Matematiikan tukikurssi

Koko: px
Aloita esitys sivulta:

Download "Matematiikan tukikurssi"

Transkriptio

1 Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen määritelmän avulla. 3. Tangenttisuoran ja normaalisuoran yhtälöt. 4. Differentiaalikehitelmien muoostaminen. 5. Derivoimissäännöt: potenssifunktion erivaatta, tulon erivoimissääntö, osamäärän erivoimissääntö sekä ketjusääntö ja käänteisfunktion erivoimissääntö. Logaritminen erivointi. 6. Sarjakehitelmät. 7. Väliarvolause. 8. Derivoinnin sovelluksia: funktion nollakohtien määrän löytäminen, suurimman ja pienimmän arvon löytäminen. 9. Newtonin menetelmä. 10. L Hospitalin sääntö. 11. Logaritmit ja eksponentiaalifunktiot. 12. Trigonometriset funktiot. Alla tehtäviä näistä osaan liittyen. 1

2 1 Potenssisarjojen suppenemissäe Harjoitus 1.1. Etsi geometrisen sarjan S(x) = x n suppenemissäe. Suppeneeko kyseinen sarja suppenemissäteen päätepisteissä? Ratkaisu sivulla 5. Harjoitus 1.2. Etsi sarjan S(x) = x n n n=1 suppenemissäe. Suppeneeko kyseinen sarja suppenemissäteen päätepisteissä? Ratkaisu sivulla 6. Harjoitus 1.3. Etsi geometrisen sarjan S(x) = suppenemissäe. Ratkaisu sivulla 6. (x 10) n Harjoitus 1.4. Etsi potenssisarjan S(x) = suppenemissäe. Ratkaisu sivulla 6. n 3 (x 1) n Harjoitus 1.5. Etsi potenssisarjan S(x) = suppenemissäe. Ratkaisu sivulla 7. (3x + 7) n n n=1 2 2

3 Harjoitus 1.6. Etsi potenssisarjan S(x) = suppenemissäe. Ratkaisu sivulla 7. n! n n=1 n xn 2 Derivointia ja sen sovelluksia Kokeessa on syytä osata erivoimissäännöt hyvin, sillä niitä tarvitaan useissa tehtävissä. Erityisesti osamääräsääntö ja yhistetyn funktion erivoimissääntö on hyvä opetella huolella. Harjoitus 2.1. Derivoi funktio f (x) = 3x erotusosamäärän avulla. Ratkaisu sivulla 7. Harjoitus 2.2. Derivoi funktio f (x) = x erotusosamäärän avulla. Laske pisteeseen x = 1 piirretyn tangentin yhtälö. Laske x 0+ f (x). Ratkaisu sivulla 8. Harjoitus 2.3. Derivoi x 2 e x. Ratkaisu sivulla 8. Harjoitus 2.4. Derivoi x 10 ln x 10 Ratkaisu sivulla 8. Harjoitus 2.5. Derivoi Ratkaisu sivulla 8. e x3 x 2 Harjoitus 2.6. Derivoi Ratkaisu sivulla 9. e x3 f (x) 3

4 Harjoitus 2.7. Derivoi Ratkaisu sivulla 9. cos x 4 4x Harjoitus 2.8. Derivoi x x3 Ratkaisu sivulla 9. Harjoitus 2.9. Derivoi x Ratkaisu sivulla 9. Harjoitus Derivoi cos(sin x) Ratkaisu sivulla 9. Harjoitus Derivoi ln(x 2 + 1). Ratkaisu sivulla 9. Harjoitus Etsi kaava f (n) :lle kun f (x) = e ax. Tee sama funktiolle g(x) = x. Ratkaisu sivulla??. Harjoitus Arvioi lukua 50 ifferentiaaliapproksimaatiolla. Ratkaisu sivulla 10. Harjoitus Etsi f (x), kun x ( f (3x)) = 1. Ratkaisu sivulla 10. Harjoitus Etsi funktion f (x) = sin x maksimi ja minimi välillä [0, 2π]. Ratkaisu sivulla 10. Harjoitus Oletetaan, että f (0) = 0 ja 0 f (x) 1. Millä välillä f (1) on? Entä f (10)? Ratkaisu sivulla 10. Harjoitus Toista väliarvolauseen avulla, että cos b cos a b a. Ratkaisu sivulla 11. Harjoitus Olkoon f (x) = x 5 + x Laske ( f 1 ) (10). Ratkaisu sivulla 11. 4

5 Harjoitus Laske Ratkaisu sivulla 12. e ψ 1 ψ 0 sin ψ. Harjoitus Määritä funktion f (x) = x 3 + 2x 2 kuperuussuunnat ja käännepisteet. Ratkaisu sivulla 12. Harjoitus Laske f 9 (0) ja f 10 (0), kun f (x) = 1/(1 x 3 ). Ratkaisu sivulla 12. A Ratkaisut harjoituksiin Ratkaisu harjoitukseen 1.1. Tässä a n = 1, joten a n = 1. n a n+1 Täten suppenemissäe on 1, eli kyseinen sarja suppenee ainakin kun x ( 1, 1). On vielä tarkistettava erikseen välin päätepisteet. Kun x = 1, saaaan sarja 1 n = , joka selvästi hajaantuu. Samoin, kun x = 1, sarja ( 1) n = ei lähesty mitään tiettyä lukua, joten se hajaantuu. Täten suppenemisväli on avoin väli ( 1, 1). Tämä varmistaa aikaisemmin kurssilla mainitun seikan geometrisista sarjoista: ne suppenevat 1, jos suheluku q < 1. 1 Ne voivat supeta myös arvoilla q = ±1. Nämä arvot pitää tarkistaa erikseen. 5

6 Ratkaisu harjoitukseen 1.2. Koska a n = 1/n, on a n n a = 1/n n+1 n 1/(n + 1) = n + 1 n n = 1, joten sarja suppenee, kun x ( 1, 1). Jälleen on tarkistettava välin päätepisteet erikseen. Kun x = 1, syntyy harmoninen sarja 1 n, joka hajaantuu. Kun x = 1, syntyy suppeneva sarja ( 1) n. n Täten suppenemisväli on [ 1, 1) eli puoliavoin väli miinus yhestä yhteen. Esimerkin tarkoitus oli osoittaa, että suppenemissäteen päätepisteissä sarja voi joko supeta tai hajaantua vieläpä siten, että se hajaantuu toisessa päätepisteessä ja suppenee toisessa. Ratkaisu harjoitukseen 1.3. Tämä on 10-keskeinen potenssisarja. Tehään sijoitus y = x 10, jolloin saaaan origokeskeinen sarja S(x) = y n Tämä on täsmälleen sama kuin harjoituksen?? sarja. Se siis suppenee, kun 1 <y < 1 1 <x 10 < 1 9 <x < 11 Täten sarjan suppenemisväli on [9, 11). Ratkaisu harjoitukseen 1.4. Suppenemissäe on a n n a = n 3 n+1 n (n + 1) 3 = n 3 n n 3 + 3n 2 + 3n + 1 = 1. 6

7 Täten sarjan suppenemissäe, kun 1 < x 1 < 1 0 < x < 2. Ratkaisu harjoitukseen 1.5. Suppenemissäe on n a n a n+1 = 1/n 2 n 1/(n + 1) 2 = (n + 1) 2 = 1. n Täten sarjan suppenemissäe, kun 1 < 3x + 7 < 1 8/3 < x < 2. Ratkaisu harjoitukseen 1.6. Suppenemissäe on a n n a = n!/n n n+1 n (n + 1)!/(n + 1) n+1 = (n + 1) n+1 n n n (n + 1) = (n + 1) n n n n ( ) n + 1 n = n n = e. Täten sarjan suppenemissäe, kun e < x < e. Ratkaisu harjoitukseen 2.1. Derivaatta on erotusosamäärän raja-arvo eli n 2 f (x 0 ) = x x0 f (x) f (x 0 ) x x 0 3x 3x = 0 x x0 x x 0 3(x x = 0 ) x x0 x x 0 = 3 x x0 = 3. 7

8 Ratkaisu harjoitukseen 2.2. Tangenttisuoran yhtälö on f (x 0 ) = x x0 f (x) f (x 0 ) x x 0 = x x0 x x0 x x 0 = x x0 ( x x 0 )( x + x 0 ) (x x 0 )( x + x 0 ) x x = 0 x x0 (x x 0 )( x + x 0 ) 1 = x x0 ( x + x 0 ) = 1 2 x 0 y y 0 = f (x 0 )(x x 0 ) Tangenttisuoraan pitää nyt sijoittaa arvot x 0 = 1, y 0 = 1 ja f (1) = 1/2. Täten pisteeseen x = 1 piirretyn tangentin yhtälö on y 1 = 1/2(x 1) y = x/2 + 1/2 Kun x 0+, f (x) = 1/(2 x) (huomaa että x 0 f (x) ei ole olemassa, koska neliöjuuri ei ole määritelty negatiivisille luvuille). Ratkaisu harjoitukseen 2.3. Ratkaisu harjoitukseen 2.4. x x2 e x = 2xe x + x 2 e x x (x10 ln x 10 ) = 10x 9 ln x x x10 = 10x 9 ln x x 9 Ratkaisu harjoitukseen 2.5. e x3 x x 2 = 3x2 e x3 x 2 2xe x3 x 4 8

9 Ratkaisu harjoitukseen 2.6. x Ratkaisu harjoitukseen 2.7. cos x 4 x 4x e x3 f (x) = 3x2 e x3 f (x) f (x)e x3 ( f (x)) 2 = 4x3 ( sin x 4 )4x 4 cos x 4 16x 2 = 4x2 sin x 4 cos x 4 4 Ratkaisu harjoitukseen 2.8. Derivoiaan logaritmisesti: ln x x3 = x 3 ln x. Tämän erivaatta saaaan tulosäännön avulla: x x3 ln x = 3x 2 ln x + x 2. Täten logaritmisella erivoinnilla saaaan Ratkaisu harjoitukseen 2.9. x (ln xx3 ) = x x3 (3x 2 ln x + x 2 ). x x = 3x 2 2 x Ratkaisu harjoitukseen x cos(sin x) = sin(sin x) cos x ketjusäännön nojalla. Ratkaisu harjoitukseen x ln(x2 + 1) = 2x x Ratkaisu harjoitukseen Selvästi f (x) = ae ax ja f (x) = a 2 e ax. Tästä on helppo muoostaa väite: f (n) = a n e ax. Toistus on helppo muoostaa inuktiolla: väite pätee arvolla n = 1 ja väitteen pätemisestä arvolla n voi päätellä väitteen pätevän arvolla n + 1: f (n) = a n e ax f (n+1) = a n+1 e ax. 9

10 Ratkaisu harjoitukseen Differentiaaliapproksimaation kaava on f (x 0 + h) f (x 0 ) + h f (x 0 ). Tässä ieana on valita jokin piste x 0, ja eetä tästä pisteestä h:n pituinen matka oikealle tai vasemmalle. Nyt funktion arvo pisteessä x 0 + h on kutakuinkin sama kuin funktion arvo pisteessä x 0 plus funktion muutosnopeus pisteessä x 0 (eli funktion erivaatta tässä pisteessä) kertaa kuljettu matka, h. Kun meillä on luku 50, on luonnollista valita funktioksi f (x) = x. Haluttu arvo, jota approksimoiaan, on 50 eli x 0 + h = 50. Nyt saamme vapaasti valita x 0 :n siten, että approksimaatio olisi mahollisimman helppo tehä. Luonnollista on valita x 0 = 49, jolloin f (x 0 ) = 7 ja f (x 0 ) = 1/2 49 = 1/14, joten f (x 0 + h) f (x 0 ) + h f (x 0 ). f (50) /14. Ratkaisu harjoitukseen Ketjusäännön mukaan x f (3x) = 3 f (3x) = 1. Tästä saaaan f (3x) = 1/3. Toisin sanottuna funktion erivaatta on vakio: 1/3. Täten f (x) = 1/3. Ratkaisu harjoitukseen Kyseinen maksimi on pisteessä π/2 ja minimi pisteessä 3π/2. Derivoi funktio ja laita erivaatta nollaksi. Varmista erivaatan nollakohtien laatu (minimi/maksimi) joko erivoimalla funktio toiseen kertaan ja tarkistamalla funktion etumerkki tai merkkikaavion avulla. Koska kyseessä on suljettu väli, funktion maksimi ja/tai minimi tällä välillä voi olla myös välin päätepisteissä, joten tarkista myös funktion arvo näissä pisteissä. Ratkaisu harjoitukseen Väliarvolauseen mukaan välillä (0, 1) on olemassa ξ siten että f (1) f (0) = f (ξ)(1 0). Koska funktion erivaatta on välillä yhestä nollaan, eellisen lausekkeen oikea puoli on myös tällä välillä. Täten myös eellisen lausekkeen vasen puoli on välillä yhestä nollaan. Eli 0 f (1) f (0) 1 f (0) f (1) 1 + f (0). 10

11 Koska f (0) = 0, f (1) on välillä yhestä nollaan. f (10) ratkaistaan vastaavasti. Ratkaisu harjoitukseen Väliarvolause kertoo, että kaikilla erivoituvilla funktioilla f (b) f (a) = f (ξ)(b a) jollakin luvulla ξ (a, b). Kyseessä oleva funktio on f (x) = cos x. Täten f (b) = cos b ja f (a) = cos a. Funktion erivaatta f (x) = sin x. Täten f (ξ) = sin ξ. Täten funktion f (x) = cos x kohalla väliarvolause kertoo, että cos b cos a = ( sin ξ)(b a) jollakin ξ (a, b). Koska 1 sin x 1, 1 sin x 1. Täten funktion cos x erivaatta on välillä yhestä miinus yhteen. Eli 1 sin ξ 1 cos b cos a 1 1 b a (b a) cos b cos a (b a) cos b cos a b a. Ratkaisu harjoitukseen Käänteisfunktion erivoimissäännön mukaan ( f 1 1 )(x) = f ( f 1 (x)). Lasketaan ensin funktion erivaatta: f (x) = 5x Katsotaan vielä kerran mitä meiän pitää laskea. Käänteisfunktio erivaatta on laskettava pisteessä x = 10 eli meiän on laskettava ( f 1 )(10) = 1 f ( f 1 (10)). Tieossa on funktion f erivaatta. Nyt tämä erivaatta pitäisi laskea pisteessä f 1 (10). Mutta mikä tämä piste on? Tämän voi ratkaista seuraavasti: f 1 (10) = y 10 = f (y). Funktion lausekkeesta nähään, että kyseinen funktio saa arvon 10 kun x = 0. Täten f (0) = 10 f 1 (10) = 0. Täten laskemme funktion erivaatan pisteessä nolla: ( f 1 1 )(10) = f ( f 1 (10)) = 1 f (0) = 1 1 = 1 11

12 Ratkaisu harjoitukseen Kyseinen raja-arvo on muotoa 0 0, joten voimme käyttää L Hospitalin sääntöä: e ψ 1 ψ 0 sin ψ = e ψ ψ 0 cos ψ = 1 Ratkaisu harjoitukseen Funktion kuperuussuunnat (eli sen konkaavius/konveksisuus) määrittyvät sen toisen erivaatan etumerkin perusteella. Koska f (x) = 3x 2 + 4x, f (x) = 6x + 4. Funktio on konkaavi kun f > 0 ja konveksi kun f < 0. Käännepiste on piste jossa f = 0. Täten funktio on konkaavi, kun ja konveksi kun 6x + 4 > 0 x > 4/6 = 2/3 6x + 1 < 0 x < 2/3. Käännepiste ratkaisee yhtälön 6x + 4 = 0. Täten käännepiste on x = 2/3. Ratkaisu harjoitukseen Kirjoitetaan tämä funktio sarjakehitelmänä. Tämä on sallittua silloin, kun x 1: f (x) = 1/(1 x 3 ) = 1 + x 3 + x 6 + x 9 + x Kun tämän erivoi yheksän kertaa, niin kaikki potenssit, jotka ovat alle 9 häviävät. Toisaalta koska tämä erivaatta arvioiaan pisteessä x = 0, niin kaikki termit, joien potenssi on yli yheksän häviävät myös. Sen sijaan termin x 9 yheksäs erivaatta jää. Se on 9!, joten f 9 (0) = 9!. Sen sijaan f 10 (0) = 0, koska funktiossa ei esiinny termiä x

Matematiikan tukikurssi: kurssikerta 12

Matematiikan tukikurssi: kurssikerta 12 Matematiikan tukikurssi: kurssikerta 2 Tenttiin valmentavia harjoituksia Huomio. Tähän tulee lisää ratkaisuja sitä mukaan kun ehin niitä kirjoittaa. Kurssilla käyään läpi tehtävistä niin monta kuin mahollista.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 Differentiaalikehitelmä Funktion f erivaatta pisteessä x 0 eli f (x 0 ) on erotusosamäärän rajaarvo: f (x) f (x 0 ). x x 0 x x 0 Tämä voiaan esittää hieman eri muoossa

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan

Lisätiedot

πx) luvuille n N. Valitaan lisäksi x = m,

πx) luvuille n N. Valitaan lisäksi x = m, Lisäyksiä Muutamia lisäyksiä laskuharjoitusten 9 tehtävien ratkaisuihin. Sarjan n n cos4 n π termeittäin erivoituvuus Sarjan n n cos4 n πtermeittäinerivoitavuusonhiukkasenhankalaasia tutkia. Olkoon a n

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

Derivointiesimerkkejä 2

Derivointiesimerkkejä 2 Derivointiesimerkkejä 2 (2.10.2008 versio 2.0) Parametrimuotoisen funktion erivointi Esimerkki 1 Kappale kulkee pitkin rataa { x(t) = sin 2 t y(t) = cos t. Määritetään raan suuntakulma positiiviseen x-akseliin

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

MATP153 Approbatur 1B Harjoitus 6 Maanantai

MATP153 Approbatur 1B Harjoitus 6 Maanantai . (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään

Lisätiedot

Ratkaisuehdotus 2. kurssikoe

Ratkaisuehdotus 2. kurssikoe Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

2.2 Jatkuva funktio Funktio f(x) jatkuva pisteessä x 0, jos f on määritelty. Esim. sin x. = lim. lim. (1 x 2 /6 + O(x 4 )) = 1.

2.2 Jatkuva funktio Funktio f(x) jatkuva pisteessä x 0, jos f on määritelty. Esim. sin x. = lim. lim. (1 x 2 /6 + O(x 4 )) = 1. 2 Raja-arvo ja erivaatta 2 Raja-arvon määritelmä Funktiolla f() on raja-arvo f 0 pisteessä 0 jos f() lähestyy arvoa f 0 kun lähestyy arvoa 0 Merkitään f() f 0 kun 0 (2) tai Raja-arvo matemaattisemmin:

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi, kurssikerta 5 Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011

Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Kuudennen eli viimeisen viikon luennot Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuihin 2.3. ja 2.4. Esko Turunen esko.turunen@tut.fi Jatkuvuuden

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Derivointikaavoja, interpolointi, jousto, rajatuotto, L4b

Derivointikaavoja, interpolointi, jousto, rajatuotto, L4b , interpolointi, jousto, rajatuotto, L4b Funktioita Potenssifunktio: x (axn ) = nax n 1 Eksponentin n ei tarvitse olla kokonaisluku, vaan se voi olla murtoluku tai esimaaliluku! Neliöjuuri: ax = x x (

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Matematiikan peruskurssi (MATY020) Harjoitus 7 to Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla

Lisätiedot

f(x) f(y) x y f f(x) f(y) (x) = lim

f(x) f(y) x y f f(x) f(y) (x) = lim Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 10. Kurssikerta Petrus Mikkola 22.11.2016 Tämän kerran asiat Globaali ääriarvo Konveksisuus Käännepiste L Hôpitalin sääntö Newtonin menetelmä Derivaatta ja monotonisuus

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 11. Kurssikerta Petrus Mikkola 29.11.2016 Tämän kerran asiat Eksponenttifunktio Eksponenttifunktion määritelmä Eksponenttifunktion ominaisuuksia Luonnolinen logaritmi

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut 0. Kertausta Luvut, lukujoukot (tavalliset) N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut Rationaaliluvut n/m, missä n,m Z Reaaliluvut R muodostavat jatkumon fysiikan lukujoukko Kompleksiluvut C:z

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 3 Supremum ja infimum Tarkastellaan aluksi avointa väliä, ) = { : < < }. Tämä on joukko, johon kuuluvat kaikki reaaliluvut miinus yhdestä yhteen. Kuitenkaan päätepisteet

Lisätiedot

k-kantaisen eksponenttifunktion ominaisuuksia

k-kantaisen eksponenttifunktion ominaisuuksia 3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio

Lisätiedot

Lukion. Calculus. Juuri- ja logaritmifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Juuri- ja logaritmifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA8 Juuri- ja logaritmifunktiot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Juuri- ja logaritmifunktiot (MAA8) Pikatesti ja kertauskokeet

Lisätiedot

VI. TAYLORIN KAAVA JA SARJAT. VI.1. Taylorin polynomi ja Taylorin kaava

VI. TAYLORIN KAAVA JA SARJAT. VI.1. Taylorin polynomi ja Taylorin kaava VI. TAYLORIN KAAVA JA SARJAT VI.. Taylorin polynomi ja Taylorin kaava Olkoon n N ja x, c, c, c 2,..., c n R. Tehtävä: Etsittävä sellainen R-kertoiminen polynomi P, että sen aste deg P n ja P (x ) = c,

Lisätiedot

Differentiaaliyhtälöt I, kevät 2017 Harjoitus 3

Differentiaaliyhtälöt I, kevät 2017 Harjoitus 3 Differentiaaliyhtälöt I, kevät 07 Harjoitus 3 Heikki Korpela. helmikuuta 07 Tehtävä. Ratkaise alkuarvo-ongelmat a) y + 4y e x = 0, y0) = 4 3 b) Vastaus: xy + y = x 3, y) =.. a) Valitaan integroivaksi tekijäksi

Lisätiedot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto: 4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

2 Taylor-polynomit ja -sarjat

2 Taylor-polynomit ja -sarjat 2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.

Lisätiedot

Matematiikan tukikurssi, kurssikerta 4

Matematiikan tukikurssi, kurssikerta 4 Matematiikan tukikurssi, kurssikerta 4 1 Raja-arvo äärettömyydessä Tietyllä funktiolla f() voi olla raja-arvo äärettömyydessä, jota merkitään f(). Tämä tarkoittaa, että funktio f() lähestyy jotain tiettyä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

(a) avoin, yhtenäinen, rajoitettu, alue.

(a) avoin, yhtenäinen, rajoitettu, alue. 1. Hahmottele seuraavat tasojoukot. Mitkä niistä ovat avoimia, suljettuja, kompakteja, rajoitettuja, yhtenäisiä, alueita? (a) {z C 1 < 2z + 1 < 2} (b) {z C z i + z + i = 4} (c) {z C z + Im z < 1} (d) {z

Lisätiedot

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali 6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Fysiikan matematiikka P

Fysiikan matematiikka P Fysiikan matematiikka 763101P Luennoija: Kari Rummukainen, Fysikaalisten tieteiden laitos Tavoite: tarjota opiskelijalle nopeasti fysikaalisten tieteiden tarvitsemia matematiikan perustietoja ja taitoja.

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot

(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R.

(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R. Calculus Kurssikoe..7. Laske (a) x sin x, (b) x x + x. (a) Merkitään u(x) = x ja v (x) = sin x, jolloin u (x) =, v(x) = cos x ja osittaisintegroimalla saadaan x sin x = u(x)v (x) = u(x)v(x) u (x)v(x) =

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0. HARJOITUS 1, RATKAISUEHDOTUKSET, YLE11 2017. 1. Ratkaise (a.) 2x 2 16x 40 = 0 (b.) 4x 2 2x+2 = 0 (c.) x 2 (1 x 2 )(1+x 2 ) = 0 (d.) lnx a = b. (a.) Toisen asteen yhtälön ratkaisukaavalla: x = ( 16)± (

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Supremum ja inmum Tarkastellaan aluksi avointa väliä, Tämä on joukko, johon kuuluvat kaikki reaaliluvut miinus yhdestä yhteen Kuitenkaan päätepisteet eli luvut ja

Lisätiedot

1.1. YHDISTETTY FUNKTIO

1.1. YHDISTETTY FUNKTIO 1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)

Lisätiedot

Taylorin sarja ja Taylorin polynomi

Taylorin sarja ja Taylorin polynomi Taylorin sarja ja 1 Potenssisarja c k (x a) k = f (x) määrittelee x:n funktion. Seuraavaksi toteamme mikä yhteys potenssisarjalla on sen määrittelemän funktion derivaattoihin f (a),f (a),f (a),f (3) (a),...

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

määrittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin.

määrittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin. MAA8 Juuri- ja logaritmifunktiot 70 Jussi Tyni 5 a) Derivoi f ( ) e b) Mikä on funktion f () = ln(5 ) 00 c) Ratkaise yhtälö määrittelyjoukko log Käyrälle g( ) e 8 piirretään tangeti pisteeseen, jossa käyrä

Lisätiedot

lnx x 1 = = lim x = = lim lim 10 = x x0

lnx x 1 = = lim x = = lim lim 10 = x x0 BM0A580 - Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 05. (a) (b) ln = sin(t π ) t π t π = = 0 = = cos(t π = ) = 0 t π (c) e [ = ] = = e e 3 = e = 0 = 0 (d) (e) 3 3 + 6 + 8 + 6 5 + 4 4 + 4

Lisätiedot

Valintakoe

Valintakoe Valintakoe 7.3.05 Kokeessa saa käyttää kirjoitusvälinewiden lisäksi ainoastaan kokeessa jaettavaa funktiolaskinta ja taulukkoa Pisteytys 8*3p=4p. Tehtävien alakohtien pistemäärät voivat poiketa toisistaan..

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1. Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Integrointi Integrointi on erivoinnin käänteistoimitus: jos funktion F(x) erivaatta on f (x), niin funktion f (x) integraali on F(x). Täten, koska esimerkiksi funktion

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

Äänekosken lukio Mab4 Matemaattinen analyysi S2016 Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 13 Derivaatan määritelmä Määritelmä

Lisätiedot

Matematiikan tukikurssi. Toinen välikoe

Matematiikan tukikurssi. Toinen välikoe Matematiikan tukikurssi Toinen välikoe 1 Sisältö 1 Useamman muuttujan funktion raja-arvo 1 2 Useamman muuttujan funktion jatkuvuus 7 3 Osittaisderivaatat ja gradientti 8 4 Vektoriarvoiset funktiot 9 5

Lisätiedot