet 2017 Jouni Parkkonen Merkintöjä N = {0, 1, 2,... } luonnolliset luvut #(A) N { } joukon A alkioiden lukumäärä A B = {a A : a / B} joukkojen A ja B erotus. A B on joukkojen A ja B erillinen

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö TOPOLOGIA

TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö TOPOLOGIA TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö TOPOLOGIA Arttu Ojanperä (Eero Hyryn luentojen mukaan) 2013 Sisältö 1 Johdanto 4 1 Jatkuvat kuvaukset........................ 4 2 Avoimet joukot..........................

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Määritelmä 2.5. Lause 2.6.

Määritelmä 2.5. Lause 2.6. Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan

Lisätiedot

Tällöin on olemassa reaalilukuja c, jotka kuuluvat jokaiselle välille I n = [a n, b n ]. Toisin sanoen a n c b n kaikilla n.

Tällöin on olemassa reaalilukuja c, jotka kuuluvat jokaiselle välille I n = [a n, b n ]. Toisin sanoen a n c b n kaikilla n. Analyysi I ja II lisämateriaalia HAARUKOINTI Tässä käsitellään kootusti sellaisia differentiaali- ja integraalilaskennan kurssin kysymyksiä, joissa joudutaan syventymään lukusuoran hienovaraisimpiin ominaisuuksiin.

Lisätiedot

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko? HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Topologia IA, kesä 2017 Harjoitus 1

Topologia IA, kesä 2017 Harjoitus 1 Topologia IA, kesä 07 Harjoitus Heikki Korpela 5. toukokuuta 07 Tehtävä. Todista ( luonnollisin oletuksin, kirjoita ne!) kaava 0.8., so. että f j J B j = j J f B j, huolellisesti tarkastellen yksittäisiä

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1 1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin

Lisätiedot

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

2.2.1 Ratkaiseminen arvausta sovittamalla

2.2.1 Ratkaiseminen arvausta sovittamalla 2.2.1 Ratkaiseminen arvausta sovittamalla Esimerkki: lomitusjärjestäminen (edellä) Yleistys: Ratkaistava T (1) c T (n) g(t (1),..., T (n 1), n) missä g on n ensimmäisen parametrin suhteen kasvava. (Ratkaisu

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko. Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

Johdanto Lassi Kurittu

Johdanto Lassi Kurittu Johdanto Tämä luentomoniste on kirjoitettu syksyn 2012 topologian kurssin jälkimmäisen osan luentomateriaaliksi. Kurssin ensimmäisellä puoliskolla käsiteltiin metrisiä avaruuksia, mutta nyt siirrytään

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ Matematiikan tilastotieteen laitos Differentiaalilaskenta, syksy 2015 Lisätehtävät 1 Ratkaisut 1. Olkoon f :, x+1, x 1, f (x)= x+3, x>1 Piirrä funktion kuvaa välillä [ 1, 3]. (a) Tutki ra-arvon (ε, δ)-määritelmän

Lisätiedot

Residylaskenta ja sen sovelluksena äärettömien sarjojen summien laskeminen ja Mittag-Leerin laajennuslause

Residylaskenta ja sen sovelluksena äärettömien sarjojen summien laskeminen ja Mittag-Leerin laajennuslause Residylaskenta ja sen sovelluksena äärettömien sarjojen summien laskeminen ja Mittag-Leerin laajennuslause Pro Gradu-tutkielma Urho Erkkilä Matemaattisten tieteiden laitos Oulun Yliopisto Kevät 03 Sisältö

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Analyysi I. Visa Latvala. 26. lokakuuta 2004

Analyysi I. Visa Latvala. 26. lokakuuta 2004 Analyysi I Visa Latvala 26. lokakuuta 2004 34 Sisältö 3 Reaauuttujan funktiot 35 3.1 Peruskäsitteitä................................. 35 3.2 Raja-arvon määritelmä............................. 43 3.3 Raja-arvon

Lisätiedot

Julian joukot. Henna-Liisa Kivinen. Matematiikan pro gradu

Julian joukot. Henna-Liisa Kivinen. Matematiikan pro gradu Julian joukot Henna-Liisa Kivinen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2013 Tiivistelmä: Henna-Liisa Kivinen Julian joukot, matematiikan pro gradu -tutkielma,

Lisätiedot

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste, Reaaliluvuista Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät tiivistelmän reaaliluvuista ja niihin liittyvistä käsitteistä.

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu. Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot