olevien molekyylien lukumäärään. Ominaistilojen lukumäärä (degeneraatio Molekyylin värähtelyn ominaiskulmataajuus on (ks. moniste, s.
|
|
- Jarno Leppänen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 S-11.5, Fysiikka III (ES) II väliko CN-kaasu on trmodynaamisssa tasapainotilassa lämpötilassa, K. a) Määrää värähtlytaajuus CN-molkyylin sidoksn voimavakion 1,6 1 N/m avulla. b) Määritä n = 1 olvin molkyylin lukumäärän suhd nsimmäisllä virittyllä värähtlytasolla ( ) alimmalla värähtlytasolla ( n = ) olvin molkyylin lukumäärään. Ominaistilojn lukumäärä (dgnraatio g i ) on 1 kaikill värähtlytasoill. Hiiln atomimassa on 6 amu ja µ = m m / m + m. typn 7 amu ja värähtlyn suhtllinn massa ( ) C N C N Yli puolt koksn osallistujista i ollut tähän thtävään yhtä kaavaa nmpää jaksanut. Siitä yhdstä kaavasta hrui yksi pist jos s oli oikin. oissta kaavasta toinn pist ja lukuarvosta kolmas (myös oikilla arvoilla lasktuista). Mihityslukujn suhtn laskmisssa sama juttu, kaavoista ja tulokssta kolmas pist. Suositltava thtävä vilkaistavaksi nnn fysiikka IV kurssin aloittamista! Hiiln ja typn todllist atomimassat ovat titnkin 1 amu ja 1 amu (i 6 ja 7) tästä i toki rangaistu arvostlussa! CN, γ =1,6 1 N/m, =, K, g i =1 i, m c = 1,1 u, m N = 1,1 u. Molkyylin värähtlyn ominaiskulmataajuus on (ks. monist, s. 7) γ mm 1 ω o =,missäµ = on molkyylin rdusoitu massa. CN-molkyylill saadaan µ m + m ( m + m ) 1 γ C N 11 ωo =, mm C N s Värähtlytilan mihitysluku on N E ( i 1 i k N + ) Θv ωo ni = gi = gi, missä Θ v =! Z Z k vib vib on värähtlyn karaktristinn v lämpötila ja Zvib = on värähtlyyn liittyvä partitiofunktio. Laskttassa ri v 1 värähtlytilojn mihityslukujn suhdtta samassa kaasussa ja samassa lämpötilassa Z vib supistuu samoin kuin molkyylin lukumäärä N. Karaktristinn lämpötila CN:ll on Θ,975 1 K. v Kysytty mihityslukujn suhd on n n i+ 1 i ( i ) Θv v,9751, = = 5,88 1. ( i+ 1) Θv. Sylintrissä olva yksiatominn idaalikaasu on K lämpötilassa,,7 m tilavuudssa ja, baarin painssa. Kaasu laajn adiabaattissti, kunns sn tilavuus on
2 1, m. Suraavaksi kaasu puristtaan isotrmissti alkupräisn,7 mtilavuutn. Lopuksi pain nosttaan isokorissti, bar:iin. Lask kaasun tkmä työ kirtoprosssissa ja osoita laskmalla ri osaprosssihin liittyvät lämmöt, ttä kaasun tkmä työ on yhtä suuri kuin kaasun kirtoprosssin aikana saama lämpömäärä. äysin oikasta thtävästä 6, pikkuvikaissta (väärät arvot tuloksn mutta kuitnkin W = Q todistttu) tai 5. ässä vaihssa kuva prosssista toi plussapistitä. Oikat kaavat utti numroita tai pikkasn hittävät kaavat numroilla ja pohdisklulla toivat pistttä. sai jos oli lähs kaikki kaavat ja prosssi hallussa mutta muutn hukassa ja 1 jos noin puolt kaavoista oli oikin tai alku ds jonkinlainn. 1 = K, V1 =,7m, p1 =,bar; V =1,m; V = V1 =,7m; p = p1 =,bar. 1 : adiabaattinn prosssi, : isotrminn prosssi, 1: isokoorinn prosssi. Yksiatominn idaalikaasu: γ =5/. 1 : Q 1 = 1. pääsäännöstä: U = Q1 W1 W1 = U = ν R( 1 ) Lasktaan moolimäärä tilanyhtälöstä: 5 N, 1,7 m pv 1 1 ν = m 56,1 mol. R J 1 8,1 K mol K Idaalikaasun adiabaattisll prosssill γ γ 1 5 pv 1 1 = pv γ 1 V1,7 pv 1 1 pv = 1 K 9, K V 1,. = 1 J W1 56,1 mol 8,1 ( 9, ) K 6,9 1 J molk : = vakio, idaalikaasu U=. Isotrmisll prosssill V J,7 W = ν R ln 56,1 mol 8,1 9, K ln 5,68 1 J. V mol K 1,
3 U = Q W = Q = W = 5,68 1 J 1: V = W1 = Q1 = U1 U = ν R( 1 ) = ν R( 1 ), sillä = (isotrminn prosssi ). J Q1 56,1 mol 8,1 ( 9,) K 6,9 1 J. molk Kaasun kirtoprosssissa tkmä työ: ( ) W = W1 + W + W1 6,9 5, J 1,7 kj Kaasun kirtoprosssin aikana saama lämpö: ( ) Q= Q1 + Q + Q1 5,68 + 6,9 1 J 1,7 kj = W. Kaasun saaman lämmön ja tkmän työn yhtäsuuruudn näk titnkin yo. yhtälöistä suoraankin.. Jääkaapin sisälämpötila on 5 C ja huonilman lämpötila C. Jääkaappiin 6 huonilmasta virtaava lämpömäärä on vuorokaudssa, 1 J. Jääkaappi prustuu kääntisn Carnot'n konsn. Jos kon saavuttaa 6% torttissta thokrtoimsta, niin mikä on kaapin ottama sähkötho? Jääkaappi on jäähdytyskon. Varsin suuri osa oli lasknut thtävää lämpöpumppuna. htävä on pistyttty sitn, ttä lämpöpumppuna laskmissta sakottaan kaksi pistttä li maksimi tällöin on nljä. Pistitä sai yhdn tilantn ymmärtämisstä li oikin olvasta kuvasta ja/tai tkstistä jääkaappi on jäähdytyskon tms., joita i kuitnkaan vaadittu jos thtävä oli muutn oikin. oisn pistn sai yhdstä lähs oikin olvasta thtävässä tarvittavasta kaavasta ja kolmannn skä nljännn järkvästä jatkosta. Kuudn pistn lasku on täysin oikin ja viidn pistn laskussa on jokin laskuvirh tai sim. vakio puuttuu. Mikäli thokrroin ja hyötysuhd oli sotkttu ksknään, sakotttiin yksi pist. Ylmmän lämpövaraston lämpötila on Y = 9.15 K ja almman lämpövaraston = K. A Kääntistä Carnot-prosssia totuttavan lämpöpumpun thokrroin on siis Y ε L = Y A ja jäähdytyskonn thokrroin vastaavasti (ks. lunnot)
4 A εj = ( εl 1) = = 18,5. Y A odllinn thokrroin on 6 % tästä arvosta li 11,1. Lämpövuoto on, MJ, jotn tarvittava sähkön määrä on E=, MJ/11,1 =,7 MJ. arvittava tho on siis,7 MJ P = = 6 6 s 1W ========.. Alumiinitangossa vallits 7 MPa vtojännitys. anko on kiinnittty molmmista päistään ja sn pituus 9 K lämpötilassa on 5, m. Lask kuinka suuri jännitys on K lämpötilassa, jos tangon kiinnityskohdat lämpötilan laskissa lähstyvät toisiaan,75 mm. Alumiinin pituudn lämpötilakrroin on α = 9, 1 6 K -1 ja kimmokrroin E= 7, 1 1 Pa. htävä aihutti jonkin vrran hämminkiä, koska ilmissti sn aihpiiriä i ollut ksplisiittissti mainittu koalulistassa. htävä oli kuitnkin koksn tulvin laskuharjoitustn joukossa. Hämmingistä johtun thtävä arvostltiin himan livmmin. Kuvasta, josta slvisi tilann ja/tai fysikaalisn tilantn lyhystä sanallissta slittämisstä sai yhdn pistn (i vaadittu kuutn pistsn). Pidmmästä oikasta slityksstä sai lisäpistitä. Yksi pist krtyi oikansuuntaissta kaavasta ja suraava ja sitä suraava jos kaavalla oli laskttu jotain järkvää. Vakioidn tai tarvittavan kaavan täsmällisn muodon muistamattomuudsta sakotttiin yksi pist kuitnkin niin, ttä mikäli kaavasta puuttui muutakin kuin vakioita ja yksiköt ivät täsmännt ikä asiasta ollut huomautusta, pistitä mni kaksi. Vnymän muutoksll pät 1 L= αl + E L σ Ratkaismalla tämä jännityksn muutoksn suhtn saadaan L σ = E( α ) L angon pituus pinn jotn L =,75mm, samoin lämpötila = 5K. Sijoittamalla numroarvot saadaan: 1 m 6 σ = 7, 1 Pa(, K) = 6Pa 5,m K ja σ = σ + σ = 1 MPa. =========== 5. Lask vdn ntropian muutos kun yksi mooli vttä lämmittään kvasistaattissti vakiopainssa lämpötilasta - C lämpötilaan 15 C. Vdn sulamislämpö on 6,8 kj/mol, höyrystymislämpö,69 kj/mol. Jään ominaislämpökapasittti vakiopainssa on 7,67 J/(mol K) ja vsihöyryn ominaislämpökapasittti vakiopainssa 6, J/(mol K). Viimksi mainittuja arvoja voidaan pitää vakioina ao. lämpötila-aluilla.
5 htävänannosta oli jäänyt puuttumaan nstmäisn vdn ominaislämpökapasittti (c p,vsi = 18J/(K kg) = 75. J/(mol K) ). ästä huolimatta thtävä oli osattu hyvin. htävästä sai täydt pistt oli sittn muistanut vdn ominaislämpökapasittin lukuarvon, päätllyt jonkun lukuarvon tai jättänyt arvon muuttujan tilall sijoittamatta. Sanallissta (tai kaavallissta) slityksstä, ttä ntropian muutos krtyy viidstä ri vaihsta sai nsimmäisn pistn. oisn sai lähs oikista kaavoista ja kolmannn, jos ulos oli saanut oikita lukuarvoja. Mikäli i ollut huomioinut isotrmisn ja isobaarisn prosssin ntropian laskmisn roa, maksimipistt olivat kolm. Optlkaa luonnollisn logaritmin ja 1-kantaisn logaritmin ro tai vaihtohtoissti olkaa tarkmpia laskiminn kanssa. Jään lämmittäminn vakiopainssa C :sta C :n 7,15 J S = νc pjää, ln =,9 5,15 K Jään sulaminn vdksi vakiolämpötilassa = 7,15 isotrmisll prosssill K. Entropian muutos lasktaan Q1 l1 6 J J S = = ν = =,1. 7,15 K K Vdn kuumntaminn C :sta 1 C :n tapahtuu vakiopainssa: 7,15 J S = c pvsi, ln =,5 7,15 K Vdn kihuminn höyryksi (kaasuksi) tapahtuu vakiolämpötilassa Q l 69 J J S = = ν = =19, 7,15 K K Vsihöyryn (kaasun) kuumntaminn,15 J S = c pkaasu, ln =,5 7,15 K Yhtnsä ntropian kasvu on siis 16 J/K. 1 C :sta 15 C :n tapahtuu vakiopainssa:
1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.
S-35, Fysiikka III (ES) välikoe Laske ideaalikaasun tilavuuden lämpötilakerroin (/V)(dV/d) p ja isoterminen kokoonpuristuvuus (/V)(dV/dp) ehtävän pisteyttäneen assarin kommentit: Ensimmäisen pisteen sai
Lisätiedotln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.
S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.
Lisätiedote n 4πε S Fysiikka III (Est) 2 VK
S-11.137 Fysiikka III (Est) VK 7.5.009 1. Bohrin vtyatomimallissa lktronilla voi olla vain tittyjä nopuksia. Johda kaava sallituill nopuksill, ja lask sn avulla numrinn arvo suurimmall mahdollisll nopudll.
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut
A1 Diplomi-insinöörin ja arkkithtin yhtisalinta - dia-alinta 2010 Alla on lutltu kuusi suurtta skä annttu taulukoissa kahdksan lukuaroa ja kahdksan SI-yksikön symbolia. Yhdistä suurt oikan suuruusluokan
LisätiedotKäytetään lopuksi ideaalikaasun tilanyhtälöä muutoksille 1-2 ja 3-1. Muutos 1-2 on isokorinen, joten tilanyhtälöstä saadaan ( p2 / p1) = ( T2 / T1)
LH0- Lämövoimakoneen kiertorosessin vaiheet ovat: a) Isokorinen aineen kasvu arvosta arvoon 2, b) adiabaattinen laajeneminen, jolloin aine laskee takaisin arvoon ja tilavuus kasvaa arvoon 3 ja c) isobaarinen
LisätiedotS , Fysiikka III (Sf) tentti/välikoeuusinta
S-114.45, Fysiikka III (Sf) tentti/välikoeuusinta.11.4 1. välikokeen alue 1. Osoita, että hyvin alhaisissa lämpötiloissa elektronin FD systeemin energia on U = (3/ 5) ε F. Opastus: oleta, että kaikki tilat
Lisätiedot= 84. Todennäköisin partitio on partitio k = 6,
S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat
LisätiedotKaasu 2-atominen. Rotaatio ja translaatiovapausasteet virittyneet (f=5) c. 5 Ideaalikaasun tilanyhtälöstä saadaan kaasun moolimäärä: 3
S-4.5.vk. 6..000 Tehtävä Ideaalikaasun aine on 00kPa, lämötila 00K ja tilavuus,0 litraa. Kaasu uristetaan adiabaattisesti 5-kertaiseen aineeseen. Kaasumolekyylit ovat -atomisia. Laske uristamiseen tarvittava
LisätiedotVenymälle isotermisessä tilanmuutoksessa saadaan AE AE
S-11435, Fyskka III (ES) Tntt 75 1 Stsmän tunnstttavssa olvaa hukkasta on jakautunut kahdll nrgatasoll Ylm taso on dgnrotumaton ja sn nrga on 1, mv korkam kun almman tason, joka uolstaan on dgnrotunut
LisätiedotIntegroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj
S-4.35 Fysiikka (ES) entti 3.8.. ääritä yhden haikaasumoolin (O) (a) sisäenergian, (b) entalian muutos tilanmuutoksessa alkutilasta =, bar, =,8 m3 loutilaan =, bar, =,5 m3. ärähtelyn vaausasteet voidaan
Lisätiedot= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]
766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan
LisätiedotS , Fysiikka III (ES) Tentti Tentti / välikoeuusinta. Laaditaan taulukko monisteen esimerkin 3.1. tapaan ( nj njk Pk
S-.35, Fysiia III (ES) entti 8..3 entti / välioeuusinta I älioeen alue. Neljän tunnistettavissa olevan hiuasen miroanonisen jouon mahdolliset energiatasot ovat, ε, ε, 3ε, ε,, jota aii ovat degeneroitumattomia.
Lisätiedot= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa
766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa
LisätiedotEnergian säilymislain perusteella elektronin rekyylienergia on fotnien energioiden erotus: (1)
S-11446 Fysiikka IV (Sf), I Väliko 544 1 Osoita, ttä Comptonin sironnassa lktronin suurin mahdollinn rkyylinrgia voidaan sittää muodossa E Kin hf 1 + mc /hf Enrgian säilymislain prustlla lktronin rkyylinrgia
LisätiedotP = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt
766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö
LisätiedotVIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196
VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196 8.1 Kiertoprosessin ja termodynaamisen koneen määritelmä... 196 8.2 Termodynaamisten koneiden hyötysuhde... 197 8.2.1 Lämpövoimakone... 197 8.2.2 Lämpöpumpun
Lisätiedot1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta
766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio
Lisätiedotη = = = 1, S , Fysiikka III (Sf) 2. välikoe
S-11445 Fysiikka III (Sf) välikoe 710003 1 Läpövoiakoneen kiertoprosessin vaiheet ovat: a) Isokorinen paineen kasvu arvosta p 1 arvoon p b) adiabaattinen laajeneinen jolloin paine laskee takaisin arvoon
Lisätiedot. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä
LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?
LisätiedotS , Fysiikka III (Sf) tentti/välikoeuusinta
S-445, Fysiikka III (Sf) tentti/välikoeuusinta 43 välikokeen alue ristetyssä astiassa, jonka lämötila idetään, kelvinissä, on nestemäistä heliumia tasaainossa helium kaasun kanssa Se on erotettu toisesta
LisätiedotVauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä
S-4.35, Fysiikka III (ES) entti 8.3.006. Laske nopeuden itseisarvon keskiarvo v ave ja nopeuden neliöllinen keskiarvo v rms seuraaville 6 molekyylien nopeusjakaumille: a) kaikkien vauhti 0 m/s, b) kolmen
Lisätiedotb g / / / / H G I K J =. S Fysiikka (ES) Tentti
S4.35 Fyskka (ES) Tntt 4.9. 3 6. Sälö, jonka tlavuus on,5 m, ssältää haa, jonka an on,5 Pa ja lämötla C. (a) Montako moola haa sälössä on? (b) Montako klogrammaa? (c) Mtn an muuttuu, jos lämötla kasvaa
LisätiedotJakso 15. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt
Jakso 15. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt Tässä jaksossa käsitllään vaihtovirtapiirjä. Mukana on skä sarjapiirjä ttä linaaripiirjä. Sarjapiirilaskut ovat hkä hlpompia, sillä virta
LisätiedotMolaariset ominaislämpökapasiteetit
Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen
LisätiedotV T p pv T pv T. V p V p p V p p. V p p V p
S-45, Fysiikka III (ES välikoe 004, RAKAISU Laske ideaalikaasun tilavuuden lämötilakerroin ( / ( ja isoterminen kokoonuristuvuus ( / ( Ideaalikaasun tilanyhtälö on = ν R Kysytyt suureet ovat: ilavuuden
LisätiedotT F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3
76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15
LisätiedotOletetaan kaasu ideaalikaasuksi ja sovelletaan Daltonin lakia. Kumpikin seoksen kaasu toteuttaa erikseen ideaalikaasun tilanyhtälön:
S-445, ysiikka III (Sf) entti 653 Astiassa on, µmol vetyä (H ) ja, µg tyeä ( ) Seoksen lämötila on 373 K ja aine,33 Pa Määritä a) astian tilavuus, b) vedyn ja tyen osaaineet ja c) molekyylien lukumäärä
LisätiedotS , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon
S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,
LisätiedotRahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen
Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa
Lisätiedotν = S Fysiikka III (ES) Tentti Ratkaisut
S-45 Fysiikka III (ES) etti 8500 Ratkaisut Ideaalikaasu suorittaa oheise kua esittämä kiertoprosessi abca Pisteessä a lämpötila o 0 K a) Kuika mota moolia kaasua o? b) Määritä kaasu lämpötila pisteissä
LisätiedotJakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK)
Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt. (Kuuluu kurssiin Sähkömagntismi, LuTK) Näytä tai jätä tarkistttavaksi tämän jakson pakollist thtävät viimistään
LisätiedotAx 0 mm Bx mm Cx 1800 Ay 0 mm By mm Cy 0
Tamprn tknillinn yliopisto Tknisn suunnittlun laitos EDE-00 Elmnttimntlmän prustt. Harjoitus 6 Syksy 0. F 00 OpNro 859 L 800 mm M T 85 K K 9 E 05000 MPa Kulmat ja pituudn lämpölaajnmiskrroin α 0.60865
LisätiedotTee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti
MAA8 Ko 5..04 T konsptiin pisttsruudukko! Muista kirjata nimsi ja rhmäsi. Lu ohjt huolllissti A-Osio: Ei saa kättää laskinta. MAOL saa olla alusta asti kätössä. Maksimissaan h aikaa suorittaa A- Osio.
Lisätiedot0 C lämpötilaan antaa 836 kj. Lopputuloksena on siis vettä lämpötilassa, joka on suurempi kuin 0 0 C.
LH12-1 1 kg 2 C asteista vettä sekoitetaa yhde baari paieessa 2kg jäätä, joka lämpötila o -5 C Laske etropia muutos ja lämpötila, ku tasapaio o saavutettu 3 3 Vedelle c p 4,18 1 J/(kgK) jäälle c p 2, 9
LisätiedotEkvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden.
. Hiilidioksidiolekyyli CO tiedetään lineaariseksi a) Mitkä ovat eteneisliikkeen, pyöriisliikkeen ja värähtelyn suuriat ekvipartitioperiaatteen ukaiset läpöenergiat olekyyliä kohden, kun kaikki vapausasteet
LisätiedotLIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ
LIITE 8A: RAKENNELUVUN 37 YHTÄLÖITÄ Raknnluvusta 37 on tämän työn yhtydssä syntynyt yli 00 yhtälöä, joista 00 yhtälöä on analysoitu. Näistä on osoittautunut 70 yhtälöä milnkiintoisiksi ja saman vrran otaksutaan
LisätiedotS , Fysiikka III (S) I välikoe Malliratkaisut
S-4.35, Fysiikka III (S) I välikoe 9.0.000 Malliratkaisut Tehtävä Kuution uotoisessa säiliössä, jonka särän pituus on 0,0, on 3,0 0 olekyyliä happea (O) 300 K läpötilassa. a) Kuinka onta kertaa kukin olekyyli
LisätiedotLämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.
Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole
Lisätiedotm h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,
76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti
LisätiedotLämpöopin pääsäännöt
Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia
LisätiedotJuuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty 9..08 Kokoavia thtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Kirjoittaan kskiarvoll lausk :n avulla ja ratkaistaan yhtälöstä. π 4 π 4π :4 π 4 a b
Lisätiedotn = = RT S Tentti
S-5 Tetti 500 a) Kuika suuri o molekyylie traslaatioliikkee kieettie eergia kuutiometrissä ilmaa jos ilma lämpötila o 00 K ja paie 0 bar? b) Mikä o kieettise eergia kokoaismäärä ku myös muut liikelajit
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 6.11. ja tiistai 7.11. Pohdintaa Mitä tai mikä ominaisuus lämpömittarilla
LisätiedotKAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]
KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja
LisätiedotVastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.
Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol
LisätiedotT H V 2. Kuva 1: Stirling kiertoprosessi. Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista (kts. kuva 1):
1 c 3 p 2 T H d b T L 4 1 a V Kuva 1: Stirling kiertoprosessi. Stirlingin kone Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista kts. kuva 1: 1. Työaineen ideaalikaasu isoterminen puristus
LisätiedotDifferentiaaliyhtälöt, Syksy 2015 Harjoitus 2, Ratkaisut Ratkaise separoituvat differentiaaliyhtälöt. a) y = y
Diffrntiaaliyhtälöt, Syksy 215 Harjoitus 2, Ratkaisut 1.11.215 1. Ratkais sparoituvat diffrntiaaliyhtälöt a) y = y 3, b) y = 1 + y 2 y 2. y Ratkaisu. a): Yhtälö y = 3 on hyvin määritlty kun 3. Lisäksi
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.
LisätiedotMikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset
LisätiedotIlman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:
ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.
Lisätiedot4. Putkivirtaus 4. PUTKIVIRTAUS. 4.1 Virtauslajit ja Reynoldsin luku. 4.2 Putkivirtauksen häviöt
4. Putkivirtaus 4. PUTKIVIRTAUS Brnoullin yhtälön yhtydssä todttiin todllisssa virtauksssa syntyvän aina häviöitä, jotka muuttuvat lämmöksi. Putkivirtauksssa nämä häviät näkyvät painn laskuna virtaussuunnassa
LisätiedotS , Fysiikka III (ES) Tentti Tentti / välikoeuusinta
S-11435, Fysiikka III (ES) entti 4113 entti / välikoeuusinta I Välikokeen alue 1 Viiden tunnistettavissa olevan identtisen hiukkasen mikrokanonisen joukon käytettävissä on neljä tasavälistä energiatasoa,
LisätiedotNyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
LisätiedotLuento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit
Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.
LisätiedotTermodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki
Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät
LisätiedotKIINTEÄN AINEEN JA NESTEEN TILANYHTÄLÖT
KIINTEÄN AINEEN JA NESTEEN TILANYHTÄLÖT Lämpölaajeneminen Pituuden lämpölaajeneminen: l = αl o t lo l l = l o + l = l o + αl o t l l = l o (1 + α t) α = pituuden lämpötilakerroin esim. teräs: α = 12 10
LisätiedotAstrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut
Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut 1 a Kaasuseoksen komponentin i vapaa energia voidaan kirjoittaa F i (N,T,V = ln Z i (T,V missä on ko hiukkasten lukumäärä tilavuudessa
LisätiedotLämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH
Muita lämpökoneita Nämäkin vaativat työtä toimiakseen sillä termodynamiikan toinen pääsääntö Lämpökoneita ovat lämpövoimakoneiden lisäksi laitteet, jotka tekevät on Clausiuksen mukaan: Mikään laite ei
Lisätiedot6. Yhteenvetoa kurssista
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä
LisätiedotCh 19-1&2 Lämpö ja sisäenergia
Ch 19-1&2 Lämpö ja sisäenergia Esimerkki 19-1 Olet syönyt liikaa täytekakkua ja havaitset, että sen energiasisältö oli 500 kcal. Arvioi kuinka korkealle mäelle sinun pitää pitää kiivetä, jotta kuluttaisit
Lisätiedot1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2
FYSIKAALINEN KEMIA KEMA22) Laskuharjoitus 2, 28..2009. van der Waalsin tilanyhtälö: p = RT V m b a Vm V 2 m pv m = RT V m b = RT = RT a ) V m RT a b/v m V m RT ) [ b/v m ) a V m RT Soveltamalla sarjakehitelmää
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 7.11. ja tiistai 8.11. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
Lisätiedot766328A Termofysiikka Harjoitus no. 10, ratkaisut (syyslukukausi 2014)
7668A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 4). Johdetaan yksiatomisen klassisen ideaalikaasun kemiallisen potentiaalin µ(t,, N) lauseke. (a) Luentojen yhtälön mukaan kemiallinen potentiaali
Lisätiedot1. Laske sivun 104 esimerkin tapaan sellainen likiarvo luvulle e, että virheen itseisarvo on pienempi kuin 10 5.
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi II Harjoitus Ratkaisuhdotuksia Aapo Tvanlinna. Lask sivun 4 simrkin tapaan sllainn likiarvo luvull, ttä virhn itsisarvo on pinmpi kuin 5. Huomataan nsin,
LisätiedotLämmönsiirto (ei tenttialuetta)
ämmönsiirto um 4..3 ämmönsiirto (i tnttialutta) rminologiaa ämpötila on suur, joka kuvaa, mitn kuuma jokin sin tai ain on. ämpötilaa (lat. tmpratura) mitataan SI-järjstlmässä klvinillä (K) tai clsiusastilla
LisätiedotLH9-1 Eräässä prosessissa kaasu laajenee tilavuudesta V1 = 3,00 m 3 tilavuuteen V2 = 4,00 m3. Sen paine riippuu tilavuudesta yhtälön.
LH9- Eräässä rsessissa kaasu laajenee tilavuudesta = 3, m 3 tilavuuteen = 4, m3. Sen aine riiuu tilavuudesta yhtälön 0 0e mukaan. akiilla n arvt = 6, 0 Pa, α = 0, m -3 ja v =, m 3. Laske kaasun tekemä
LisätiedotLaskuharjoitus 1 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 28.2. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 1 Ratkaisut 1.
Lisätiedot4. Termodynaamiset potentiaalit
Statistinen fysiikka, osa A (FYSA241) uomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 4. ermodynaamiset potentiaalit 1 asapainotila Mikrokanoninen ensemble Eristetty
LisätiedotTERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT
TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT (lukuun ottamatta tehtävää 12, johon kukaan ei ollut vastannut) RATKAISU TEHTÄVÄ 1 a) Vesi haihtuu (höyrystyy) ja ottaa näin ollen energiaa ympäristöstä
LisätiedotMuita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:
Muita lämpökoneita Nämäkin vaativat ovat työtälämpövoimakoneiden toimiakseen sillä termodynamiikan pääsääntö Lämpökoneita lisäksi laitteet,toinen jotka tekevät on Clausiuksen mukaan: laiteilmalämpöpumppu
Lisätiedot1 Eksergia ja termodynaamiset potentiaalit
1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian
LisätiedotRATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt
Physica 9 1. painos 1(7) : 12.1 a) Lämpö on siirtyvää energiaa, joka siirtyy kappaleesta (systeemistä) toiseen lämpötilaeron vuoksi. b) Lämpöenergia on kappaleeseen (systeemiin) sitoutunutta energiaa.
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut
A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan
LisätiedotLaskuharjoitus 2 Ratkaisut
Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 7.3. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 2 Ratkaisut 1.
LisätiedotEkvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
LisätiedotEkvipartitioteoreema
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
LisätiedotSauvaelementti hum
Sauvalmntti hum.9. Yhdn solmuvapausastn sauvalmntti akastllaan kuvan mukaista sauvalmnttiä. Sauvan vasmmassa päässä on sauvan lokaalisolmu numo, jonka -koodinaatti on ja vastaavasti oikassa päässä lokaalisolmu
LisätiedotOikeasta vastauksesta (1p): Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:
A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa eräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808 C
Lisätiedot( ) ( ) on nimeltään molekyylisironnan mikroskooppinen vaikutusala). Sijoittamalla numeroarvot saadaan vapaaksi matkaksi
S-4.35, FYSIIKKA III, Syksy 00, LH, Loppuiikko 38 LH-* Laske happimolekyylin keskimääräinen apaa matka 300 K lämpötilassa ja,0 baarin paineessa. Voit olettaa, että molekyyli on pallon muotoinen ja pallon
LisätiedotPHYS-A0120 Termodynamiikka. Emppu Salonen
PHYS-A0120 ermodynamiikka Emppu Salonen 1. joulukuuta 2016 ermodynamiikka 1 1 Lämpötila ja lämpö 1.1 ilanyhtälö arkastellaan kolmea yksinkertaista fluidisysteemiä 1, jotka koostuvat kukin vain yhdentyyppisistä
LisätiedotELEMENTTIMENETELMÄN PERUSTEET SESSIO 19: Gaussin integrointi emojanan alueessa.
/ ELEMENIMENEELMÄN PERUSEE SESSIO : Gaussin intgrointi mojanan alussa. JOHDANO Ylisssä lujuusopin lmnttimntlmässä lmntin jäykkyysmatriisi [ k ] ja kvivalnttinn solmukuormitusvktori { r } lasktaan määrätyistä
LisätiedotS FYSIIKKA III (ES) Syksy 2004, LH 10. Ratkaisut
S-4 FYSIIKKA III (ES) Syksy 004, LH 0 Rtksut LH0-* Jäähdytyskneen tmv Crnt n kne luvutt 0,0 kj lämöä hunelmn smll, kun kneen mttr tekee työtä 0,0 J Hunelmn lämötl n C () Kunk ljn lämöä kne tt lemmst lämösälöstä?
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.11 SÄHKÖTKNIIKKA JA LKTONIIKKA 2. väliko 14.12.26. Saat vastata vain nljään thtävään! Kimmo Silvonn 1. Millä välillä vaihtl opraatiovahvistimn lähtöjännit, jos =1 +û sin ωt. =2, û =5. 2 Thtävä 2.
LisätiedotS Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
Lisätiedotvetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen
DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin
LisätiedotLuku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde
Luku 20 Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Uutta: Termodynamiikan 2. pääsääntö Jäähdytyskoneen hyötykerroin ja lämpöpumpun lämpökerroin Entropia Tilastollista termodynamiikkaa
LisätiedotREAKTIOT JA ENERGIA, KE3. Kaasut
Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen
LisätiedotOsio 1. Laskutehtävät
Osio 1. Laskutehtävät Nämä palautetaan osion1 palautuslaatikkoon. Aihe 1 Alkuaineiden suhteelliset osuudet yhdisteessä Tehtävä 1 (Alkuaineiden suhteelliset osuudet yhdisteessä) Tarvitset tehtävään atomipainotaulukkoa,
LisätiedotREAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos
ympäristö ympäristö 15.12.2016 REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos Kaikilla aineilla (atomeilla, molekyyleillä) on asema- eli potentiaalienergiaa ja liike- eli
LisätiedotLasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p.
Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT JA PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.
LisätiedotLuento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä
Luento 2: Lämpökemiaa, osa 1 Keskiviikko 12.9. klo 8-10 477401A - ermodynaamiset tasapainot (Syksy 2018) ermodynamiikan käsitteitä - Systeemi Eristetty - suljettu - avoin Homogeeninen - heterogeeninen
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 3: Lämpövoimakoneet ja termodynamiikan 2. pääsääntö Maanantai 13.11. ja tiistai 14.11. Milloin prosessi on adiabaattinen?
LisätiedotLuku6 Tilanyhtälö. Ideaalikaasun N V. Yleinen aineen. paine vakio. tilavuus vakio
Luku6 Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät saadaan leikkaamalla painepinta pv suuntaisilla
Lisätiedot2. Termodynamiikan perusteet
Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 2. Termodynamiikan perusteet 1 TD ja SM Statistisesta fysiikasta voidaan
LisätiedotS SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.3 SÄHKÖTKNKKA.. Kimmo Silvonn Tntti: thtävät,3,5,7,9. väliko: thtävät,,3,4,5. väliko: thtävät 6,7,8,9, Oltko muistanut vastata palautkyslyyn Voit täyttää lomakkn nyt.. Lask virta. = = 3 =Ω, J =3A,
Lisätiedota) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =
S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja
Lisätiedot763101P FYSIIKAN MATEMATIIKKAA Kertaustehtäviä 1. välikokeeseen, sl 2008
76P FYSIIKAN MATEMATIIKKAA Krtausthtäviä. välikoks, sl 8 Näitä laskuja i laskta laskupäivissä ikä äistä saa laskuharjoituspistitä. Laskut o tarkoitttu laskttaviksi alkutuutoroitiryhmissä, itsks, kavriporukalla
LisätiedotClausiuksen epäyhtälö
1 Kuva 1: Clausiuksen epäyhtälön johtaminen. Clausiuksen epäyhtälö otesimme Carnot n koneelle, että syklissä lämpötiloissa H ja L vastaanotetuille lämmöille Q H ja Q L pätee Q H H oisin ilmaistuna, Carnot
Lisätiedot