3 Lukujonon raja-arvo

Koko: px
Aloita esitys sivulta:

Download "3 Lukujonon raja-arvo"

Transkriptio

1 ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n < 0 87 aina, kun n > n 0 2 Olkoon x n = 6n 5 2n + 5 n Z +, (n Z + ) Määritä jokin sellainen n 0 Z +, että x n 3 < 0,0 aina, kun n n 0 3 Olkoon x n = 3n 5 (n Z + ) 9n + 4 Määritä jokin sellainen n 0 Z +, että xn 3 < 0,00 aina, kun n n0 4 Olkoon x n = 2n + 3 n + ja y n = 2n + 7 n + (n Z + ) Määritä jokin sellainen n 0 Z +, että x n 2 < 0,0 aina, kun n n 0, ja jokin sellainen n Z +, että y n 2 < 0,0 aina, kun n n 5 Olkoon x n = 3n + 2 n + (n Z + ) Määritä jokin sellainen n 0 Z +, että x n 3 < ε aina, kun n n 0 ja ε = 0,, (b) ε = 0,0, (c) ε = 0,00 6 Osoita suoraan lukujonon raja-arvon määritelmään nojautuen, että = 0, (b) n2 n n =, (c) 2n 2n 2n =, (d) 2n + =

2 7 Osoita suoraan lukujonon raja-arvon määritelmään nojautuen, että 3 n + 5 n = 3 8 Osoita suoraan lukujonon raja-arvon määritelmään nojautuen, että ( ) ( ) n2 + 3 n = 0, (b) n2 + 4n n 9 Osoita suoraan lukujonon raja-arvon määritelmään nojautuen, että = 2 n 2 + 7n + 2 2n 2 + 3n + 5 =, (b) 2 n 3 + n + 2n 3 n = 2, (c) 2n 2 + n n 2 + n + 2 = 2, (d) 6n 4 + n n 4 n + = 3, (e) 4n + 3 3n 4 = 4, (f) 3 3n 2 + 2n n 2 2n + 4 = 3 0 Olkoon A R sellainen epätyhjä joukko, että sup A = 5 Osoita täsmällisesti perustellen, että on olemassa sellainen lukujono (a n ), että a n A kaikilla n Z + ja a n = 5 32 Perusominaisuuksia Olkoot (x n ) ja (y n ) sellaisia lukujonoja, että y n = x n n Z + Osoita todeksi tai (vastaesimerkillä) epätodeksi, että jos lukujono (y n ) suppenee, niin myös lukujono (x n ) suppenee, ja (b) jos lukujono (x n ) suppenee ja niin myös lukujono (y n ) suppenee ja x n = x, y n = x 2 Olkoon x n = ( n ) +( )n (n Z + ) Osoita, että lukujono (x n ) hajaantuu

3 3 Tutki, suppeneeko lukujono (x n ), kun x n = sin(nπ) + cos(nπ), nπ sin (b) x n = n 2 4 Olkoot (x n ), (y n ) ja (z n ) sellaisia lukujonoja, että x n y n z n n Z + Osoita todeksi tai (vastaesimerkillä) epätodeksi, että jos lukujonot (x n ) ja (z n ) suppenevat, myös lukujono (y n ) suppenee 5 Olkoot (x n ) ja (y n ) rajoitettuja lukujonoja Osoita, että myös lukujonot (x n + y n ) ja (x n y n ) ovat rajoitettuja 6 Tutki, suppeneeko lukujono (x n ), kun x n = n + ( ) n n, (b) x n = + n ( )n 7 Osoita todeksi tai (vastaesimerkillä) epätodeksi, että jos lukujono (x n ) ei ole rajoitettu, niin kaikki lukujonon (x n ) osajonot hajaantuvat 8 Osoita todeksi tai (vastaesimerkillä) epätodeksi, että jokaisella lukujonolla on ainakin yksi suppeneva osajono 9 Oletetaan, että x n = 2 Osoita, että vain äärellinen määrä jonon (x n ) jäseniä voi kuulua väliin [,,999] 0 Osoita, että jos 0 < t < ja x n = 5, niin vain äärellinen määrä lukujonon (x n ) jäseniä voi kuulua väliin [4, 5 t] Lukujonosta (x n ) oletetaan, että x = 3 ja x n = Osoita täsmällisesti perustellen, että lukujonon (x n ) termien joukossa on suurin luku 2 Anna esimerkki sellaisesta lukujonosta (x n ), että x = ja x n =, mutta lukujonon (x n ) termien joukossa ei ole suurinta lukua Tässä tehtävässä tuloksia ei tarvitse perustella täsmällisesti (eli riittää antaa vaadittu esimerkki)

4 3 Lukujonosta (x n ) oletetaan, että x = 0 ja x n = 7 Osoita täsmällisesti perustellen, että lukujonon (x n ) termien joukossa on pienin luku 4 Anna esimerkki sellaisesta lukujonosta (x n ), että jonon (x n ) termien joukossa ei ole pienintä lukua ja x n = 7 Tässä tehtävässä tuloksia ei tarvitse perustella täsmällisesti (eli riittää antaa vaadittu esimerkki) 5 Oletetaan, että lukujono (x n ) suppenee ja < x n < 2 Osoita, että on olemassa sellainen n 0 Z +, että < x n < 2 kaikilla n > n 0 6 Anna esimerkki sellaisesta lukujonosta (x n ), että x n < 3 n Z + ja x n = 3 Tässä tehtävässä tuloksia ei tarvitse perustella täsmällisesti (eli riittää antaa vaadittu esimerkki) 7 Todista täsmällisesti perustellen, että jos x n = x 0, niin on olemassa sellainen n 0 Z +, että x n > x n > n Osoita täsmällisesti perustellen, että jos x n = 4, niin on olemassa sellainen n 0 Z +, että x n > 3 n > n 0 33 Laskusääntöjä Osoita suoraan lukujonon raja-arvon määritelmään perustuen, että jos x n = x, niin x 3 n = x 3 2 Anna esimerkki sellaisista lukujonoista (x n ) ja (y n ), että x n < y n kaikilla n Z + ja x n = y n = 3

5 3 Olkoot A R ja B R sellaisia epätyhjiä joukkoja, että a b kaikilla a A ja kaikilla b B Oletetaan lisäksi, että on olemassa sellaiset lukujonot (a n ) ja (b n ), että a n A, b n B kaikilla n Z + ja Todista täsmällisesti perustellen, että a n = b n sup A = inf B 4 Anna esimerkki sellaisista lukujonoista (x n ) ja (y n ), että x n 0, y n 0 ja x n /y n 0, (b) x n 0, y n 0 ja x n /y n 3 Huom Riittää määrittää kyseiset raja-arvot Suppenemistuloksia ei tarvitse perustella nojautumalla suoraan lukujonon raja-arvon määritelmään 5 Osoita suoraan lukujonon raja-arvon määritelmään perustuen, että jos x n > 0 kaikilla n Z + ja x n = x > 0, niin + x n = + x 2x n 2x 6 Määritä raja-arvo ( ) n 2 n 3 +, (b) 3n 2 + 2n + 7 n n2 + n + 2 tai osoita, että lukujono hajaantuu 7 Määritä raja-arvo n + (n + ) cos(nπ) 2n + n cos(nπ + π), (b) n 3n + tai osoita, että lukujono hajaantuu 8 Osoita todeksi tai (vastaesimerkillä) epätodeksi, että jos lukujono (x n ) hajaantuu ja y n = x n n n Z +, niin myös lukujono (y n ) hajaantuu 9 Määritä a n a n + 2 (a R)

6 0 Määritä 2 n+ + 3 n+, (b) 2 n + 3 n π n, (c) + 22n (n + 2)! + (n + )! (n + 2)! (n + )! Määritä ( n + ) ( n 5) n, (b) 9n 3 n2 + 2 Määritä n ( n n ), (b) ( n2 + n n 2 n ) 3 Määritä sellainen vakio b R, että ( n2 + bn n 2 + n ) = 3 4 Määritä 5 Määritä n (, (b) n ) 2 n 2 + cos(π + sin(n + π)), (b) 3n3 + ( ) n + sin(n + π) n n Määritä (n!) 2, (b) (2n)! n k= 2n + sin k 7 Olkoot (x n ) ja (y n ) sellaisia lukujonoja, että (x n ) suppenee ja x n y n < n n Z + Osoita suppiloperiaatetta käyttäen, että lukujono (y n ) suppenee 8 Tarkastellaan seuraavaa päättelyä: Olkoon (z n ) sellainen lukujono, että ε > 0: + ε < z n < + 3ε Valitsemalla luvut ε sopivasti (esimerkiksi ε n = /n) voidaan muodostaa sellaiset lukujonot (x n ) ja (y n ), että x n z n y n kaikilla n Z + ja Siis suppiloperiaatteen nojalla myös Mikä ongelma päättelyssä on? x n = y n = z n =

7 34 Monotonisista jonoista Osoita todeksi tai (vastaesimerkillä) epätodeksi, että jos (x n ) ja (y n ) ovat kasvavia lukujonoja, niin myös lukujono (x n + y n ), (b) (x n y n ) on kasvava 2 Olkoon lukujono (x n ) kasvava Osoita todeksi tai (vastaesimerkillä) epätodeksi, että jos y n = x n + x n+, (b) y n = x n x n+ (n Z + ), niin myös lukujono (y n ) on kasvava 3 Olkoon x n = n 2 8n (n Z + ) Tutki, onko olemassa sellaista lukua k Z +, että lukujono x k, x k+, x k+2, on kasvava 4 Olkoon x n = 4n (n Z + ) n Osoita monotonisten jonojen peruslausetta käyttäen, että lukujono (x n ) suppenee 5 Olkoon x n = n k= Osoita, että lukujono (x n ) suppenee 3 k + k (n Z + ) 6 Oletetaan, että lukujono (x n ) on vähenevä, lukujono (y n ) on kasvava ja y n x n kaikilla n Z + Osoita, että lukujonot (x n ) ja (y n ) suppenevat 7 Olkoon (x n ) kasvava ja (y n ) suppeneva lukujono Oletetaan lisäksi, että on olemassa sellainen n 0 Z +, että x n y n kaikilla n n 0 Osoita täsmällisesti perustellen, että lukujono (x n ) suppenee 8 Olkoon (x n ) sellainen kasvava lukujono, että sen osajono (x 5n ) suppenee Osoita täsmällisesti perustellen, että lukujono (x n ) suppenee 9 Joukko S R on avoin, jos jokaista joukon S pistettä s kohti on olemassa sellainen postiiviluku ε > 0, että U ε (s) S Osoita täsmällisesti perustellen, että jos (x n ) on aidosti kasvava ja ylhäältä rajoitettu lukujono ja A = {x, x 2, x 3, }, niin joukko R \ A ei ole avoin

8 0 Osoita käyttämättä täydellisyysaksioomaa, että jos kasvava ja ylhäältä rajoitettu lukujono (x n ) suppenee, niin joukolla on pienin yläraja (eli on olemassa sup A) A = {x n n Z + } Olkoon A R + jokin epätyhjä ylhäältä rajoitettu joukko ja m n = min { m Z + m 0 n on joukon A yläraja } (n Z + ) Osoita, että lukujono (x n ) suppenee, kun x n = m n 0 n 2 Olkoon (x n ) tehtävän lukujono Osoita, että x n = sup A 3 Olkoon x = ja x n+ = 7x n + 8 n Z + Osoita, että lukujono (x n ) on kasvava jono, joka suppenee Mikä on kyseisen jonon raja-arvo? 4 Olkoon x = ja x n+ = 2x n + 3 n Z + Osoita, että lukujono (x n ) on vähenevä jono, joka suppenee Mikä on kyseisen jonon raja-arvo? 5 Olkoon x = ja x n+ = 3x n n Z + + x n Osoita, että lukujono (x n ) suppenee ja määritä x n x 6 Olkoon x n = cos ( n 2 + ) + sin ( n 2 ) (n Z + ) Osoita, että lukujonolla (x n ) on suppeneva osajono 7 Olkoon π = 3,x x 2 x 3 luvun π desimaaliesitys ja y n = x n + cos(n + x n ) n Z + Osoita, että lukujonolla (y n ) on suppeneva osajono 8 Osoita, että lukujonolla (x n ) on suppeneva osajono sekä käyttämällä Bolzano-Weierstrassin lausetta että muodostamalla jokin lukujonon (x n ) suppeneva osajono, kun x n = + ( ) n, (b) x n = n + n n ( )n 2n +, (c) x n = sin nπ 2, (d) x n = n + n + 2 ( sin 2πn 2πn + cos 3 3 )

9 35 Luvun e määrittely Osoita, että 2 < e < 3 2 Määritä ( + n) 2n (, (b) + 5n+4 (, (c) + n) 7n+3 n) 3 Määritä ( n + n ) 3n+2 (, (b) ) n ( ) n n + 2, (c) n 2 n + 4 Olkoon k Z + Osoita, että ( + k n = e n) k Vihje: Totea, että + 2 = ( ( ) + n n) + n+, ja yleistä tulos tapaukseen + k n 5 Osoita, että ( n) n < e n Z + 6 Määritä tai osoita, että lukujono hajaantuu ( + n ) n Määritä ( ) 2n ( ) n 2n 2n, (b) 2n 2n 8 Osoita, että kaikilla n Z + n n e n < n!, (b) n! e n > (n + ) n 9 Osoita, että kaikilla n Z + (n + )! < e n k=0 i! < 2 (n + )! 0 Osoita tehtävän 9 epäyhtälöiden avulla, että e ei ole rationaaliluku Vihje: Tee vastaoletus, että e on rationaaliluku Tällöin n!e on kokonaisluku, kun n on riittävän suuri Kerro sitten epäyhtälöt puolittain n! :lla

10 36 Cauchyn jonoista Olkoon x n = n + (n Z + ) Osoita suoraan Cauchyn jonon määritelmään nojautuen, että jono (x n ) on Cauchyn jono 2 Olkoon x n = n + (n Z + ) n Tutki suoraan Cauchyn jonon määritelmään nojautuen, onko lukujono (x n ) Cauchyn jono 3 Olkoon x n = + ( ) n n + (n Z + ) n Tutki suoraan Cauchyn jonon määritelmään nojautuen, onko lukujono (x n ) Cauchyn jono 4 Osoita Cauchyn suppenemisehtoa käyttäen, että raja-arvo n k=0 k! on olemassa 5 Olkoon (x n ) sellainen lukujono, että x n+ x n < 2 n n Z + Osoita Cauchyn suppenemisehtoa käyttäen, että lukujono (x n ) suppenee 6 Olkoon (x n ) sellainen lukujono, että x =, x 2 = 2 ja x n = x n + x n 2 2 n 3 Osoita Cauchyn suppenemisehtoa käyttäen, että lukujono (x n ) suppenee 7 Oletetaan, että lukujono (x n ) toteuttaa ehdon ε > 0: p Z + : N Z + : n N : x n+p x n < ε Onko (x n ) välttämättä Cauchyn jono?

11 8 Oletetaan, että (x n ) ja (y n ) ovat Cauchyn jonoja ja c R Todista suoraan Cauchyn jonon määritelmään nojautuen, että myös jono (cx n + y n ) on Cauchyn jono 9 Oletetaan, että (x n ) on Cauchyn jono Todista suoraan Cauchyn jonon määritelmään nojautuen, että myös lukujono (x 2 n ) on Cauchyn jono 0 Oletetaan, että (x n ) ja (y n ) ovat Cauchyn jonoja Todista suoraan Cauchyn jonon määritelmään nojautuen, että myös jono (x n y n ) on Cauchyn jono 37 Raja-arvokäsitteen laajentaminen Osoita suoraan raja-arvon määrittelyyn perustuen, että n 2 2n =, (b) n 4 4 n 3 + 2n =, (c) n 3 + 5n 3n 2 2 =, (d) n 6 5 n 5 + 2n = 2 Osoita suoraan raja-arvon määrittelyyn perustuen, että n 2 + 2n =, (b) 2n 3 5n 2 3 = 3 Anna esimerkki sellaisista lukujonoista (x n ) ja (y n ), että x n, y n ja x n + y n 3, (b) x n, y n 0 ja x n y n 2 Huom Riittää määrittää kyseiset raja-arvot Suppenemistuloksia ei tarvitse perustella nojautumalla suoraan määritelmään 4 Anna esimerkki sellaisista lukujonoista (x n ) ja (y n ), että x n, y n 0 ja x n y n, (b) x n y n 4, (c) x n y n 0 Huom Riittää määrittää vaadittavat raja-arvot Suppenemistuloksia ei tarvitse perustella nojautumalla suoraan määritelmään 5 Anna esimerkki sellaisista lukujonoista (x n ) ja (y n ), että x n, y n ja x n /y n, (b) x n /y n 2, (c) x n /y n 0 Huom Riittää määrittää vaadittavat raja-arvot Suppenemistuloksia ei tarvitse perustella nojautumalla suoraan määritelmään

12 6 Olkoon x n = an n k (a >, k Z + ) Osoita täsmällisesti perustellen, että x n = x Vihje: Tarkastele esimerkiksi raja-arvoa n+ x n 7 Osoita täsmällisesti perustellen, että jos niin x n =, x n = 0 Onko käänteinen väite tosi eli onko x n = aina, kun x n = 0? 8 Oletetaan, että x n y n < n kaikilla n Z + ja x n, kun n Onko mahdollista, että jono (y n ) suppenee? 9 Onko mahdollista, että lukujono (x n ) on kasvava ja x n, kun n? 0 Määritä (c) 2 n2 n! ( ) n 2n 3, (b) n + ( ) 2n+ 3n, 2n + (, (d) + ) n 2 2n Osoita suoraan raja-arvon määrittelyyn perustuen, että jos x n = ja y n =, niin x ny n = 2 Osoita suoraan raja-arvon määrittelyyn perustuen, että jos x n = ja y n =, niin x ny n =

3 Lukujonon raja-arvo

3 Lukujonon raja-arvo ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu. Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,

Lisätiedot

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä? ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 4 Funktion raja-arvo 4. Määritelmä. Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: f) A < ε aina, kun 0 < a < δ, saadaan kvanttorien järjestystä vaihtamalla

Lisätiedot

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b. 2 Lukujonot 21 Lukujonon määritelmä 16 Fibonacci n luvut määritellään ehdoilla Osoita: 17 a 1 = a 2 = 1; a n+2 = a n+1 + a n, n N a n = 1 [( 1 + ) n ( 2 1 ) n ] 2 Olkoon a 1 = 3, a 2 = 6, a n+1 = 1 n (na

Lisätiedot

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä? ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla

Lisätiedot

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion

Lisätiedot

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 2 Funktion derivaatta 2.1 Määritelmiä ja perusominaisuuksia 1. Määritä suoraan derivaatan määritelmää käyttäen f (0), kun (a) + 1, (b) (2 + ) sin(3). 2. Olkoon

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen

Lisätiedot

1 Reaaliset lukujonot

1 Reaaliset lukujonot Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

Sarjojen suppenemisesta

Sarjojen suppenemisesta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Terhi Mattila Sarjojen suppenemisesta Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1 Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................

Lisätiedot

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste, Reaaliluvuista Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät tiivistelmän reaaliluvuista ja niihin liittyvistä käsitteistä.

Lisätiedot

Lukujoukot. Luonnollisten lukujen joukko N = {1, 2, 3,... }.

Lukujoukot. Luonnollisten lukujen joukko N = {1, 2, 3,... }. Lukujoukot Luonnollisten lukujen joukko N = {1, 2, 3,... }. N 0 = {0, 1, 2, 3,... } = N {0}. Kokonaislukujen joukko Z = {0, 1, 1, 2, 2,... }. Rationaalilukujen joukko Q = {p/q p Z, q N}. Reaalilukujen

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1. Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.

Lisätiedot

Analyysi 1. Pertti Koivisto

Analyysi 1. Pertti Koivisto Analyysi Pertti Koivisto Syksy 204 Alkusanat Tämä moniste on tarkoitettu oheislukemistoksi Tampereen yliopistossa pidettävälle kurssille Analyysi. Monisteen tavoitteena on tukea luentojen seuraamista,

Lisätiedot

Raja-arvot ja jatkuvuus

Raja-arvot ja jatkuvuus Raja-arvot ja jatkuvuus 30. lokakuuta 2014 10:11 Suoraa jatkoa kurssille Johdatus reaalifunktioihin (MATP311) (JRF). Oheislukemista: Kilpeläinen: Analyysi 1, luvut 3-6, Spivak: Calculus, luvut 5-8, 22,

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018

Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018 Aalyysi A Harjoitustehtäviä lukuu / kevät 208 Ellei toisi maiita, tehtävissä esiityvät muuttujat ja vakiot ovat mielivaltaisia reaalilukuja.. Aa joki ylä- ja alaraja joukoille { x R x 2 + x 6 ja B = {

Lisätiedot

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ).

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Jonot Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Lukujonon täsmällinen tulkinta on funktio f : N R, jolle f

Lisätiedot

Kuinka määritellään 2 3?

Kuinka määritellään 2 3? Kuinka määritellään 2 3? y Nyt 3 = 1,7320508.... Luvut 3 2 x x 3 2 x 2 1 = 2, 2 1,7 3,2490, 2 1,73 3,3173, 2 1,732 3,3219,... ovat hyvin määriteltyjä koska näihin tarvitaan vain rationaalilukupotenssin

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

1 Supremum ja infimum

1 Supremum ja infimum Pekka Alestalo, 2018 Tämä moniste täydentää reaalilukuja ja jatkuvia reaalifunktioita koskevaa kalvosarjaa lähinnä perustelujen ja todistusten osalta. Suurin osa määritelmistä jms. on esitetty jo kalvoissa,

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

3 Derivoituvan funktion ominaisuuksia

3 Derivoituvan funktion ominaisuuksia ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 3 Derivoituvan funktion ominaisuuksia 31 l Hospitalin sääntö 1 Määritä 2 5 4 2 + 2 7 12 + 11, e 1 2, (c) tan sin 2 Määritä 2012 3 704 + 2 6 30 13 10 + 7, 3 2017

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

Luku 2. Jatkuvien funktioiden ominaisuuksia.

Luku 2. Jatkuvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 21 Risto Silvennoinen Luku 2. Jatkuvien funktioiden ominaisuuksia. Jatkossa väli I tarkoittaa jotakin seuraavista reaalilukuväleistä: ( ab, ) = { x a< x< b} = { x a

Lisätiedot

6 Eksponentti- ja logaritmifunktio

6 Eksponentti- ja logaritmifunktio ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 019 6 Eksponentti- ja logaritmifunktio 6.1 Eksponenttifunktio 1. Määritä (a) e 3 e + 5, (b) e, (c) + 3e e cos.. Tutki, onko funktiolla f() = 1 e tan + 1 ( π + nπ, n

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos September 13, 2017 Pekka Alestalo,

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 1. ALUKSI. Joukko-oppia

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 1. ALUKSI. Joukko-oppia DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 1. ALUKSI Joukko-oppia Lyhenteitä ja merkintöjä. A = B A:sta seuraa B. Implikaatio. A B A ja B yhtäpitävät. Ekvivalenssi.

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 14.9.2016 Pekka Alestalo, Jarmo Malinen

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat M-A010{2,3,4,5} (CI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: arjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos eptember 12, 2018 Pekka

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Analyysi I (mat & til) Demonstraatio IX

Analyysi I (mat & til) Demonstraatio IX Analyysi I (mat & til) Demonstraatio IX 16.11. 2018 II välikoe 19.11. klo 9 salissa IX. Ilmoittaudu NettiOpsussa 12.11. mennessä. Koealue: Funktion raja-arvo, jatkuvuus ja Bolzanon lause, ts. kirjan luku

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

MS-C1540 Euklidiset avaruudet

MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet III-periodi, kevät 2016 Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu 1 / 30 Euklidiset

Lisätiedot

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε.

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε. Outoja funktioita Differentiaalilaskentaa harjoitettiin miltei 200 vuotta ennen kuin sen perustana olevat reaaliluvut sekä funktio ja sen raja-arvo määriteltiin täsmällisesti turvautumatta geometriseen

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava

Lisätiedot

Reaalilukujonoista ja niiden merkityksestä kouluopetuksessa

Reaalilukujonoista ja niiden merkityksestä kouluopetuksessa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Anna-Kaisa Torvinen Reaalilukujonoista ja niiden merkityksestä kouluopetuksessa Matematiikan ja tilastotieteen laitos Matematiikka Syyskuu 2010 Tampereen yliopisto

Lisätiedot

Johdatus matemaattisen analyysin teoriaan

Johdatus matemaattisen analyysin teoriaan Kirjan Johdatus matemaattisen analyysin teoriaan harjoitustehtävien ratkaisuja 18. maaliskuuta 2005 Ratkaisut ovat laatineet Jukka Ilmonen ja Ismo Korkee. Ratkaisuissa olevista mahdollisista virheistä

Lisätiedot

Vastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen

Vastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen Vastausehdotukset analyysin sivuainekurssin syksyn 015 1. välikokeeseen Heikki Korpela November 1, 015 1. Tehtävä: funktio f : R R toteuttaa ehdot ax, kun x 1 f(x) x + 1, kun x < 1 Tutki, millä vakion

Lisätiedot

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

MATP153 Approbatur 1B Harjoitus 6 Maanantai

MATP153 Approbatur 1B Harjoitus 6 Maanantai . (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään

Lisätiedot

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = = JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia

Lisätiedot

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 5 Riemnn-integrli 5. Al- j yläintegrli Voit olett tunnetuksi ll esitetyt supremumin j infimumin ominisuudet (joukot A j B ovt rjoitettuj sekä epätyhjiä j λ R). Jos

Lisätiedot

Sarjoja ja analyyttisiä funktioita

Sarjoja ja analyyttisiä funktioita 3B Sarjoja ja analyyttisiä funktioita 3B a Etsi funktiolle z z 5 potenssisarjaesitys kiekossa B0, 5. b Etsi funktiolle z z potenssisarjaesitys kiekossa, jonka keskipiste on z 0 4. Mikä on tämän potenssisarjan

Lisätiedot

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus 1. (5:7) Olkoon E normiavaruus, I = [0, 1] ja f, g : I E jatkuvia. Osoita, että yhtälön h(s, t) = (1 t)f(s) + tg(s) määrittelemä kuvaus h : I 2 E on

Lisätiedot

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa

Lisätiedot

Analyysi A. Raja-arvo ja jatkuvuus. Pertti Koivisto

Analyysi A. Raja-arvo ja jatkuvuus. Pertti Koivisto Analyysi A Raja-arvo ja jatkuvuus Pertti Koivisto Kevät 207 Alkusanat Tämä moniste on tarkoitettu oheislukemistoksi Tampereen yliopistossa pidettävälle kurssille Analyysi A. Monisteen tavoitteena on tukea

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle / MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan

Lisätiedot

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle / MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa

Lisätiedot

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat

Lisätiedot

4. Martingaalit ja lokaalit martingaalit

4. Martingaalit ja lokaalit martingaalit STOKASTISET DIFFERENTIAALIYHTÄLÖT 45 4. Martingaalit ja lokaalit martingaalit Lähestymme nyt jo kovaa vauhtia hetkeä, jolloin voimme aloittaa stokastisen integroinnin. Ennen sitä käymme vielä läpi yhtä

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1 FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ Matematiikan tilastotieteen laitos Differentiaalilaskenta, syksy 2015 Lisätehtävät 1 Ratkaisut 1. Olkoon f :, x+1, x 1, f (x)= x+3, x>1 Piirrä funktion kuvaa välillä [ 1, 3]. (a) Tutki ra-arvon (ε, δ)-määritelmän

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

Funktiot ja raja-arvo. Pekka Salmi

Funktiot ja raja-arvo. Pekka Salmi Funktiot ja raja-arvo Pekka Salmi Versio 0.3 13. lokakuuta 2017 Johdanto Tämä moniste on keskeneräinen... 1 1 Reaaliluvut 1.1 Lukujoukot Lukujoukoista käytettään seuraavia merkintöjä: N = {0, 1, 2, 3,...}

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 Sarjojen suppeneminen Kiinnostuksen kohteena on edelleen sarja a k = a + a 2 + a 3 + a 4 +... k= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan

Lisätiedot

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen. Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon

Lisätiedot

Toispuoleiset raja-arvot

Toispuoleiset raja-arvot Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen

Lisätiedot

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x ,

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x , III. SARJATEORIAN ALKEITA Sarja on formaali summa III.. Sarjan suppeneminen = x + x 2 + x 3 +..., missä R aiilla N (merintä ei välttämättä taroita mitään reaaliluua). Luvut x, x 2,... ovat sarjan yhteenlasettavat

Lisätiedot

Topologia Syksy 2010 Harjoitus 11

Topologia Syksy 2010 Harjoitus 11 Topologia Syksy 2010 Harjoitus 11 (1) Tarkastellaan tason (a, )-topologiaa. (Tässä topologiassa A R 2 on avoin jos ja vain jos A =, A = R 2 tai A = {(x, y) R 2 x > a ja y > b} joillekin a, b R.) Jokaiselle

Lisätiedot

YHDEN REAALIMUUTTUJAN ANALYYSIN PERUSTEET. Tero Kilpeläinen

YHDEN REAALIMUUTTUJAN ANALYYSIN PERUSTEET. Tero Kilpeläinen YHDEN REAALIMUUTTUJAN ANALYYSIN PERUSTEET Tero Kilpeläinen Luentomuistiinpanoja keväältä 2014 5. maaliskuuta 2015 Sisältö 1. Johdanto 1 2. Reaalilukujen jatkumo 2 2.1. Merkintöjä.................................

Lisätiedot

d ) m d (I n ) = 2 d n d. Koska tämä pätee kaikilla

d ) m d (I n ) = 2 d n d. Koska tämä pätee kaikilla MAT21007 Mitta ja integraali Harjoitus 2 viikko 25.3-29.3 2019) Palauta mieleen: monisteen luku 0; Topologia I) avaruuden d euklidinen etäisyys, avoimet kuulat ja joukot. Ohjausta laskuharjoitusten tekoon:

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi

Lisätiedot

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Yhtäpitävyys Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Toisaalta ollaan osoitettu, että n 2 on parillinen (oletus) n on parillinen (väite). Nämä kaksi väitelausetta

Lisätiedot

MATP153 Approbatur 1B Harjoitus 4 Maanantai

MATP153 Approbatur 1B Harjoitus 4 Maanantai MATP53 Approbatur B Harjoitus 4 Maanantai 3..05. Halutaan määritellä funktio f siten, että f() =. Missä pisteissä + funktio voidaan määritellä tällä lausekkeella? Missä pisteissä funktio on näin määriteltynä

Lisätiedot

Riemannin sarjateoreema

Riemannin sarjateoreema Riemannin sarjateoreema LuK-tutielma Sami Määttä 2368326 Matemaattisten tieteiden laitos Oulun yliopisto Sysy 206 Sisältö Johdanto 2 Luujonot 3 2 Sarjat 4 2. Vuorottelevat sarjat........................

Lisätiedot

2 Epäoleellinen integraali

2 Epäoleellinen integraali ANALYYSI C, HARJOITUSTEHTÄVIÄ, SYKSY 8 Epäoleellinen integrli Integrointivihje: Hyödynnä yhdistetyn funktion integrointisääntöä.. Määritä 9 9 (c) ( ). Tutki, millä vkion p rvoill epäoleellinen integrli

Lisätiedot

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta

Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Seminaariaine Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2004 Matemaattista ja historiallista taustaa Tämän kappaleen

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

Sarjat ja integraalit

Sarjat ja integraalit Sarjat ja integraalit Peter Hästö 1. huhtikuuta 2015 Matemaattisten tieteiden laitos Eteneminen pvm luku v 11 2.1, 2.2 v 12 2.3, 2.4 v 13 3.0, 3.1 v 14 3.2 v 15 4 v 16 5.1 v 17 5.2 v 18 6.1 v 19 6.2 Peter

Lisätiedot