z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

Koko: px
Aloita esitys sivulta:

Download "z muunnos ja sen soveltaminen LTI järjestelmien analysointiin"

Transkriptio

1 z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten analyysissä (c) Antti Kosonen

2 z muunnos Diskreettiaikaisen signaalin muunnos määritellään yhtälöllä missä on kompleksinen muuttuja Merkitään, jolloin :n ja :n välinen yhteys merkitään Käänteinen operaatio on käänteinen muunnos muunnos on olemassa vain niillä :n arvoilla, joilla sarja suppenee (ääretön potenssisarja) Suppenemisalue (eng. region of convergence, ROC) on niiden :n arvojen joukko, joilla saa äärellisiä arvoja (c) Antti Kosonen

3 z muunnos esimerkki Esimerkki Määritä seuraavien äärellisen pituisten sekvenssien muunnokset: a) 1, 2, 5, 7, 0, 1 b) 1, 2, 5, 7, 0, 1 c) 0, 0, 1, 2, 5, 7, 0, 1 d) 2, 4, 5, 7, 0, 1 e) f), 0 g), 0 (c) Antti Kosonen

4 z muunnos ratkaisu Ratkaisu muunnoksen määritelmä a) b) , ROC: koko taso, paitsi 0 257, ROC: koko taso, paitsi 0ja (c) Antti Kosonen

5 c) d) 2 5 7, ROC: koko taso, paitsi , ROC: koko taso, paitsi 0ja e) Koska 1, kun 0 1, ROC: koko taso (c) Antti Kosonen

6 f) Koska 1, kun, ROC: koko taso, paitsi 0 g) Koska 1, kun, ROC: koko taso, paitsi (c) Antti Kosonen

7 z muunnos (jatkuu) Äärellisen pituisen sekvenssin muunnoksen ROC on koko taso, poislukien mahdollisesti 0ja/tai, jos 0, jos 0 0 :n eksponentti sisältää aikainformaation, millä yksilöidään signaalin näytteet hetkellä Esimerkki Määritä seuraavan signaalin muunnos 1 2 Ratkaisu Esitetään luennolla. (c) Antti Kosonen

8 ROC:n selvittäminen yleisessä tapauksessa Merk., :n ROC:n sisäpuolella,, jos ROC:n etsiminen tarkoittaa siis sellaisen :n arvojen joukon etsimistä, joilla on absoluuttisesti summautuva (c) Antti Kosonen

9 Tarkastellaan vielä :n itseisarvoa ROC:ssa molempien summatermien täytyy olla äärellisiä (c) Antti Kosonen

10 J= I 1 H 5 K F F A A EI = K A K 5 N H J= I 1 H : I K F F A A EI = K A H H H 4 + Kuva. :n antikausaalisen komponentin ROC. 4 A J= I 1 H 5 K F F A A EI = K A K 5 4 A N H 4 A Ensimmäinen summa H Kuva. :n ROC. 4 + Kuva. :n kausaalisen komponentin ROC. Toinen summa molemmat Jos, ei olemassa (c) Antti Kosonen

11 z muunnos esimerkit Esimerkki Määritä seuraavan signaalin muunnos, 0 0, 0 Ratkaisu Esitetään luennolla. Esimerkki Määritä seuraavan signaalin muunnos 1 0, 0 antikausaalinen, 0 Ratkaisu Esitetään luennolla. (c) Antti Kosonen

12 z muunnos esimerkit (jatkuu) Esimerkki Määritä seuraavan signaalin muunnos 1 Ratkaisu Esitetään luennolla. (c) Antti Kosonen

13 z muunnos yhteenveto (1/2) Signaalit, joilla äärellinen kesto = K I = = E A N Koko taso, paitsi 0 ) JE = K I = = E A N Koko taso, paitsi = I E F K A E A N Koko taso, paitsi 0 ja (c) Antti Kosonen

14 z muunnos yhteenveto (2/2) Signaalit, joilla ääretön kesto = K I = = E A N H ) JE = K I = = E A N H = I E F K A E A N H H (c) Antti Kosonen

15 Hyödyllisiä sarjoja Geometrinen sarja: Variaatiot: , 1 1 1, 1 1 1, (c) Antti Kosonen

16 z muunnoksen ominaisuuksia Lineaarisuus (eng. linearity) Jos niin Kaikilla vakioilla ja Esimerkki Määritä seuraavan signaalin muunnos ja ROC Ratkaisu Esitetään luennolla. (c) Antti Kosonen

17 Ajansiirto (eng. time shifting) Jos niin Viivettä kuvaava lohkokaaviosymboli Esimerkki Määritä esimerkin signaalien ja z muunnokset :n z muunnoksesta hyödyntämällä ajansiirto ominaisuutta Ratkaisu Esitetään luennolla. (c) Antti Kosonen

18 Skaalaus (eng. scaling) Jos, ROC: niin, ROC: kaikilla vakion arvoilla, reaaliset ja kompleksiset. (c) Antti Kosonen

19 Ajan kääntäminen (eng. time reversal) Jos, ROC: niin, ROC: tai 1 1 Esimerkki Määritä seuraavan signaalin muunnos Ratkaisu Esitetään luennolla. (c) Antti Kosonen

20 Derivointi z tasossa (eng. differentiation in z domain) Jos niin Esimerkki Määritä seuraavan signaalin muunnos Ratkaisu Esitetään luennolla. (c) Antti Kosonen

21 Konvoluutio (eng. convolution) Jos niin Konvoluutio aikatasossa vastaa kertolaskua z tasossa Esimerkki Määritä seuraavien signaalien konvoluutio 1, 2, 1 1, Ratkaisu Esitetään luennolla. (c) Antti Kosonen

22 Korrelaatio (eng. correlation) Jos niin Esimerkki Määritä seuraavan signaalin autokorrelaatiosekvenssi, 11 Ratkaisu Esitetään luennolla. (c) Antti Kosonen

23 Alkuarvoteoreema (eng. initial value theorem) Jos on kausaalinen, niin 0 lim Todistus Koska on kausaalinen, muunnoksen määritelmästä seuraa Kun, 0, jos 0. Teoreema seuraa tästä. Huom. muunnoksen ominaisuuksia ja muunnospareja on taulukoitu. (c) Antti Kosonen

24 Rationaaliset z muunnokset Navat ja nollat (eng. zeros and poles) muunnoksen nollia ovat ne :n arvot, joilla 0 muunnoksen napoja ovat ne :n arvot, joilla Jos on rationaalifunktio, se voidaan ilmaista muodossa Tämä voidaan edelleen kirjoittaa muotoon (c) Antti Kosonen

25 missä, 1,,ovat polynomin juuret ja, 1,, ovat polynomin juuret :lla on nollaa (äärellistä) napaa (äärellistä) nollaa origossa ( ) 0 napaa origossa ( ) 0 (c) Antti Kosonen

26 Napa tai nolla voi olla myös :ssä o nolla, jos 0 o napa, jos napoja ja nollia yhtä monta voidaan kuvata graafisesti kompleksitasossa napa nollakuvion (eng. pole zero plot) avulla o napa () o nolla (O) (c) Antti Kosonen

27 Napa nollakuvio esimerkit Esimerkki Piirrä seuraavan signaalin napa nollakuvio, 0 Ratkaisu Esitetään luennolla. Esimerkki Piirrä seuraavan signaalin napa nollakuvio, 0 1 0, muualla kun 0. Ratkaisu Esitetään luennolla. (c) Antti Kosonen

28 Myös toisin päin onnistuu: jos tunnetaan napa nollakuvio, voidaan määrittää (:tä lukuunottamatta) Esimerkki Määritä oheista napa nollakuviota vastaava z muunnos sekä vastaava signaali F H M M 4 A F Ratkaisu Esitetään luennolla. Kuva. Napa nollakuvio. (c) Antti Kosonen

29 Navan sijainti ja kausaalisen signaalin käyttäytyminen aikatasossa Kausaalisten signaalien aikatason käyttäytyminen riippuu siitä, ovatko muunnoksen navat yksikköympyrän (eng. unit circle) sisä vai ulkopuolella vai ympyrän kehällä Jos reaalisen signaalin muunnoksella on yksi napa, tämän on oltava reaalinen Ainoa tällainen signaali on reaalinen eksponenttisignaali 1 1, ROC: Kausaalinen signaali, jolla on kaksinkertainen reaalinen napa 1, ROC: (c) Antti Kosonen

30 J= I N J= I N J= I N J= I N J= I N J= I N Kuva. Kausaalinen signaalin (yksi reaalinen napa). (c) Antti Kosonen

31 J= I N J= I N J= I N J= I N J= I N J= I N Kuva. Kausaalinen signaalin (kaksinkertainen reaalinen napa). (c) Antti Kosonen

32 J= I N H M J= I N H M J= I N H H M Kuva. Kausaalinen signaalin (navat kompleksikonjugaattipari). (c) Antti Kosonen

33 J= I M N Kuva. Kausaalinen signaalin (kaksinkertainen kompleksikonjugaattinapapari). (c) Antti Kosonen

34 LTI järjestelmien siirtofunktio LTI järjestelmän lähtö saadaan konvoluution avulla muunnetaan yhtälö Impulssivasteen muunnosta nimitetään siirtofunktioksi (eng. transfer function) tai systeemifunktioksi (eng. system function) Jos järjestelmä on kuvattu lineaarisella vakiokertoimisella differenssiyhtälöllä on järjestelmän siirtofunktio 1 (c) Antti Kosonen

35 Todistus muunnetaan differenssiyhtälö 1 Mistä voidaan ratkaista 1 (c) Antti Kosonen

36 Siirtofunktio esimerkki Esimerkki Määritä seuraavan järjestelmän siirtofunktio ja yksikköimpulssivaste, kun järjestelmän differenssiyhtälö Ratkaisu muunnetaan differenssiyhtälö (c) Antti Kosonen

37 Yksikköimpulssivaste on siirtofunktion käänteismuunnos. Sitä varten käytetään taulukkoa, josta löytyy muunnospari 1 1 Siten Mitkä ovat eo. siirtofunktion navat ja nollat? Muokataan edelleen Siten siirtofunktiolla on nolla kohdassa 0ja napa kohdassa. (c) Antti Kosonen

38 All zero ja all pole järjestelmät Siirtofunktion yleisestä muodosta saadaan kaksi erikoistapausta: Jos 0, kun 1:FIR järjestelmän siirtofunktio 1 nollaa, joiden arvot on määritelty järjestelmäparametreilla kertainen napa kohdassa 0 all zero järjestelmä (ei välitetä navoista origossa) Jos 0, kun 1: siirtofunktio 1, 1 napaa, joiden arvot on määritelty järjestelmäparametreilla kertainen nolla kohdassa 0 all pole järjestelmä (ei välitetä nollista origossa) (c) Antti Kosonen

39 Käänteinen z muunnos Käänteinen muunnos määritellään yhtälöllä 1 2π on suljettu tie, joka kiertää origon ja sijaitsee :n suppenemisalueessa, esim. ympyrä suppenemisalueen sisällä Käytännössä käänteinen muunnos muodostetaan jollakin seuraavista menetelmistä: 1. Integraalin (eng. contour integration) suoraviivainen laskenta 2. Potenssisarjakehitelmän (eng. power series expansion) muodostaminen (:n ja :n sarja) 3. Osamurtokehitelmän (eng. partial fraction expansion) muodostaminen ja taulukko (c) Antti Kosonen

40 Pintaintegraalin laskenta Cauchyn residyteoreema (eng. Cauchy s integral theorem): Jos :n 1 kertainen derivaatta on olemassa ja :lla ei ole napoja kohdassa, niin 1 2π 1 1!, jos on : n sisällä 0, jos on : n ulkopuolella Jos 1: 1 2π, jos on : n sisällä 0, jos on : n ulkopuolella (c) Antti Kosonen

41 Tarkastellaan muotoa olevan funktion integrointia: o :lla ei ole napoja :n sisällä o on polynomi, jolla on erilliset juuret,,, :n sisällä Integraali voidaan kirjoittaa silloin seuraavasti 1 2π 1 2π 1 2π missä (c) Antti Kosonen

42 Arvot ovat napoja, 1, 2,, vastaavat residyt Integraalin arvo on siis :n sisällä olevien residyjen summa Käänteinen muunnos on edellisen perusteella 1 2π : n residy kohdassa : ää missä viimeinen muoto pätee vain, jos navat ovat erillisiä (c) Antti Kosonen

43 Pintaintegraalin laskenta esimerkki Esimerkki Määritä seuraavan muunnoksen käänteismuunnos 1 1, käyttämällä käänteismuunnoksen määritelmää. (c) Antti Kosonen

44 Pintaintegraalin laskenta ratkaisu Ratkaisu Tiedetään, että 1 2π 1 1 2π missä on ympyrä, jonka säde on suurempi kuin. Nyt. :n suuruus ( 0 vai 0eli onko vai, 0) vaikuttaa napojen lukumäärään. Tarkastellaan siksi erikseen tapauksia 0ja 0 1. Jos 0: :lla on vain nollia eikä siten napoja :n sisällä. :n sisällä on yksi napa. Siten, 0 2. Jos 0: :llä on kertainen napa kohdassa 0, joka on :n sisällä. Siten molemmilla navoilla on vaikutus. Jos 1, saadaan 1 1 2π (c) Antti Kosonen

45 Jos 2, saadaan 2 1 2π ! Jos 3, saadaan 3 1 2π ! Jatkamalla samaan tapaan eteenpäin, havaitaan, että 0, kun 0. Siten (c) Antti Kosonen

46 Potenssisarjakehitelmä Perusidea: muunnos voidaan kirjoittaa potenssisarjana seuraavasti mikä suppenee annetussa ROC:ssa. Tällöin signaalin käänteismuunnos on kaikilla :n arvoilla Esimerkki Määritä seuraavan muunnoksen käänteismuunnos 1 1 1,5 0,5 kun a) ROC: 1 b) ROC: 0,5 Ratkaisu Esitetään luennolla. (c) Antti Kosonen

47 Osamurtokehitelmän ja taulukon käyttö Tavoite: Pyritään ilmaisemaan muodossa missä,, ovat lausekkeita, joiden käänteismuunnokset saadaan muunnosparitaulukosta Soveltuu erityisen hyvin rationaalifunktioiden käänteismuunnoksen laskemiseen 1 1 Rationaalifunktio on sopiva (eng. proper), jos 0ja (nollia vähemmän kuin napoja) Epäsopiva rationaalifunktio ( ) voidaan kirjoittaa polynomin ja sopivan rationaalifunktion summana (c) Antti Kosonen

48 Osamurtokehitelmä muodostetaan jakamalla nimittäjä tekijöihin ja ilmaisemalla seuraavasti missä,,, ovat :n navat Jos navat ovat erilliset (eng. distinct poles), kertoimet saadaan seuraavasti, 1,2,, (c) Antti Kosonen

49 Jos navat ovat kompleksiset ja signaali reaalinen o jos on :n kompleksinen napa myös on napa Jos napa on kertainen, osamurtokehitelmä sisältää seuraavat termit Kertoimet saadaan derivoinnin kautta (c) Antti Kosonen

50 Erilliset navat esimerkki Esimerkki Muodosta osamurtokehitelmä muunnokselle 1 1 1,5 0,5 Ratkaisu Esitetään luennolla. (c) Antti Kosonen

51 Kompleksiset navat esimerkki Esimerkki Muodosta osamurtokehitelmä muunnokselle 1 1 0,5 Ratkaisu Esitetään luennolla. (c) Antti Kosonen

52 Moninkertaiset navat esimerkki Esimerkki Muodosta osamurtokehitelmä muunnokselle Ratkaisu Esitetään luennolla. (c) Antti Kosonen

53 Käänteinen muunnos 1 1 Kausaalisen signaalin ROC: Navat:,,,, jos ROC: 1, jos ROC: ROC:, missä max,,, Yleisesti kompleksikonjugaattiparin käänteismuunnos on (kausaalinen signaali) Merkitään (polaarinen muoto) (c) Antti Kosonen

54 Siten kompleksikonjugaattiparin käänteismuunnos voidaan kirjoittaa uuteen muotoon Siten 2 cos cos jos ROC on Kompleksikonjugaattinavat tasossa tuottavat kausaalisen sinimuotoisen signaalin aikatasoon (c) Antti Kosonen

55 Käänteismuunnos esimerkki Esimerkki Määritä signaali, jonka muunnos 1 1 1,5 0,5 kun a) ROC: 1 b) ROC: 0,5 c) ROC: 0,5 1 Ratkaisu Esitetään luennolla. (c) Antti Kosonen

56 Kausaalisuus ja stabiilius LTI järjestelmä on kausaalinen, jos 0, 0 LTI järjestelmä on kausaalinen, jos ja vain jos järjestelmän siirtofunktion ROC on säteisen ympyrän ( ) ulkopuoli sisältäen pisteen LTI järjestelmä on BIBO stabiili, jos LTI järjestelmä on BIBO stabiili, jos ja vain jos järjestelmän siirtofunktion ROC sisältää yksikköympyrän Kausaalinen LTI järjestelmä on BIBO stabiili, jos ja vain jos järjestelmän siirtofunktion kaikki navat ovat yksikköympyrän sisäpuolella (c) Antti Kosonen

57 Kausaalisuus ja stabiilius esimerkki Esimerkki Erään lineaarisen aikainvariantin järjestelmän siirtofunktio on 34 13,5 1, Määritä siirtofunktion ROC ja impulssivaste seuraavissa tapauksissa: a) Järjestelmä on stabiili. b) Järjestelmä on kausaalinen. c) Järjestelmä on antikausaalinen. (c) Antti Kosonen

58 Kausaalisuus ja stabiilius ratkaisu Ratkaisu Järjestelmällä on navat kohdissa ja 3 a) Koska järjestelmä on stabiili, täytyy yksikköympyrän kuulua ROC:in. Siten ROC on 3. on tällä perusteella ei kausaalinen b) Koska järjestelmä on kausaalinen, sen ROC on 3. Impulssivaste on silloin Järjestelmä on tässä tapauksessa epästabiili, koska ROC ei sisällä yksikköympyrää. c) Järjestelmä on antikausaalinen, joten sen ROC on 0,5. Siten Järjestelmä on tässä tapauksessa epästabiili, koska ROC ei sisällä yksikköympyrää. (c) Antti Kosonen

59 Konvoluutio esimerkki Esimerkki Laske seuraavien signaalien konvoluutio muunnoksen avulla 1, 0 3 1, Ilmoita tulos aikatasossa. Ratkaisu Esitetään luennolla. (c) Antti Kosonen

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z 5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 5. joulukuuta 2016 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujonot Lukujonot Z-muunnoksen ominaisuuksia

Lisätiedot

Diskreetin LTI-systeemin stabiilisuus

Diskreetin LTI-systeemin stabiilisuus Diskreetin LTI-systeemin stabiilisuus LuK-tutkielma Johannes Ylitalo 2372956 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 Merkintöjä 2 1 Kompleksifunktiot 3 2 Signaalianalyysi

Lisätiedot

Kompleksianalyysi, viikko 7

Kompleksianalyysi, viikko 7 Kompleksianalyysi, viikko 7 Jukka Kemppainen Mathematics Division Fourier-muunnoksesta Laplace-muunnokseen Tarkastellaan seuraavassa kausaalisia signaaleja eli signaaleja x(t), joille x(t) 0 kaikilla t

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 1. joulukuuta 2015 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujono Lukujono on diskreetti funktio

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 11. Integrointi erillisen erikoispisteen ympäri Olkoot f analyyttinen punkteeratussa kiekossa D(z 0.r\{z 0 }. Funktiolla f on erikoispiste z 0.

Lisätiedot

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006 Digitaalinen Signaalinkäsittely T5 Luento 4-7.4.6 Jarkko.Vuori@evtek.fi Z-taso Z-taso on paljon käytetty graafinen esitystapa jonka avulla voidaan tarkastella signaalien taajuussisältöjä sekä järjestelmien

Lisätiedot

järjestelmät Luento 8

järjestelmät Luento 8 DEE-111 Lineaariset järjestelmät Luento 8 1 Lineaariset järjestelmät Risto Mikkonen 7.8.214 Luento 7 - Recap Z-muunnos ja sen ominaisuudet Lineaaristen dierenssiyhtälöiden käsittely Alku- ja loppuarvot

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II

Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

Potenssisarja, suppenemissäde. Potenssisarja ja derivointi. Potenssisarja ja analyyttiset funktiot. Potenssisarja ja integrointi.

Potenssisarja, suppenemissäde. Potenssisarja ja derivointi. Potenssisarja ja analyyttiset funktiot. Potenssisarja ja integrointi. Matematiikan peruskurssi KP3 I OSA 4: Taylorin sarja, residymenetelmä A.Rasila J.v.Pfaler 26. syyskuuta 2007 Kompleksista sarjoista Jono, suppeneminen, summasarja Potenssisarja, suppenemissäde ja analyyttiset

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU ENSO IKONEN PYOSYS 1 SÄÄTÖJÄRJESTELMIEN SUUNNITTELU Enso Ikonen professori säätö- ja systeemitekniikka http://cc.oulu.fi/~iko Oulun yliopisto Älykkäät koneet ja järjestelmät, Systeemitekniikka Feb 2019

Lisätiedot

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2 BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

1 Vastaa seuraaviin. b) Taajuusvasteen

1 Vastaa seuraaviin. b) Taajuusvasteen Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

Laplace-muunnos: määritelmä

Laplace-muunnos: määritelmä Laplace-muunnos: määritelmä Olkoon f : [, [ R funktio. Funktion f Laplacen muunnos määritellään yhtälöllä F(s) = L(f) := f(t)e st dt edellyttäen, että integraali f(t)e st dt suppenee. Riittävä ehto integraalin

Lisätiedot

Systeemin käyttäytyminen. ELEC-C1230 Säätötekniikka. Systeemin navat ja nollat. Systeemin navat ja nollat

Systeemin käyttäytyminen. ELEC-C1230 Säätötekniikka. Systeemin navat ja nollat. Systeemin navat ja nollat Systeemin käyttäytyminen ELEC-C1230 Säätötekniikka Luku 5: Navat ja nollat, systeemin nopeus, stabiilisuus ja värähtelyt, Routh-Hurwitz-kriteeri Systeemin tai järjestelmän tärkein ominaisuus on stabiilisuus.

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Harjoitus 1. Tehtävä 1. Malliratkaisut. f(t) = e (t α) cos(ω 0 t + β) L[f(t)] = f(t)e st dt = e st t+α cos(ω 0 t + β)dt.

Harjoitus 1. Tehtävä 1. Malliratkaisut. f(t) = e (t α) cos(ω 0 t + β) L[f(t)] = f(t)e st dt = e st t+α cos(ω 0 t + β)dt. Harjoitus Malliratkaisut Tehtävä L[f(t)] ˆ f(t) e (t α) cos(ω t + β) f(t)e st dt ˆ e st t+α cos(ω t + β)dt cos(ω t + β) 2 (ej(ωt+β) + e j(ωt+β) ) L[f(t)] 2 eα 2 ˆ ˆ e st t+α (e j(ω t+β) + e j(ω t+β) )

Lisätiedot

z-muunnos ja differenssiyhtälöt

z-muunnos ja differenssiyhtälöt TAMPEREEN YLIOPISTO Pro gradu -tutkielma Martti Helenius z-muunnos ja differenssiyhtälöt Informaatiotieteiden yksikkö Matematiikka Joulukuu 204 Tampereen yliopisto Informaatiotieteiden yksikkö HELENIUS,

Lisätiedot

Y (z) = z-muunnos on lineaarinen kuten Laplace-muunnoskin

Y (z) = z-muunnos on lineaarinen kuten Laplace-muunnoskin Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.429 Systeemien Identifiointi 3. harjoituksen ratkaisut. Vapaan vasteen löytämiseksi asetetaan ohjaukseksi u(t)

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

H(s) + + _. Ymit(s) Laplace-tason esitykseksi on saatu (katso jälleen kalvot):

H(s) + + _. Ymit(s) Laplace-tason esitykseksi on saatu (katso jälleen kalvot): ELEC-C3 Säätötekniikka 5. laskuharjoitus Vastaukset Quiz: Luennon 4 luentokalvojen (luku 4) lopussa on esimerkki: Sähköpiiri (alkaa kalvon 39 tienoilla). Lue esimerkki huolellisesti ja vastaa seuraavaan:

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z

Lisätiedot

3. kierros. 2. Lähipäivä

3. kierros. 2. Lähipäivä 3. kierros. Lähipäivä Viikon aihe (viikko /) Takaisinkytketyt vahvistimet Takaisinkytkentä, suljettu säätöluuppi Nyquistin kriteeri, stabiilisuus Taajuusanalyysi, Boden ja Nyquistin diagrammit Systeemin

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

Kompleksinen Laplace-muunnos

Kompleksinen Laplace-muunnos TAMPEREEN YLIOPISTO Pro gradu -tutkielma Päivikki Mäki Kompleksinen Laplace-muunnos Informaatiotieteiden yksikkö Matematiikka Kesäkuu 212 Tampereen yliopisto Informaatiotieteiden yksikkö MÄKI, PÄIVIKKI:

Lisätiedot

Laplace-muunnos. 8. marraskuuta Laplace-muunnoksen määritelmä, olemassaolo ja perusominaisuudet Differentiaaliyhtälöt Integraaliyhtälöt

Laplace-muunnos. 8. marraskuuta Laplace-muunnoksen määritelmä, olemassaolo ja perusominaisuudet Differentiaaliyhtälöt Integraaliyhtälöt 8. marraskuuta 216 Laplace-muunnoksen määritelmä, olemassaolo ja perusom Integraalimuunnos Integraalimuunnos on yleisesti muotoa F(u) = K(t, u)f (t)dt missä K on integraalin ydin. Tässä K ja f ovat tunnettuja.

Lisätiedot

Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. = K K K M. s 2 3s 2 KK P

Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. = K K K M. s 2 3s 2 KK P Säädön kotitehtävä vk3 t. 1 a) { Y =G K P E H E=R K N N G M Y Yhtälöparista ratkaistiin vuorotellen siirtofunktiot laittamalla muut tulot nollaan. G R s = Y R = GK P s 1 = KK 1 GK P K N G P M s 2 3s 2

Lisätiedot

1. Viikko. K. Tuominen MApu II 1/17 17

1. Viikko. K. Tuominen MApu II 1/17 17 1. Viikko Keskeiset asiat ja tavoitteet: 1. Kompleksiluvut, kompleksitaso, polaariesitys, 2. Kompleksilukujen peruslaskutoimitukset, 3. Eulerin ja De Moivren kaavat, 4. Potenssi ja juuret, kompleksinen

Lisätiedot

Kompleksitermiset jonot ja sarjat

Kompleksitermiset jonot ja sarjat Kompleksitermiset jonot ja sarjat Aalto MS-C300, 205, v., Kari Eloranta Tutkitaan kompleksitermisten jonojen ja sarjojen ominaisuuksia. Päätavoite on kompleksifunktioiden sarjakehitelmien ymmärrys. Määritelmä

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 18.3.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 5.5.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 30.1.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002 Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty

Lisätiedot

Muuttujan vaihto. Viikon aiheet. Muuttujan vaihto. Muuttujan vaihto. ) pitää muistaa lausua t:n avulla. Integroimisen työkalut: Kun integraali

Muuttujan vaihto. Viikon aiheet. Muuttujan vaihto. Muuttujan vaihto. ) pitää muistaa lausua t:n avulla. Integroimisen työkalut: Kun integraali Viikon aiheet Integroimisen työkalut: Rationaalifunktioiden jako osamurtoihin Rekursio integraaleissa CDH: Luku 4, Prujut206: Luvut 4-4.2.5, Prujut2008: s. 89-6 Kun integraali h(x) ei näytä alkeisfunktioiden

Lisätiedot

(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R.

(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R. Calculus Kurssikoe..7. Laske (a) x sin x, (b) x x + x. (a) Merkitään u(x) = x ja v (x) = sin x, jolloin u (x) =, v(x) = cos x ja osittaisintegroimalla saadaan x sin x = u(x)v (x) = u(x)v(x) u (x)v(x) =

Lisätiedot

T SKJ - TERMEJÄ

T SKJ - TERMEJÄ T-61140 SKJ - termit Sivu 1 / 7 T-61140 SKJ - TERMEJÄ Nimi Opnro Email Signaalinkäsittelyyn liittyviä termejä ja selityksiä Kevät 2005 Täytä lomaketta kevään aikana ja kerää mahdollisesti puuttuvia termejä

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-00 Signaalinkäsittelyn menetelmät, Tentti 6.3.006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja

Lisätiedot

Vastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen

Vastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen Vastausehdotukset analyysin sivuainekurssin syksyn 015 1. välikokeeseen Heikki Korpela November 1, 015 1. Tehtävä: funktio f : R R toteuttaa ehdot ax, kun x 1 f(x) x + 1, kun x < 1 Tutki, millä vakion

Lisätiedot

Funktion raja-arvo. lukumäärien tutkiminen. tutkiminen

Funktion raja-arvo. lukumäärien tutkiminen. tutkiminen Matematiikka algebra geometria Funktion raja-arvo analyysi tarve lukumäärien tutkiminen kuvioiden ja kappaleiden tutkiminen muutosten tutkiminen DERIVAATTA, MAA6 Yhtä vanhoja kuin ihmiskuntakin ~6 000

Lisätiedot

2. Funktiot. Keijo Ruotsalainen. Mathematics Division

2. Funktiot. Keijo Ruotsalainen. Mathematics Division 2. Funktiot Keijo Ruotsalainen Mathematics Division Kompleksimuuttujan funktio Kompleksimuuttujan z kompleksiarvoinen funktio f(z) voi olla yksiarvoinen tai moniarvoinen, esimerkiksi f(z) = e z f(z) =

Lisätiedot

Eksponenttifunktion Laplace muunnos Lasketaan hetkellä nolla alkavan eksponenttifunktion Laplace muunnos eli sijoitetaan muunnoskaavaan

Eksponenttifunktion Laplace muunnos Lasketaan hetkellä nolla alkavan eksponenttifunktion Laplace muunnos eli sijoitetaan muunnoskaavaan Laplace muunnos Hieman yksinkertaistaen voisi sanoa, että Laplace muunnos muuttaa derivaatan kertolaskuksi ja integroinnin jakolaskuksi. Tältä kannalta katsottuna Laplace muunnoksen hyödyllisyyden ymmärtää;

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

(a) avoin, yhtenäinen, rajoitettu, alue.

(a) avoin, yhtenäinen, rajoitettu, alue. 1. Hahmottele seuraavat tasojoukot. Mitkä niistä ovat avoimia, suljettuja, kompakteja, rajoitettuja, yhtenäisiä, alueita? (a) {z C 1 < 2z + 1 < 2} (b) {z C z i + z + i = 4} (c) {z C z + Im z < 1} (d) {z

Lisätiedot

2.2.1 Ratkaiseminen arvausta sovittamalla

2.2.1 Ratkaiseminen arvausta sovittamalla 2.2.1 Ratkaiseminen arvausta sovittamalla Esimerkki: lomitusjärjestäminen (edellä) Yleistys: Ratkaistava T (1) c T (n) g(t (1),..., T (n 1), n) missä g on n ensimmäisen parametrin suhteen kasvava. (Ratkaisu

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4.1 Homogeeniset lineaariset differentiaaliyhtälöt Homogeeninen yhtälö on muotoa F(x, y,, y (n) ) = 0. (1) Yhtälö on lineaarinen, jos se voidaan

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7 MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi, kurssikerta 5 Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1 Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................

Lisätiedot

Differentiaaliyhtälön ratkaisu. ELEC-C1230 Säätötekniikka. Esimerkki: läpivirtaussäiliö. Esimerkki: läpivirtaussäiliö

Differentiaaliyhtälön ratkaisu. ELEC-C1230 Säätötekniikka. Esimerkki: läpivirtaussäiliö. Esimerkki: läpivirtaussäiliö Differentiaaliyhtälön ratkaisu ELEC-C1230 Säätötekniikka Luku 3: Dynaamisen vasteen määrittäminen, Laplace-muunnos, siirtofunktio Systeemin ymmärtämisen ja hallinnan kannalta on olennaista tietää, miten

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti

Lisätiedot

Sarjoja ja analyyttisiä funktioita

Sarjoja ja analyyttisiä funktioita 3B Sarjoja ja analyyttisiä funktioita 3B a Etsi funktiolle z z 5 potenssisarjaesitys kiekossa B0, 5. b Etsi funktiolle z z potenssisarjaesitys kiekossa, jonka keskipiste on z 0 4. Mikä on tämän potenssisarjan

Lisätiedot

derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,.

derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,. Matematiikka, MAA9. a) Ratkaise yhtälö tan (YOS) Kulma on välillä [, 6]. Ratkaise asteen tarkkuudella seuraavat yhtälöt: b) sin c) cos (YOs). Kulmalle [9,6 ] on voimassa sin = 8 7. Määritä cos ja tan..

Lisätiedot

Yleisiä integroimissääntöjä

Yleisiä integroimissääntöjä INTEGRAALILASKENTA, MAA9 Yleisiä integroimissääntöjä Integroiminen eli annetun funktion f integraalifunktion F määrittäminen (löytäminen) on yleisesti haastavaa. Joskus joutuu jopa arvata tai kokeilla.

Lisätiedot

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1 1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin

Lisätiedot

MS-C1420 Fourier-analyysi osa I

MS-C1420 Fourier-analyysi osa I MS-C142 Fourier-analyysi osa I G. Gripenberg Aalto-yliopisto 29. tammikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa I 29. tammikuuta 214 1 / 3 1 Johdanto 2 Fourier-integraali Fourier-muunnos

Lisätiedot

6*. MURTOFUNKTION INTEGROINTI

6*. MURTOFUNKTION INTEGROINTI MAA0 6*. MURTOFUNKTION INTEGROINTI Murtofunktio tarkoittaa kahden polynomin osamäärää, ja sen yleinen muoto on P() R : R(). Q() Mikäli osoittajapolynomin asteluku on nimittäjäpolynomin astelukua korkeampi

Lisätiedot

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008 Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t

Lisätiedot

MATEMATIIKAN JAOS Kompleksianalyysi

MATEMATIIKAN JAOS Kompleksianalyysi MATEMATIIKAN JAOS Kompleksianalyysi Harjoitustehtäviä, syksy 00. Määrää kompleksiluvun a) = 3 j + 3j, b) = j, + j c) = ( 3 3 3 j)( j) itseisarvo ja argumentti.. Määrää sellaiset reaaliluvut x ja y, että

Lisätiedot

MATP153 Approbatur 1B Harjoitus 6 Maanantai

MATP153 Approbatur 1B Harjoitus 6 Maanantai . (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Säätötekniikan ja signaalinkäsittelyn työkurssi

Säätötekniikan ja signaalinkäsittelyn työkurssi Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio

Lisätiedot

1 Ominaisarvot ja lineaariset di erenssiyhtälöt

1 Ominaisarvot ja lineaariset di erenssiyhtälöt Taloustieteen mat.menetelmät syksy 27 materiaali II-4 Ominaisarvot ja lineaariset di erenssiyhtälöt. Idea a b Ajatellaan di erenssiyhtälöä z k+ Az k, A : Jos A olisi diagonaalimatriisi, eli b c, niin muuttujat

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

3.4 Rationaalifunktion kulku ja asymptootit

3.4 Rationaalifunktion kulku ja asymptootit .4 Rationaalifunktion kulku ja asymptootit Rationaali- eli murtofunktiolla tarkoitetaan funktiota R, jonka lauseke on kahden polynomin osamäärä: P() R(). Q() Ainakin nimittäjässä olevan polynomin asteluvun

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2. 2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2) MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot