KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla
|
|
- Ilmari Honkanen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 11. Integrointi erillisen erikoispisteen ympäri Olkoot f analyyttinen punkteeratussa kiekossa D(z 0.r\{z 0 }. Funktiolla f on erikoispiste z 0. Olkoon γ suljettu, paloittain C 1 -polku, joka on yksinkertainen ja kiertää pisteen z 0 ympäri positiiviseen kiertosuuntaan Esimerkki. Määrää + D(0,1 exp ( 1. z f(z Epäoleellisuus ei näytä olevan muotoa (z z 0, k = 1, 2,.... Eksponenttifunktion z exp(z Laurent-sarjan avulla k ( 1 exp ( = + z z + 2!z + 2 3!z Tässä funktiolla z 1, n 2, on integraalifunktio (eli antiderivaatta avoimessa joukossa, jossa suljetun polun jälki + D(0, 1 on ja n!z n siis = 0 jokaisella n 2. n!zn Siis + D(0,1 exp ( 1 = 0 + z z = 2πi missä viimeinen yhtäsuuruus saadaan suoraan laskemalla tai Cauchyn integraalikaavasta. Huomaa, että yhtäsuuruus ( edellyttää eksponenttifunktion sarjakehitelmän tasaista suppenemista, jotta integroinnin ja summauksen järjestyksen voi vaihtaa. Date:
2 2 Kompleksianalyysi I kurssi/rhs Yleisesti: Jos funktiolla f on Laurent-sarjaesitys f(z = a n (z z 0 n n= ja γ on positiiviseen kiertosuuntaan kerran kulkeva (siis yksinkertainen suljettu paloittain C 1 -polku, jonka rajaaman rajoitetun alueen sisälle kuuluu funktion f erillinen erikoispiste z 0 eikä siellä ole muita erikoispisteitä, niin silloin f(z = a 1 = 2πia 1, z z 0 γ koska kaikilla Laurent-sarjan muilla termeillä on integraalifunktio. γ Koska a 1 on ainoa termi, joka jää integroimisen jälkeen, sanotaan sitä funktion f residyksi pisteessä z 0 ja merkitään a 1 = Res(f; z 0. Siis f(z = 2πi Res(f; z 0. γ Perustelu: Olkoon f analyyttinen funktio punkteeratussa kiekossa D(z 0, r \ {z 0 } ja olkoon r 0 < r. Tällöin funktion f Laurent-sarja suppenee tasaisesti ympyrällä z z 0 = r 0. Nyt ( f(z = a n (z z 0 n + D(z 0,r 0 koska ( = + D(z 0,r 0 n= n= + D(z 0,r 0 + D(z 0,r 0 (z z 0 n = a n (z z 0 n = a 1 2πi = 2πi Res(f; z 0, { 0, kun n 1 2πi, kun n = 1. Yhtäsuuruuden ( kohdalla tarvitaan sarjan tasainen suppeneminen.
3 Kompleksianalyysi I kurssi/rhs 3 Jos erillisiä erikoispisteitä on enemmän positiivisesti suunnistetun polun γ jäljen rajaaman alueen sisällä, niin n f(z = 2πi Res(f; z k, γ missä pisteet z j, kun j = 1,..., n, ovat erilliset erikoispisteet Esimerkki. Res ( exp( 1 z ; 0 = Residy-teoreema. Olkoon f analyyttinen yhdesti yhtenäisessä alueessa A lukuunottamatta äärellistä määrää erillisiä erikoispisteitä z 1,..., z n, missä z k A, kaikilla k = 1,..., n. Silloin n f(z = 2πi Res(f; z k n(γ; z k γ kaikilla suljetuilla paloittain C 1 -poluilla γ alueessa A, kun z k k = 1,..., n Residyn laskemisesta. / γ, (1 Jos funktiolla f on poistuva erikoispiste z 0, niin Laurent-sarjalla ei ole luvun (z z 0 negatiivisia potensseja. Laurent-sarjassa ei siis ole termiä 1 z z 0, joten funktion f residy pisteessä z 0 on nolla. (2 Olkoon funktiolla f yksinkertainen napa pisteessä z 0. Silloin Laurent-sarja on muotoa f(z = a 1 + a 0 + a 1 (z z z z 0 Siis (z z 0 f(z = a 1 + a 0 (z z 0 + a 1 (z z pisteen z 0 punkteeratussa ympäristössä. Kun z z 0, saadaan lim (z z 0 f(z = a 1. z z 0 Residy yksinkertaisessa navassa z 0 on siis Res(f; z 0 = lim z z0 f(z(z z Esimerkki. Funktiolla z 1 sin z ( 1 Res sin z ; 0 z = lim z 0 sin z on yksinkertainen napa origossa. L H = lim z 0 1 cos z = 1.
4 4 Kompleksianalyysi I kurssi/rhs Jos funktiolla on 2. kertaluokan napa pisteessä z 0, niin f(z = a 2 (z z 0 + a 1 + a a 1 (z z z z 0 ja (z z 0 2 f(z = a 2 + a 1 (z z 0 + a 0 (z z pisteen z 0 punkteeratussa ympäristössä. Nyt ( d (z z 0 2 f(z = a 1 + 2a 0 (z z ja d Res(f; z 0 = lim (f(z(z z 0 2. z z0 (Edellä tarvitaan sarjan tasainen suppeneminen, jotta summeerauksen ja derivoinen järjestys voidaan vaihtaa. Jos funktiolla on k-kertainen napa pisteessä z 0, niin Res(f; z 0 = lim z z0 1 (k 1! Esimerkki. Olkoon Nyt f(z = d k 1 k 1 ( 3 z + 1. z 1 lim (z z 1 13 f(z = 8 0, (f(z(z z 0 k. joten funktiolla f on 3. kertaluvun napa pisteessä 1. Tällöin 1 d Res(f; 1 = lim (f(z(z = 6. z 1 2! 2 Residy-laskentaa voi erittäin hyvin soveltaa reaalisten määrättyjen integraalien laskemiseen. Seuraavassa on tyyppiesimerkkejä residylaskennan hyödyntämisestä integraalin määräämisessä. 1. Integraalin määrääminen, kun trigonometrinen funktio esiintyy integroitavassa funktiossa, ja integrointi yli äärellisen välin:
5 11.7. Esimerkki. Määrää Ratkaisu: Koska Kompleksianalyysi I kurssi/rhs 5 I = 2π 0 dt 2 + cos t. cos t = 1 2( exp(it + exp( it, niin sijoituksella z = exp(it, = i exp(itdt, kun t [0, 2π], saadaan I = = 2π 2π dt cos t = dt (exp(it + exp( it 2 iz 2 + 1(z + 1 = 2 i z 2 z 2 + 4z + 1. Koska z 2 + 4z + 1 = 0, jos ja vain jos z = 2 ± 3, niin z 2 + 4z + 1 = (z + 2 3(z , ja siis I = 2 i (z + 2 3(z Funktiolla f, z 1 (z + 2 3(z , on erikoispisteet z 1 = 2+ 3 ja z 2 = 2 3, mutta integrointipolku γ, γ(t = exp(it, t [0, 2π], kiertää vain pisteen z 1. Siis, koska z 1 on yksinkertainen napa, niin I = 2 i 2πi Res(f; = 4π lim z 2+ f(z(z z = 4π lim z 2+ 3 (z + 2 3(z = 4π = 2π Huomautus. Kun f on rationaalifunktio, niin edellisessä esimerkissä oleva menettely soveltuu muotoa α+2π olevien integraalien laskemiseen. α f(cos t, sin t dt, missä α R,
6 6 Kompleksianalyysi I kurssi/rhs Huomautus. Edellä oleva menetelmä soveltuu vain, jos integroimme yli välin, jonka pituus on 2π tai luvun 2π monikerta. Menetelmä ei sovellu suoraan integraalin I = π 0 dt 2 + cos t määräämiseen. Syy on se, että sijoitus z = exp(it johtaa puoliympyrän kehälle, ei suljetulle polulle. Tällöin yksi tapa on hyödyntää integroitavan funktion mahdollista symmetrisyyttä. Vastaavasti kuin Esimerkissä 11.7 voidaan osoittaa Esimerkki. 2π 0 dt (5 3 sin t = 5π Rationaalifunktion integraali yli koko reaaliakselin, kun integroivalla funktiolla on tietyt rajoitteet: Lause. Olkoon A avoin joukko, johon ylempi avoin puolitaso H = {z C : Im z > 0} kuuluu aidosti. Olkoon funktio f analyyttinen avoimessa joukossa A lukuunottamatta ylemmässä avoimessa puolitasossa H = {z C : Im z > 0} äärellistä määrää olevia napoja z 1,, z p. Olkoon Γ R (t = R exp(it, t [0, π] polku siten, että kaikki navat sisältyvät suljetun polun γ [ R,R] Γ R (eli polku koostuu janasta [ R, R] ja puoliympyrästä Γ R rajoittamaan alueeseen ja oletetaan, että suurilla R on olemassa vakio M siten, että f(z M R 2 kun luku z on polun Γ R jäljellä. Silloin f(xdx = 2πi Res(f; z k Huomautus. Edellisessä lauseessa on oleellista, että navat eivät ole reaaliakselilla, ja että funktion modulille on kasvurajoite, jotta määrättävä integraali on olemassa Huomautus. Tulofunktion integroimislauseen ja Cauchyn residyteoreeman nojalla R f(x dx + f(z = f(z = 2πi Res(f; z k. R γ [ R,R] Γ R Γ R
7 Koska niin Koska Kompleksianalyysi I kurssi/rhs 7 f(z MπR = πm Γ R R 2 R 0, kun R, R lim f(x dx = 2πi R R Res(f; z k. (11.1 f(x M, kun x kyllin suuri, x2 integraali f(x dx on olemassa ja siis f(x dx = 2πi Res(f; z k Huomautus. Ehto (11.1 toteutuu, kun f(z = P (z Q(z, missä P ja Q ovat polynomeja, joille deg Q 2 + deg P ja polynomilla Q ei ole reaalisia nollakohtia Esimerkki. dx x = π 2. Runko perusteluille: Ensinnäkin integraali on olemassa, joten dx x = lim R R R dx x Määritellään f : z 1 z Funktiolla f on ylemmässä puolitasossa navat z 1 = exp(πi/4 ja z 2 = exp(3π/4. Olkoon R > 2 ja γ R (t on jana reaaliakselilla pisteestä R pisteeseen R. Määritellään Γ R : [0, π] C asettamalla Γ R (t = R exp(it, missä R > 2, joten γ R Γ R kiertää luvut z 1 = exp(πi/4 ja z 2 = exp(3π/4. Cauchyn residylauseen nojalla f(z = π/ 2. γ R Γ R Toisaalta tulopolun integraalilauseen nojalla pätee f(z = f(z + f(z. γ R Γ R γ R Γ R
8 8 Kompleksianalyysi I kurssi/rhs Koska integraali dx x on olemassa (perustelu vastaavasti kuin Huomautuksissa ja 11.14, niin dx x = π lim f(z, 2 R Γ R missä Arviolemman nojalla lim R Γ R f(z = Huomautus. Jordanin lemma: Olkoot P ja Q polynomeja siten, että deg Q deg P + 1. Olkoot Γ + R (t := R exp(i(π t ja Γ R (t := R exp( it, kun t [0, π]. Jos m > 0, niin Γ + R P (z exp(imz 0, kun R. Q(z Jos m < 0, niin Γ R P (z exp(imz 0, kun R. Q(z Jordanin lemman todistus on Laskuharjoituksissa Lause. Olkoon f(z = P (z Q(z, missä P = n j=0 a jz j ja Q = m j=0 b jz j, b m 0, ovat polynomeja, joille deg Q 2+deg P ja polynomilla Q ei ole reaalisia juuria. Olkoon c 0. Silloin f(x exp(icx dx = 2πi Res(f(z exp(icz; z k, missä luvut z 1,, z p ovat funktion f navat avoimessa puolitasossa H = {z C : Im(z > 0}. Todistus. Koska deg Q 2 + deg P, b m 0, niin on olemassa R 0 > 0 ja vakio M siten, että f(z M z 2, kun z > R 0. Muodostetaan suljettu polku γ [ R,R] Γ R, missä Γ R (t = R exp(it, t [0, π] ja γ [ R,R] on janapolku pisteestä R pisteeseen R, jonka
9 Kompleksianalyysi I kurssi/rhs 9 jälki on [ R, R]. Kun R on kyllin suuri, niin kaikki navat sisältyvät suljetun polun γ [ R,R] Γ R rajoittamaan alueeseen. Silloin Cauchyn residylauseen nojalla f(z exp(icz = 2πi Res(f(z exp(icz; z k. γ [ R,R] Γ R Tulopolun integroimislauseen nojalla R f(x exp(icx dx+ f(z exp(icz = R Γ R f(z exp(icz. γ [ R,R] Γ R Siis Arviolemman avulla, kun R > R 0, πm R 0, kun R. Siis Γ R f(z exp(icz R lim f(x exp(icx dx = 2πi R R Koska suurilla x niin integraali Res(f(z exp(icz; z k. f(x exp(icx M/x 2, f(x exp(icx dx on olemassa, niin väite seuraa Esimerkki. Määrärää integraali exp( ix x dx. Ratkaisuehdotuksen runko: Funktiolla f : z exp( iz z on erilliset erikoispisteet i ja +i. Olkoon R > 2, jolloin piste i tulee kierrettyä polulla γ R Γ R kerran negatiiviseen kiertosuuntaan. Tässä γ R on jana pisteestä R pisteeseen R ja Γ R (t := R exp( it, kun t [0, π]. Silloin Cauchyn residy teoreeman nojalla exp( iz = 2πi Res(f; i γ R Γ z R ( = 2πi Toisaalta lim z i exp( iz(z + i z exp( iz γ R z = γ R Γ R exp( iz z ( = 2πi lim z i Γ R exp( iz = π z i e. exp( iz z
10 10 Kompleksianalyysi I kurssi/rhs Arviolemman avulla saadaan lim R Γ R exp( iz z = 0. Koska toisaalta exp( ix/(x2 + 1 dx on olemassa, niin exp( ix exp( iz dx = lim x R γ R z = π e Esimerkki. Määrää integraali cos x x dx. Ratkaisuehdotus: Koska cos x = Re(exp( ix = Re(cos( x + i sin( x = Re(cos x i sin x, niin ( cos x exp( ix dx = Re x x dx = π e Esimerkki. Määrää integraali cos x 0 x dx. Ratkaisuehdotus: Edellisestä esimerkistä integroitavan funktion parillisuuden vuoksi cos x x dx = π 2e Esimerkki. Integraali 0 sillä integroitava funktio on pariton. sin x x dx = 0, Esimerkki. Määrää integraali x sin x 0 (x dx. 2 Ratkaisuehdotuksen runko: Lause tapauksessa c = 1 ja käyttämällä yhtälöä exp(ix = cos x + i sin x ja integrandin parillisuutta.
Kompleksianalyysi, viikko 6
Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että
LisätiedotKOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 212 RITVA HURRI-SYRJÄNEN 6.1. Poluista. 6. Kompleksinen integrointi Olkoon [α, β] suljettu reaaliakselin väli, α < β, ja olkoon A kompleksitason avoin joukko. Polku on
LisätiedotKOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan
LisätiedotReaalisten funktioiden integrointia kompleksianalyysin keinoin
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Mervi Paavola Reaalisten funktioiden integrointia kompleksianalyysin keinoin Informaatiotieteiden yksikkö Matematiikka Tampereen yliopisto Informaatiotieteiden
LisätiedotKOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 7. Integaalilauseita 7.1. Gousatin lemma. (Edouad Jean-Baptiste Gousat, 1858-1936, anskalainen matemaatikko) Olkoon R tason suljettu suoakaide,
LisätiedotKOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain
LisätiedotPotenssisarja, suppenemissäde. Potenssisarja ja derivointi. Potenssisarja ja analyyttiset funktiot. Potenssisarja ja integrointi.
Matematiikan peruskurssi KP3 I OSA 4: Taylorin sarja, residymenetelmä A.Rasila J.v.Pfaler 26. syyskuuta 2007 Kompleksista sarjoista Jono, suppeneminen, summasarja Potenssisarja, suppenemissäde ja analyyttiset
LisätiedotKompleksianalyysi, viikko 5
Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa
LisätiedotKaavoja: Aalto-yliopisto. Hyperboliset ja trigonometriset funktiot: coshz = ez +e z. , sinhz = ez e z. 1. (a) Esitä polaarimuodossa kompleksiluku
Aalto-yliopisto Rasila/Murtola Mat-1.130 peruskurssi S3 Syksy 011 1. välikoe Ti 11.10.011 klo 16.00-19.00 Kokeessa saa käyttää ylioppilaskirjoituksessa sallittua laskinta mutta ei taulukkokirjaa. 1. (a)
Lisätiedot3.3 Funktion raja-arvo
3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.
LisätiedotKompleksianalyysi, viikko 4
Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,
LisätiedotKompleksitermiset jonot ja sarjat
Kompleksitermiset jonot ja sarjat Aalto MS-C300, 205, v., Kari Eloranta Tutkitaan kompleksitermisten jonojen ja sarjojen ominaisuuksia. Päätavoite on kompleksifunktioiden sarjakehitelmien ymmärrys. Määritelmä
LisätiedotReaalimuuttujan kompleksiarvoisen funktion integraali
Reaalimuuttujan kompleksiarvoisen funktion integraali Määritelmä 1 Olkoon f(t) = u(t) + jv(t) jatkuva funktio välillä [a, b]. Tällöin (1) b b b f(t)dt = u(t)dt + j v(t)dt. a a a Jatkossa oletetaan, että
LisätiedotKOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 01 RITVA HURRI-SYRJÄNEN 5. Eksponenttifunktio ja sini- ja kosinifunktiot Kertausta. (1 Reaaliselle eksponenttifunktiolle e x : R R + pätee e x x k = kaikilla x R. k! (
LisätiedotF dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause
91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan
LisätiedotFunktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen
4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f
LisätiedotDiskreetin LTI-systeemin stabiilisuus
Diskreetin LTI-systeemin stabiilisuus LuK-tutkielma Johannes Ylitalo 2372956 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 Merkintöjä 2 1 Kompleksifunktiot 3 2 Signaalianalyysi
LisätiedotKOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 1. Möbius-kuvauksista 13. Konformikuvauksista 13.1. Johdantoa. Seuraavassa α ja β ovat annettuja kompleksilukuja ja k ja t 0 ovat reaalisia vakioita.
LisätiedotResidylaskenta ja sen sovelluksena äärettömien sarjojen summien laskeminen ja Mittag-Leerin laajennuslause
Residylaskenta ja sen sovelluksena äärettömien sarjojen summien laskeminen ja Mittag-Leerin laajennuslause Pro Gradu-tutkielma Urho Erkkilä Matemaattisten tieteiden laitos Oulun Yliopisto Kevät 03 Sisältö
Lisätiedotz muunnos ja sen soveltaminen LTI järjestelmien analysointiin
z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten
LisätiedotResidylause ja sen sovelluksia
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Henry Joutsijoki Residylause ja sen sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Marraskuu 7 Tampereen yliopisto Matematiikan, tilastotieteen
Lisätiedot1. Viikko. K. Tuominen MApu II 1/17 17
1. Viikko Keskeiset asiat ja tavoitteet: 1. Kompleksiluvut, kompleksitaso, polaariesitys, 2. Kompleksilukujen peruslaskutoimitukset, 3. Eulerin ja De Moivren kaavat, 4. Potenssi ja juuret, kompleksinen
LisätiedotDIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko
Lisätiedot(a) avoin, yhtenäinen, rajoitettu, alue.
1. Hahmottele seuraavat tasojoukot. Mitkä niistä ovat avoimia, suljettuja, kompakteja, rajoitettuja, yhtenäisiä, alueita? (a) {z C 1 < 2z + 1 < 2} (b) {z C z i + z + i = 4} (c) {z C z + Im z < 1} (d) {z
LisätiedotSarjoja ja analyyttisiä funktioita
3B Sarjoja ja analyyttisiä funktioita 3B a Etsi funktiolle z z 5 potenssisarjaesitys kiekossa B0, 5. b Etsi funktiolle z z potenssisarjaesitys kiekossa, jonka keskipiste on z 0 4. Mikä on tämän potenssisarjan
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio
Lisätiedot1 Kompleksitason geometriaa ja topologiaa
1 Kompleksitason geometriaa ja topologiaa Tavallisessa analyyttisessä geometriassa käyrien yhtälöt esitetään x-koordinaattien ja y-koordinaattien avulla, esimerkiksi y = 1 x esittää tasasivuista hyperbeliä,
LisätiedotLUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k
LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1
Lisätiedot1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet.
BM0A5700 - Integraalimuunnokset Harjoitus 1 1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet. a Piste z 1 i. Ympyrä z 1 i. Avoin kiekko z 1 i
Lisätiedot8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa
8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen
LisätiedotIntegroimistekniikkaa Integraalifunktio
. Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri
LisätiedotMat-1.1331 Matematiikan pk KP3-i - kertaus
Mat-.33 Matematiikan pk KP3-i - kertaus J.v.Pfaler TKK 24. lokakuuta 2007 Kurssin ensimmäisen puoliskon selkäranka on Kompleksitason funktioiden teoria, sisältäen analyyttiset funktiot, auchy integraali
LisätiedotRatkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1
1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin
LisätiedotKompleksinen Laplace-muunnos
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Päivikki Mäki Kompleksinen Laplace-muunnos Informaatiotieteiden yksikkö Matematiikka Kesäkuu 212 Tampereen yliopisto Informaatiotieteiden yksikkö MÄKI, PÄIVIKKI:
LisätiedotJohdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
LisätiedotMaksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta
Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
Lisätiedot5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z
5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon
LisätiedotPyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty
Pyramidi Integraalilaskenta harjoituskokeiden ratkaisut sivu 98 Päivitetty.5. Pyramidi Harjoituskokeet 6.5.7 Ensimmäinen julkaistu versio..7.7 Korjattu ulkoasua ja painovirheitä..8.7 Täydennetty ratkaisuja
Lisätiedot7. Tasaisen rajoituksen periaate
18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin
Lisätiedot4.3.7 Epäoleellinen integraali
Esimerkki 4.3.16. (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään
LisätiedotMellin-muunnos ja sen sovelluksia
Mellin-muunnos ja sen sovelluksia LuK-tutkielma Eetu Leinonen 25645 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 28 Sisältö Johdanto 2 Esitiedot 2 2 Mellin-muunnos 3 2. Muunnoksen perusominaisuuksia................
LisätiedotOrtogonaaliprojektio äärellisulotteiselle aliavaruudelle
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka
LisätiedotHY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
LisätiedotKonvergenssilauseita
LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n
Lisätiedot13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
LisätiedotRIEMANNIN KUVAUSLAUSE. Sirpa Patteri
RIEMANNIN KUVAUSLAUSE Sirpa Patteri 2 RIEMANNIN KUVAUSLAUSE Johdanto Georg Bernhard Riemann (826-866) esitti kuvauslauseen väitöskirjassaan vuonna 85. Hän käytti todistuksessaan Dirichlet n periaatetta,
Lisätiedot2. Funktiot. Keijo Ruotsalainen. Mathematics Division
2. Funktiot Keijo Ruotsalainen Mathematics Division Kompleksimuuttujan funktio Kompleksimuuttujan z kompleksiarvoinen funktio f(z) voi olla yksiarvoinen tai moniarvoinen, esimerkiksi f(z) = e z f(z) =
LisätiedotDerivaattaluvut ja Dini derivaatat
Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo
LisätiedotLukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos
Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 5. joulukuuta 2016 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujonot Lukujonot Z-muunnoksen ominaisuuksia
LisätiedotKompleksianalyysi viikko 3
Kompleksianalyysi viikko 3 Jukka Kemppainen Mathematics Division Derivaatta Oletetaan seuraavassa, että joukko A C on avoin, eli jokaista z 0 A kohti on olemassa sellainen ǫ > 0, että z z 0 < ǫ z A. f
LisätiedotJYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali
JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen
Lisätiedotz-muunnos ja differenssiyhtälöt
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Martti Helenius z-muunnos ja differenssiyhtälöt Informaatiotieteiden yksikkö Matematiikka Joulukuu 204 Tampereen yliopisto Informaatiotieteiden yksikkö HELENIUS,
Lisätiedotx 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
Lisätiedot1 Analyyttiset funktiot
Analyyttiset funktiot. Kompleksimuuttujan kompleksiarvoinen funktio Olkoot A ja B kompleksitason C osajoukkoja. Kuvausta f : A B sanotaan kompleksimuuttujan kompleksiarvoiseksi funktioksi. Usein on B C..Vakiokuvaus.
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy
Lisätiedotz z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0
TKK, Matematiian laitos v.pfaler/pursiainen Mat-.33 Matematiian perusurssi KP3-i sysy 2007 Lasuharjoitus 4 viio 40 Tehtäväsarja A viittaa aluviion ja L loppuviion tehtäviin. Valmistauu esittämään nämä
Lisätiedot2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu
2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.
Lisätiedoty x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1
1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y
Lisätiedotk=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu
LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja
LisätiedotMATP153 Approbatur 1B Harjoitus 6 Maanantai
. (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
LisätiedotKompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
LisätiedotLukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos
Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 1. joulukuuta 2015 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujono Lukujono on diskreetti funktio
Lisätiedot(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
LisätiedotFourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7
MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet
LisätiedotMS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,
LisätiedotJATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.
JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva
Lisätiedotinfoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1
infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.
Lisätiedot0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
LisätiedotTehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1
Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla
LisätiedotRatkaisuehdotus 2. kurssikoe
Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x
LisätiedotPerustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.
Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa
Lisätiedot1.4 Funktion jatkuvuus
1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,
LisätiedotTäydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
LisätiedotVastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen
Vastausehdotukset analyysin sivuainekurssin syksyn 015 1. välikokeeseen Heikki Korpela November 1, 015 1. Tehtävä: funktio f : R R toteuttaa ehdot ax, kun x 1 f(x) x + 1, kun x < 1 Tutki, millä vakion
LisätiedotKierrosluku ja yhdesti yhtenäiset alueet
Kierrosluku ja yhdesti yhtenäiset alueet Kimmo Luhtavaara Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2011 Sisältö Johdanto 1 Luku 1. Cauchyn lauseen yleinen
LisätiedotKompleksiluvut Kompleksitaso Kompleksifunktiot ja kuvaukset Funktioiden raja-arvo, jatkuvuus ja derivaatta Eräitä kompleksifun.
17. lokakuuta 2016 Kompleksiluvut Kompleksiluku Kompleksiluku z on järjestetty reaalilukupari missä x ja y ovat reaalilukuja. z = (x, y), Lukuparin reaaliosa on x ja imaginaariosa on y. Lukuparin reaaliosa
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy 215 1 / 24 Skalaarikenttä Olkoon R
LisätiedotMS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit
MS-A22 i erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit Antti Rasila Aalto-yliopisto Syksy 25 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 25 / 8 Tasointegraali Olkoon R
LisätiedotFunktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
LisätiedotLUKU 6. Mitalliset funktiot
LUKU 6 Mitalliset funktiot Määritelmistä 3. ja 3.0 seuraa, että jokainen Lebesgue-integroituva funktio on porrasfunktiojonon raja-arvo melkein kaikkialla. Kuitenkin moni tuttu funktio ei ole Lebesgue-integroituva.
LisätiedotRatkaisuehdotus 2. kurssikokeeseen
Ratkaisuehdotus 2. kurssikokeeseen 4.2.202 (ratkaisuehdotus päivitetty 23.0.207) Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin
LisätiedotKOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 3. Kompleksinen derivointi 3.1. Määritelmä. Olkoon G kompleksitason C epätyjä osajoukko. Olkoon z 0 joukon G sisäpiste. Funktio f : G C on kompleksisesti
LisätiedotHarjoitus 1. Tehtävä 1. Malliratkaisut. f(t) = e (t α) cos(ω 0 t + β) L[f(t)] = f(t)e st dt = e st t+α cos(ω 0 t + β)dt.
Harjoitus Malliratkaisut Tehtävä L[f(t)] ˆ f(t) e (t α) cos(ω t + β) f(t)e st dt ˆ e st t+α cos(ω t + β)dt cos(ω t + β) 2 (ej(ωt+β) + e j(ωt+β) ) L[f(t)] 2 eα 2 ˆ ˆ e st t+α (e j(ω t+β) + e j(ω t+β) )
LisätiedotFunktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
LisätiedotKompleksianalyysi ja integraalimuunnokset. Seppo Hassi
Kompleksianalyysi ja integraalimuunnokset Seppo Hassi Syksy 6 iii Esipuhe Tämä on Kompleksianalyysi ja integraalimuunnokset -kurssille laadittu opetusmoniste, jonka sisältö perustuu Vaasan yliopistossa
LisätiedotGaussin lause eli divergenssilause 1
80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin
Lisätiedoty = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
LisätiedotKonformikuvauksista. Lotta Jokiniemi Ohjaaja: Jouni Parkkonen. Sivuainetutkielma
Konformikuvauksista Lotta Jokiniemi 23.5.2016 Ohjaaja: Jouni Parkkonen f z 0 B D 0 Sivuainetutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2016 i Tiivistelmä Jokiniemi, Lotta
Lisätiedot3. Reaalifunktioiden määräämätön integraali
50 3. Reaalifunktioiden määräämätön integraali Integraalifunktio Derivoinnin käänteistoimituksena on vastata kysymykseen "Mikä on se funktio, jonka derivaatta on f?" Koska vakion derivaatta 0, havaitaan
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
LisätiedotKuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
LisätiedotTehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat.
JOHDATUS LUKUTEORIAAN syksy 017) HARJOITUS 6, MALLIRATKAISUT Tehtävä 1. Etsi Pellin yhtälön x Dy = 1 pienin positiivinen ratkaisu kun D {,, 5, 6, 7, 8, 10}. Ratkaisu 1. Tehtävässä annetuilla D:n arvoilla
Lisätiedot5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
Lisätiedot