Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Koko: px
Aloita esitys sivulta:

Download "Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13"

Transkriptio

1 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen ja niiden laskutoimitusten konstruointi ei kuulu tälle kurssille, mutta viimeiseen kohtaan palataan lyhyesti myöhemmin. Reaalilukujen aksiomat 1 (eli tavalliset laskusäännöt) oletetaan tunnetuiksi; poikkeuksena Täydellisyysaksioma, josta kohta lisää. Lisäksi Cauchy-jonoja käsitellään myöhemmin yleisemmässä tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 / 13 1 fi.wikipedia.org/wiki/reaaliluku

2 Jonot Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N = {1, 2, 3,... }. Merkitään (a n ) = (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Myöhemmin kurssilla käsitellään yleisemmin metrisen avaruuden jonoja ja funktiojonoja. Lukujono täsmällinen tulkinta on funktio f : N R, jolle f (n) = a n. Jonon indeksöinti voi alkaa myös jostakin muusta arvosta kuin 1. Jos indeksin alkuarvo ei ole tärkeä tai tilanne on muuten selvä, voidaan käyttää merkintää (a n ). 2 / 13

3 Ominaisuuksia Jonojen ominaisuuksia: Lukujono (a n ) on ylhäältä rajoitettu, jos on olemassa sellainen C R, että a n C kaikilla n alhaalta rajoitettu, jos on olemassa sellainen c R, että a n c kaikilla n rajoitettu, jos se on sekä ylhäältä että alhaalta rajoitettu nouseva, jos a n+1 a n kaikilla n laskeva, jos a n+1 a n kaikilla n monotoninen, jos se on nouseva tai laskeva 3 / 13

4 Jonon suppeneminen Määritelmä. Lukujono (a n ) suppenee kohti raja-arvoa L, jos lausekkeen a n L arvo lähestyy nollaa, kun n ; täsmällisemmin: Jokaista ε > 0 vastaa sellainen indeksi n ε N, että a n L < ε aina kun n n ε. Tällöin merkitään lim a n = L. n Jos lukujono ei suppenee, niin se hajaantuu. Idea: Mitä pienempi ε, sitä suurempi n ε tarvitaan. Piirrä kuvio! 4 / 13

5 Yleisiä tuloksia Suppeneva jono on rajoitettu. Suppiloperiaate: Jos a n b n c n jostakin indeksistä alkaen ja lim a n = lim c n = L, n n niin jono (b n ) suppenee ja lim n b n = L. Geometrinen jono (q n ) suppenee, jos suhdeluku 1 < q 1, jolloin sen raja-arvo on joko 0 tai 1. Muissa tapauksissa geometrinen jono hajaantuu. 5 / 13

6 Laskusääntöjä 6 / 13 Jos lim n a n = a, lim n b n = b ja c R, niin lim (a n + b n ) = a + b, n lim (a nb n ) = ab, n lim (c a n) = c a (edellisen erikoistapaus), n lim (a n/b n ) = a/b, jos b 0 (jolloin myös b n 0 jostakin n indeksistä alkaen). Perustelu: Ensimmäinen ja kolmas kaava ovat suoraviivaisia. Toisen kohdalla käytetään epäyhtälöä a n b n ab = (a n b n a n b) + (a n b ab) a n b n b + a n a b ja sitä, että a n C jollakin vakiolla C. Tämän jälkeen väite seuraa suppiloperiaatteesta (tai helposti suoraankin). Neljännen kaavan kohdalla osoitetaan aluksi, että 1/b n 1/b, ja käytetään sen jälkeen tulokaavaa.

7 supremum ja infimum Olkoon A R ylhäältä rajoitettu. Reaaliluku M R on joukon A pienin yläraja eli supremum, jos (i) M on joukon A yläraja, eli a M kaikilla a A; (ii) M M kaikille joukon A ylärajoille M. Tällöin merkitään sup A = M. Jos A ei ole ylhäältä rajoitettu, niin merkitään sup A =. Vastaavalla tavalla määritellään suurin alaraja eli infimum inf A. Rajoitetulle joukolle A on siis [inf A, sup A] pienin suljettu väli, joka sisältää joukon A. Jos sup A A on äärellinen, niin max A = sup A on joukon A suurin alkio. Jos inf A A on äärellinen, niin min A = inf A on joukon A pienin alkio. 7 / 13

8 sup/inf-sovelluksia Supremumin ja infimumin merkitys tulee näkyville sellaisissa tilanteissa, joissa maksimia ja minimiä ei ole olemassa. Esimerkkejä: Parametrisoidun käyrän kaarenpituus. (Kts. luentomoniste) Rajoitetun funktion Riemann-integraali. (Kts. luentomoniste) Joukon läpimitta, joukkojen välinen etäisyys (myöhemmin tällä kurssilla) 8 / 13

9 Täydellisyysaksioma 9 / 13 Reaalilukujen joukon erottaa rationaalilukujen joukosta Q Täydellisyysaksioma, eli jokin seuraavista keskenään yhtäpitävistä ominaisuuksista: (i) Jos A R on ylhäältä rajoitettu joukko, niin sillä on pienin yläraja sup A R. (ii) Nouseva ja ylhäältä rajoitettu reaalilukujono (a n ) n N suppenee kohti raja-arvoa L R. (iii) Jos (I n ) n N on pienenevä jono (inkluusion suhteen, eli I n+1 I n kaikilla n) suljettuja välejä I n R, niin leikkaus I n. n=1 Todistus (i) (ii) (iii) (i) luentomonisteessa. Yhtäpitävä versio (ii) : Laskeva ja alhaalta rajoitettu reaalilukujono (b n ) n N suppenee. Idea: b n = a n.

10 Reaaliluku Kohdat (ii) ja (ii) tarjoavat mahdollisuuden reaaliluvun täsmälliseen määritelmään: Reaaliluku n,d 1 d 2..., jossa kokonaisosa n on kokonaisluku ja desimaalit d 1, d 2, {0, 1, 2,..., 9}, on monotonisen rationaalilukujonon raja-arvo. (n; n,d 1 ; n,d 1 d 2 ; n,d 1 d 2 d 3,... ) 10 / 13

11 Irrationaaliluvut 11 / 13 Suurin osa (kts. loppu) reaaliluvuista x R on irrationaalisia eli niitä ei voida esittää muodossa x = p/q, p Z, q N. Tunnetuimpia esimerkkejä ovat 2. Idea: Jos 2 = p/q, niin p, q ovat parillisia RR. Neperin luku e. Idea: Taylor-polynomin virhearvio (L. Euler 1737). π 3,14... (M. Lambert 1761) Katso esim. Tämän kurssin kannalta tärkeimmät tulokset ovat: Kahden eri reaaliluvun välissä on aina rationaaliluku (ja itse asiassa äärettömän monta) Kahden eri reaaliluvun välissä on aina irrationaaliluku (ja itse asiassa äärettömän monta) Todistukset luentomonisteessa.

12 Algebralliset luvut (oheislukemista) Kaikki rationaaliluvut ovat myös algebrallisia: Rationaaliluku x = p/q toteuttaa konaislukukertoimisen polynomiyhtälön qx p = 0. Vastaavasti irrationaaliluku x = 2 toteuttaa yhtälön x 2 2 = 0. Sen sijaan e ja π eivät ole algebrallisia vaan transkendenttisia lukuja: ne eivät ole minkään kokonaislukukertoimisen polynomin nollakohtia! (e: C. Hermite 1873; π: F. von Lindemann 1882) Suurin osa reaaliluvuista on transkendenttisia, mutta yksittäisen luvun osoittaminen sellaiseksi on yleensä hyvin hankalaa. Esimerkkejä: e π : A.O. Gelfond : T. Schneider / 13

13 Ylinumeroituvuus Reaalilukujen joukko on ylinumeroituva: Ei ole olemassa surjektiota f : N R; ts. mikään reaalilukujono ei voi sisältää kaikkia reaalilukuja. Todistus: Cantorin diagonaalimenetelmä, kts. luentomoniste. 13 / 13

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste, Reaaliluvuista Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät tiivistelmän reaaliluvuista ja niihin liittyvistä käsitteistä.

Lisätiedot

MS-C1540 Euklidiset avaruudet

MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet III-periodi, kevät 2016 Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu 1 / 30 Euklidiset

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ).

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Jonot Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Lukujonon täsmällinen tulkinta on funktio f : N R, jolle f

Lisätiedot

Euklidiset avaruudet. MS-C1540 Euklidiset avaruudet. Tavoitteet. Perusongelma. Esimerkki. Solmussa vai ei? Linkissä vai ei?

Euklidiset avaruudet. MS-C1540 Euklidiset avaruudet. Tavoitteet. Perusongelma. Esimerkki. Solmussa vai ei? Linkissä vai ei? MS-C1540 Euklidiset avaruudet Euklidiset avaruudet MS-C1540 Euklidiset avaruudet III-periodi, kevät 2017 Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

1 Reaaliset lukujonot

1 Reaaliset lukujonot Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot

Lisätiedot

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b. 2 Lukujonot 21 Lukujonon määritelmä 16 Fibonacci n luvut määritellään ehdoilla Osoita: 17 a 1 = a 2 = 1; a n+2 = a n+1 + a n, n N a n = 1 [( 1 + ) n ( 2 1 ) n ] 2 Olkoon a 1 = 3, a 2 = 6, a n+1 = 1 n (na

Lisätiedot

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,

Lisätiedot

Sarjojen suppenemisesta

Sarjojen suppenemisesta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Terhi Mattila Sarjojen suppenemisesta Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Raja-arvot ja jatkuvuus

Raja-arvot ja jatkuvuus Raja-arvot ja jatkuvuus 30. lokakuuta 2014 10:11 Suoraa jatkoa kurssille Johdatus reaalifunktioihin (MATP311) (JRF). Oheislukemista: Kilpeläinen: Analyysi 1, luvut 3-6, Spivak: Calculus, luvut 5-8, 22,

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

Luku 2. Jatkuvien funktioiden ominaisuuksia.

Luku 2. Jatkuvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 21 Risto Silvennoinen Luku 2. Jatkuvien funktioiden ominaisuuksia. Jatkossa väli I tarkoittaa jotakin seuraavista reaalilukuväleistä: ( ab, ) = { x a< x< b} = { x a

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 1. ALUKSI. Joukko-oppia

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 1. ALUKSI. Joukko-oppia DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 1. ALUKSI Joukko-oppia Lyhenteitä ja merkintöjä. A = B A:sta seuraa B. Implikaatio. A B A ja B yhtäpitävät. Ekvivalenssi.

Lisätiedot

Funktiojonon tasainen suppeneminen

Funktiojonon tasainen suppeneminen TAMPEREEN YLIOPISTO Pro gradu -tutkielma Taina Saari Funktiojonon tasainen suppeneminen Matematiikan ja tilastotieteen laitos Matematiikka Elokuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen

Lisätiedot

Reaalilukujonoista ja niiden merkityksestä kouluopetuksessa

Reaalilukujonoista ja niiden merkityksestä kouluopetuksessa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Anna-Kaisa Torvinen Reaalilukujonoista ja niiden merkityksestä kouluopetuksessa Matematiikan ja tilastotieteen laitos Matematiikka Syyskuu 2010 Tampereen yliopisto

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Analyysi 1. Pertti Koivisto

Analyysi 1. Pertti Koivisto Analyysi Pertti Koivisto Syksy 204 Alkusanat Tämä moniste on tarkoitettu oheislukemistoksi Tampereen yliopistossa pidettävälle kurssille Analyysi. Monisteen tavoitteena on tukea luentojen seuraamista,

Lisätiedot

Johdatus matemaattisen analyysin teoriaan

Johdatus matemaattisen analyysin teoriaan Kirjan Johdatus matemaattisen analyysin teoriaan harjoitustehtävien ratkaisuja 18. maaliskuuta 2005 Ratkaisut ovat laatineet Jukka Ilmonen ja Ismo Korkee. Ratkaisuissa olevista mahdollisista virheistä

Lisätiedot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot Lukujonon raja-arvo 1/7 Sisältö Esimerkki lukujonon raja-arvosta Lukujonossa a 1,a 2,a 3,... (jossa on äärettömän monta termiä) voivat luvut lähestyä jotakin arvoa, kun jonossa edetään yhä pidemmälle.

Lisätiedot

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen. Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering

Lisätiedot

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε.

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε. Outoja funktioita Differentiaalilaskentaa harjoitettiin miltei 200 vuotta ennen kuin sen perustana olevat reaaliluvut sekä funktio ja sen raja-arvo määriteltiin täsmällisesti turvautumatta geometriseen

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava

Lisätiedot

Analyysi A. Raja-arvo ja jatkuvuus. Pertti Koivisto

Analyysi A. Raja-arvo ja jatkuvuus. Pertti Koivisto Analyysi A Raja-arvo ja jatkuvuus Pertti Koivisto Kevät 207 Alkusanat Tämä moniste on tarkoitettu oheislukemistoksi Tampereen yliopistossa pidettävälle kurssille Analyysi A. Monisteen tavoitteena on tukea

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 3 Supremum ja infimum Tarkastellaan aluksi avointa väliä, ) = { : < < }. Tämä on joukko, johon kuuluvat kaikki reaaliluvut miinus yhdestä yhteen. Kuitenkaan päätepisteet

Lisätiedot

YHDEN REAALIMUUTTUJAN ANALYYSIN PERUSTEET. Tero Kilpeläinen

YHDEN REAALIMUUTTUJAN ANALYYSIN PERUSTEET. Tero Kilpeläinen YHDEN REAALIMUUTTUJAN ANALYYSIN PERUSTEET Tero Kilpeläinen Luentomuistiinpanoja keväältä 2014 5. maaliskuuta 2015 Sisältö 1. Johdanto 1 2. Reaalilukujen jatkumo 2 2.1. Merkintöjä.................................

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Joukot metrisissä avaruuksissa

Joukot metrisissä avaruuksissa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saara Lahtinen Joukot metrisissä avaruuksissa Informaatiotieteiden yksikkö Matematiikka Elokuu 2013 Sisältö 1 Johdanto 1 2 Metriset avaruudet 1 2.1 Tarvittavia

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Supremum ja inmum Tarkastellaan aluksi avointa väliä, Tämä on joukko, johon kuuluvat kaikki reaaliluvut miinus yhdestä yhteen Kuitenkaan päätepisteet eli luvut ja

Lisätiedot

Reaaliluvut 1/7 Sisältö ESITIEDOT:

Reaaliluvut 1/7 Sisältö ESITIEDOT: Reaaliluvut 1/7 Sisältö Reaalilukujoukko Reaalilukujoukkoa voidaan luonnollisimmin ajatella lukusuorana, molemmissa suunnissa äärettömyyteen ulottuvana suorana, jonka pisteet ja reaaliluvut vastaavat toisiaan:

Lisätiedot

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1 FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi, kurssikerta 5 Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään

Lisätiedot

Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011

Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011 Neljännen viikon luennot Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuun 2.1. Esko Turunen esko.turunen@tut.fi Funktion y = f (x) on intuitiivisesti

Lisätiedot

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

Yleiset ketjumurtoluvut ja piin irrationaalisuus

Yleiset ketjumurtoluvut ja piin irrationaalisuus Yleiset ketjumurtoluvut ja piin irrationaalisuus Pro gradu -tutkielma Jonna Luokkanen 22452 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 24 Sisältö Johdanto 2 Johdatus ketjumurtolukuihin 2 Ketjumurtoluvun

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään

Lisätiedot

MS-A010X Differentiaali- ja integraalilaskenta 1

MS-A010X Differentiaali- ja integraalilaskenta 1 MS-A010X Differentiaali- ja integraalilaskenta 1 Pekka Alestalo Aalto-yliopisto 24.10.2016 Kiitokset Riikka Kortteelle, Jarmo Maliselle ja kurssien opiskelijoille painovirheiden korjauksista. Sisältö Nämä

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

MS-A010X Differentiaali- ja integraalilaskenta 1

MS-A010X Differentiaali- ja integraalilaskenta 1 MS-A010X Differentiaali- ja integraalilaskenta 1 Pekka Alestalo Aalto-yliopisto 24.10.2016 Kiitokset Riikka Kortteelle, Jarmo Maliselle ja kurssien opiskelijoille painovirheiden korjauksista. Sisältö Nämä

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III 802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on

Lisätiedot

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

Osa 5. lukujonot ja sarjat.

Osa 5. lukujonot ja sarjat. Osa 5. lukujonot ja sarjat. Summamerkintä Kurssilla on jo tullut vastaan ns. summamerkintä (kreikkalainen iso sigma): n k=1 Indeksin loppuarvo Indeksi jonka suhteen summataan a k =a 1 +a +a 3 +...+a n

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

Tällöin on olemassa reaalilukuja c, jotka kuuluvat jokaiselle välille I n = [a n, b n ]. Toisin sanoen a n c b n kaikilla n.

Tällöin on olemassa reaalilukuja c, jotka kuuluvat jokaiselle välille I n = [a n, b n ]. Toisin sanoen a n c b n kaikilla n. Analyysi I ja II lisämateriaalia HAARUKOINTI Tässä käsitellään kootusti sellaisia differentiaali- ja integraalilaskennan kurssin kysymyksiä, joissa joudutaan syventymään lukusuoran hienovaraisimpiin ominaisuuksiin.

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita? Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)

Lisätiedot

LUKU 6. Mitalliset funktiot

LUKU 6. Mitalliset funktiot LUKU 6 Mitalliset funktiot Määritelmistä 3. ja 3.0 seuraa, että jokainen Lebesgue-integroituva funktio on porrasfunktiojonon raja-arvo melkein kaikkialla. Kuitenkin moni tuttu funktio ei ole Lebesgue-integroituva.

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)

Lisätiedot

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

1 Kompleksitason geometriaa ja topologiaa

1 Kompleksitason geometriaa ja topologiaa 1 Kompleksitason geometriaa ja topologiaa Tavallisessa analyyttisessä geometriassa käyrien yhtälöt esitetään x-koordinaattien ja y-koordinaattien avulla, esimerkiksi y = 1 x esittää tasasivuista hyperbeliä,

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Funktion approksimointi

Funktion approksimointi Funktion approksimointi Päivikki Vesterinen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2015 Tiivistelmä: Päivikki Vesterinen, Funktion approksimointi (engl.

Lisätiedot

MS-A010X Di erentiaali- ja integraalilaskenta 1

MS-A010X Di erentiaali- ja integraalilaskenta 1 MS-A010X Di erentiaali- ja integraalilaskenta 1 Pekka Alestalo Aalto-yliopisto 24.10.2016 Kiitokset Riikka Kortteelle, Jarmo Maliselle ja kurssien opiskelijoille painovirheiden korjauksista. Sisältö Nämä

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain

Lisätiedot

Alkusanat korjattuun 2. painokseen

Alkusanat korjattuun 2. painokseen Alkusanat Kirja on suunniteltu käytettäväksi oppimateriaalina Helsingin ja Turun yliopistojen kursseilla Analyysi I ja II. Se soveltuu materiaaliksi myös muiden yliopistojen ensimmäisen vuoden matemaattisen

Lisätiedot

Sarjat ja differentiaaliyhtälöt

Sarjat ja differentiaaliyhtälöt Sarjat ja differentiaaliyhtälöt Johdanto Tämä luentomoniste on tarkoitettu korvaamaan luentomuistiinpanoja Sarjat ja differentiaaliyhtälöt-kurssilla. Tämä ei kuitenkaan ole oppikirja, mikä tarkoittaa sitä,

Lisätiedot

Vastauksia. Topologia Syksy 2010 Harjoitus 1

Vastauksia. Topologia Syksy 2010 Harjoitus 1 Topologia Syksy 2010 Harjoitus 1 (1) Olkoon X joukko ja (T j ) j J perhe X:n topologioita. Osoita, että T = {T j : j J} on X:n topologia. (2) Todista: Välit [a, b) muodostavat R 1 :n erään topologian kannan.

Lisätiedot

(2n 1) = n 2

(2n 1) = n 2 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

ANALYYSI 2. Camilla Hollanti. Tampereen yliopisto 2010. x 3. a x 1. x 4 x 11. x 2

ANALYYSI 2. Camilla Hollanti. Tampereen yliopisto 2010. x 3. a x 1. x 4 x 11. x 2 ANALYYSI 2 Camilla Hollanti _ M M a x x 2 x 3 x 4 x b Tampereen yliopisto 200 Sisältö. Preliminäärejä 3 2. Riemann-integraali 5 2.. Pinta-alat ja porrasfunktiot....................... 5 2... Pinta-ala

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

13.3. Transkendenttisuudesta. 14. Juurikunnat Määritelmä ja olemassaolo.

13.3. Transkendenttisuudesta. 14. Juurikunnat Määritelmä ja olemassaolo. 13.3. Transkendenttisuudesta. Luvun todistamiseksi algebralliseksi riittää löytää polynomi, jonka juuri kyseinen luku on. Transkendenttisuuden todistaminen on sen sijaan työläämpää. Jotkut tapaukset ovat

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

Algebrallisista ja transkendenttisista luvuista

Algebrallisista ja transkendenttisista luvuista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Leo Majaranta Algebrallisista ja transkendenttisista luvuista Informaatiotieteiden yksikkö Matematiikka Toukokuu 2011 2 Tampereen yliopisto Informaatiotieteiden

Lisätiedot

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00

Metriset avaruudet. Erno Kauranen. 1 Versio: 10. lokakuuta 2016, 00:00 1 Metriset avaruudet Erno Kauranen 1 Versio: 10. lokakuuta 2016, 00:00 1. Sisätulo ja normiavaruus................................................. 3 2. Metrinen avaruus........................................................

Lisätiedot

Analyysi I. Visa Latvala. 26. lokakuuta 2004

Analyysi I. Visa Latvala. 26. lokakuuta 2004 Analyysi I Visa Latvala 26. lokakuuta 2004 34 Sisältö 3 Reaauuttujan funktiot 35 3.1 Peruskäsitteitä................................. 35 3.2 Raja-arvon määritelmä............................. 43 3.3 Raja-arvon

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

Potenssisarja, suppenemissäde. Potenssisarja ja derivointi. Potenssisarja ja analyyttiset funktiot. Potenssisarja ja integrointi.

Potenssisarja, suppenemissäde. Potenssisarja ja derivointi. Potenssisarja ja analyyttiset funktiot. Potenssisarja ja integrointi. Matematiikan peruskurssi KP3 I OSA 4: Taylorin sarja, residymenetelmä A.Rasila J.v.Pfaler 26. syyskuuta 2007 Kompleksista sarjoista Jono, suppeneminen, summasarja Potenssisarja, suppenemissäde ja analyyttiset

Lisätiedot

Poistumislause Kandidaatintutkielma

Poistumislause Kandidaatintutkielma Poistumislause Kandidaatintutkielma Mikko Nikkilä 013618832 26. helmikuuta 2011 Sisältö 1 Johdanto................................... 2 2 Olemassaolon ja yksikäsitteisyyden historiaa............ 3 3 Esitietoja..................................

Lisätiedot

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut 0. Kertausta Luvut, lukujoukot (tavalliset) N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut Rationaaliluvut n/m, missä n,m Z Reaaliluvut R muodostavat jatkumon fysiikan lukujoukko Kompleksiluvut C:z

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Määritelmä 2.5. Lause 2.6.

Määritelmä 2.5. Lause 2.6. Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan

Lisätiedot