Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Koko: px
Aloita esitys sivulta:

Download "Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty"

Transkriptio

1 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty Kokoavia thtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Kirjoittaan kskiarvoll lausk :n avulla ja ratkaistaan yhtälöstä. π 4 π 4π :4 π 4 a b c b) Kskiarvo on nnn muutosta ja muutoksn jälkn a0 b0 c0 abc0 abc 0. Kskiarvo siis kasvaa kymmnllä. Mdiaani on suuruusjärjstyksssä kskimmäinn luvuista a, b ja c. Kun jokaisn lukuun lisätään 0, lukujn kskinäinn järjstys i muutu. Kskimmäinn on siis sama kuin aimmin, johon on lisätty 0, li myös mdiaani kasvaa 0:llä.

2 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty a) Valitaan luokiksi cm, 6 69 cm, cm, 7 79 cm ja cm. Lasktaan, kuinka monta pituutta kuhunkin luokkaan kuuluu ja kirjoittaan luokkin frkvnssit taulukkomuotoon. luokka frkvnssi Lasktaan luokkin summafrkvnssit laskmalla yhtn luokan ja sitä dltävin luokkin frkvnssit. luokka frkvnssi summafrkvnssi b) Piirrtään krtymäkuvaaja mrkitsmällä summafrkvnssi luokan todllisn ylärajan kohdall ja yhdistämällä pistt. Luokkin todllist ylärajat ovat 64,; 69,; 74,; 79, ja 84, cm. Ensimmäisn luokan todllisn alarajan 9, kohdall tul frkvnssi 0.

3 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty Mdiaanipituudn ylittää puolt oppilaista li 8 ja alittaa myös 8 oppilasta. Kuvasta mdiaani arvioidaan tsimällä s pituus, jonka kohdalla krtymäkuvaaja likkaa vaakatason 8; tämä on noin 7 cm. Oppilaita on yhtnsä 6, jotn mdiaanipituus on pituusjärjstyksssä kahdn kskimmäisn pituudn kskiarvo. Luokan pituusjärjstyksssä 8. ja 9. oppilaan pituudt ovat 70 ja 7 cm, jotn ainiston todllinn mdiaani on 70, cm. Krtymäkuvaajasta arvioitu mdiaani on siis, cm suurmpi kuin ainiston todllinn mdiaani.

4 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty Hahmotllaan tilanntta kuvan avulla: Niidn oppilaidn osuus, jotka pitävät suklaasta tai ovat musikaalisia, on 60 % + 70 % 0 % = 80 %. Niinpä niidn opisklijoidn osuus, jotka ivät pidä suklaasta ivätkä ol musikaalisia, on 00 % 80 % = 0 %. Todnnäköisyys, ttä satunnaissti valittu koulun oppilas i pidä suklaasta ikä ol musikaalinn, on sama kuin näidn osuus kaikista oppilaista li 0 % = 0,0. TAI Hahmotllaan tilanntta kuvan avulla: Niidn oppilaidn osuus, jotka pitävät suklaasta tai ovat musikaalisia, on 0 % + 0 % + 0 % = 80 %. Niinpä niidn opisklijoidn osuus, jotka ivät pidä suklaasta ivätkä ol musikaalisia, on 00 % 80 % = 0 %. Todnnäköisyys, ttä satunnaissti valittu koulun oppilas i pidä suklaasta ikä ol musikaalinn, on sama kuin näidn osuus kaikista oppilaista li 0 % = 0,0

5 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty a) b) c) 0! ! !!!! 8! 876! 87 6!!! 6 6! 64! 4 4! 6 4! 4!! d) 6

6 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty Kaksinumroisssa positiivisssa kokonaisluvussa nsimmäinn numro on jokin luvuista,,, 9, ja toinn numro on jokin luvuista 0,,, 9 ja jokainn näistä numroista on yhtä todnnäköinn. Todnnäköisyys, ttä nsimmäinn numro on tai, on siis P(nsimmäinn numro on tai ) Vastaavasti P(toinn numro on tai ). 9 0 Lisäksi todnnäköisyys, ttä skä nsimmäinn ttä toinn numro on tai, on P(nsimmäinn on tai ja toinn on tai ) Niinpä P(ainakin toinn on tai ) Muita tapoja: P(ainakin toinn on tai ) P(kumpikaan i ol tai ) Sama tulos saadaan myös luttlmalla sopivat luvut. Kaksinumroisia positiivisia kokonaislukuja ovat luvut 0,,, 99, joita on 90. N luvut, joissa ainakin toinn numroista on tai, ovat 0,,,, 4,, 6, 7,8, 9 (0 kpl) 0,,,, 4,, 6, 7, 8, 9 (0 kpl),, 4, 4,,, 6, 6, 7, 7, 8, 8, 9, 9 (7 = 4 kpl) Kysisiä lukuja on yhtnsä 4 kappaltta. Niinpä kysytty todnnäköisyys on

7 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty Käyttään kannattavuudn mittarina odotusarvoa. Lasktaan odotusarvo kummassakin tilantssa: siinä, jossa kilpailija vastaan nsin hlppoon kysymyksn ja myös siinä, jossa hän vastaa nsin vaikaan kysymyksn. Olkoon X = kilpailijan voittama rahasumma, kun hän vastaa nsin hlppoon kysymyksn. Muodosttaan satunnaismuuttujan X jakauma ja lasktaan sn odotusarvo. (uroa) P(X = ) 0 0, (vastaa väärin hlppoon) 00 0, 0,8 = 0,4 (vastaa oikin hlppoon ja väärin vaikaan 600 0, 0, = 0, (vastaa oikin molmpiin) Nyt E(X) = 0, 0 + 0, , 600 = 40. Olkoon sittn Y = kilpailijan voittama rahasumma, kun hän vastaa nsin vaikaan kysymyksn. Muodosttaan satunnaismuuttujan Y jakauma ja lasktaan sn odotusarvo. y (uroa) P(Y = y) 0 0,8 (vastaa väärin vaikaan) 400 0, 0, = 0, (vastaa oikin vaikaan ja väärin hlppoon 600 0, 0, = 0, (vastaa oikin molmpiin) Nyt E(Y) = 0, , , 600 = 00. Koska satunnaismuuttujan Y odotusarvo on suurmpi, kilpailijan kannattaa siis vastata nsin vaikaan kysymyksn.

8 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty C on lopullinn voittaja, jos ) C voittaa suraavat kolm pliä, tai ) suraavista kolmsta plistä C voittaa kaksi ja A yhdn, ja lisäksi sitsmännn plin voittaa C. Tapahtumat ja ovat rillist. Koska plaajat ovat yhtä taitavia, jokaislla on sama todnnäköisyys voittaa pli: P(A voittaa plin) P(B voittaa plin) P(C voittaa plin), ja ri plikirroksilla voitot ivät riipu toisistaan. Tapahtuman todnnäköisyys on krtolaskusäännön mukaan. Tapahtuma koostuu rillisistä tapahtumista, ACCC, CACC ja CCAC joista jokaisn todnnäköisyys on 4. Niinpä kysytty todnnäköisyys on 4 P(C on lopullinn voittaja) 0, ,074. 7

9 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty Funktio on f tihysfunktio, jos ) sn arvot ovat i-ngativisia ja ) sn kuvaajan ja -akslin väliin jäävän alun pinta-ala on. ) Funktion lauskkista nähdään, ttä i-ngatiivisuus totutuu silloin kun a 0. ) Pinta-alaa muodostuu vain välillä 0 <. Etsitään sllainn ingatiivinn luku a, ttä 0 f ( )d. 0 0 f ( )d d a d ln 0 ln ln) / / a a a a a a 0 0 Koska luku täyttää hdon a 0, funktio f on tihysfunktio silloin kun a. Krtymäfunktio F saadaan intgroimalla tihysfunktiota f ja käyttämällä intgroimisvakioidn määräämisn titoja F(0) = 0 ja F() = skä sitä, ttä F on jatkuva kaikkialla., kun 0 0, kun 0, kun 0 Intgroidaan funktio f( ), kun, kun 0, muulloin 0, kun osissa. < 0: F( ) 0d C 0 < < : F( ) d D < < : F( ) d lne > : F ( ) 0d G

10 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty Koska F(0) = 0 ja funktio F on jatkuva, täytyy olla lim F( ) lim F( ) 0: 0 0 lim F( ) lim C C, siis C = F D D, siis D = 0. lim ( ) lim ( ) 0 0 Koska F() = ja funktio F on jatkuva, täytyy olla lim F( ) lim F( ) : lim F( ) lim ( ln E) ln E E, mistä E lim F( ) li m( G) G, siis G =. Tarkisttaan vilä funktion F arvo ja jatkuvuus kohdassa = kun C = 0, D = 0, E ja G = : lim F( ) lim( ) lim F( ) lim ( ln ) ln 0 Siis krtymäfunktio on 0, kun 0,, kun 0, F( ) ln, kun,, kun. Kysytty todnnäköisyys on krtymäfunktion avulla laskttuna P( X ) P( X ) F() F( ) ln 0 ln 0, ,8.

11 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty Kun yksi pallo on siirrtty laatikosta A laatikkoon B, tapahtuman laatikosta B saadaan valkoinn pallo todnnäköisyys riippuu siitä, minkä värinn pallo siirrttiin. Jataan tapahtuma laatikosta B saadaan valkoinn pallo siirrtyn pallon värin mukaan kahtn rillisn osaan: : siirrtään valkoinn pallo ja saadaan valkoinn pallo, skä : siirrtään musta pallo ja saadaan valkoinn pallo. Lasktaan kummankin todnnäköisyys. P(siirrtään valkoinn pallo ja saadaan valkoinn) 8 8 P(siirrtään musta pallo ja saadaan valkoinn) 4 8 Koska tapahtumat ovat rillisiä, kysytty todnnäköisyys on 0,7 0, Sllaisia korttja, joissa ainakin yksi puoli on musta, on = 90. Koska nosttulla kortilla on ainakin yksi musta puoli, on nostttu yksi näistä 90:stä. Jokaisn kortin todnnäköisyys tulla nosttuksi on sama. Niinpä todnnäköisyys, ttä nosttun kortin toinnkin puoli on musta, on todnnäköisyys, ttä nosttuksi tuli yksi 40:stä kokonaan mustasta kortista li , , Toinn tapa: P(molmmat puolt mustia toinn puoli on musta) P(molmmat puolt on mustia ja toinn puoli on musta) P(toinn puoli on musta) P(molmmat puolt on mustia) P(toinn puoli on musta) , ,

12 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty APUVÄLINEET SALLITTU. a) Kokn tki kaikkiaan = 0 osallistujaa. Koska jokaisssa ryhmässä arvosanojn summa on arvosanojn kskiarvo krrottuna ryhmän koolla, saadaan kaikkin osallistunidn kskiarvoksi 7 7,8 40 8, 7,97 7, ,99. 0 b) Lasktaan arvosanojn kskiarvo taulukkolaskntaohjlmalla tai matmatiikkaohjlmalla: Kskiarvo on 7,7894 7,8. Lasktaan kskihajonta matmatiikkaohjlmalla: Kskihajonta on,466,46.. a) Kirjoittaan tidot taulukkolaskntaohjlmaan, järjsttään tidot osuudn mukaan suuruusjärjstyksn ja piirrtään ympyräkuvio. b) Piirrtään pylväskuvio. Pylväskuviota vartn titoja i ol tarpn järjstää suuruusjärjstyksn, vaan luokka muu voi olla viimisnä.

13 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty a) Tilanntta voidaan ajatlla toistokokna, jossa toistoja li hnkilöitä on 0 ja onnistumisn li tapahtuman hnkilö on puolun kannattaja todnnäköisyys jokaislla toistolla on % = 0,. Onnistumistn li kannattajin lukumäärä noudattaa binomijakaumaa Bin(0; 0,). Ohjlman avulla saadaan P(kannattajia on ) = 0, ,044. Sama tulos saadaan, kun kysytty todnnäköisyys lasktaan toistokokn kaavalla: 0 0 P(kannattajia on ) 0, 0, 0, 0,77 0, ,044. b) Mrkitään kannattajin lukumäärää 0 hnkilön otoksssa satunnaismuuttujalla X. Kutn a-kohdassa, koska X ~ Bin(0, ), ohjlman avulla saadaan P(X 8) = 0,000 0,000. Toinn tapa: Toistokokn kaavaa käyttän saadaan rillistn tapahtumin yhtnlaskusäännön avulla P(X 8) = P(X = 8) + P(X = 9) + P(X = 0) , 0,77 0, 0,77 0, 0, , 0,77 00, 0,77 0, 0, 000 c) Ohjlman avulla saadaan P(X ) = 0,9 0,9. Toinn tapa: Toistokokn kaavaa käyttän saadaan rillistn tapahtumin yhtnlaskusäännön avulla P(X ) = P(X = 0) + P(X = ) , 0,77 0, 0, ,77 0 0,0,77 0,9. d) Ohjlman avulla saadaan P(X ) = 0,967 0,9. Toinn tapa: P(X ) = P(X = 0) = 0,77 0 = 0,967 0,9.

14 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty Kahtn ri joukkusn jäsnt voidaan valita ri tavalla. Kun joukkut on valittu, lpäämään jäävä hnkilö on myös määrittty. Ajatllaan rantalntopallokntän puoliskoja nimillä A ja B. Kun nsin valitaan joukku puolll A kaikkin 7 hnkilön joukosta, ja toinn joukku puolll B loppujn 4:n joukosta, niin toinn tapa saada nämä täsmälln samat joukkut toisiaan vastaan on valita nsin joukku puolll A ja joukku puolll B. Näin olln rilaistn joukkuparin lukumäärässä 40 samat kaksi joukkutta siintyvät parina kaksi krtaa. Siis rilaisia kahdn joukkun ja yhdn lpäävän plaajan mahdollisuuksia on Jos yksi pli kstää puoli tuntia, 70 pliin mn tuntia; niinpä plaajat ivät hdi käydä kaikkia vaihtohtoja läpi vuorokaudn li 4 tunnin aikana.. a) Plaaja voittaa uroa todnnäköisyydllä ja häviää yhdn uron 7 todnnäköisyydllä 6. Voiton odotusarvo on siis 7 6 ( ) 0, ,0 uroa b) Plaaja voittaa uroa todnnäköisyydllä ja häviää yhdn uron 7 4 todnnäköisyydllä. Voiton odotusarvo on siis ( ) uroa c) Plaaja voittaa uron todnnäköisyydllä 8 ja häviää yhdn uron todnnäköisyydllä. Voiton odotusarvo on siis ( ) uroa

15 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty Olkoon n turistin lukumäärä. Tapahtuman A = ainakin yksi turisti kuuluu vriryhmään O vastatapahtuma on A = yksikään ryhmän turistista i kuulu vriryhmään O. Tämän todnnäköisyys on n n P A ( 0,0) 0, 70, jotn P(A) = 0,70 n. Etsitään pinin luku n, joll P(A) > 99 = 0,99 li joll 0,70 n > 0,99, mistä saadaan päyhtälö 0,70 n < 0,00. Ratkaistaan nsin yhtälö 0,70 n = 0,00 logaritmin avulla: n 0,70 0,00 n log0,7 0,00 n 4,8... Mitä usampia turistja ryhmässä on, sitä todnnäköismpää on, ttä histä ainakin yksi kuuluu vriryhmään O. Kun turistja on tai nmmän, todnnäköisyys on yli 99 promilla.

16 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty a) Maalitaulun säd on 60 0 (cm), jotn sn pinta-ala on π0 900π (cm ). 900ππ0 Kymmnn pistn alun pinta-ala on π, jotn 4 todnnäköisyys, ttä hitto osuu 0 pistn alusn, on π. 900π 6 Tapahtuman viidstä hitosta ainakin yksi osuu 0 pistn alusn vastatapahtuma on yksikään viidstä hitosta i osu 0 pistn alusn, jonka todnnäköisyys on 869 0, Todnnäköisyys, ttä viidstä hitosta ainakin yksi osuu 0 pistn alusn on siis 0,4747 = 0,6 0,. b) Todnnäköisyys, ttä hitto osuus 00 pistn ympyrään, on π 0. Tilanntta voidaan ajatlla toistokokna, jossa toistoja li 900π 9 hittoja on viisi ja onnistumisn todnnäköisyys on. 9 Onnistumistn li 00 pistn ympyrään osumistn lukumäärä noudattaa binomijakaumaa Bin(, ). 9 Todnnäköisyys, ttä onnistumisia tul kolm, saadaan ohjlman avulla tai laskmalla 640 0, , c) Kahdlla hitolla saadaan yhtnsä 00 pistttä kolmlla ri yhdistlmällä: , ja Jokainn yhdistlmä voidaan saada kahdlla ri tavalla, nsin suurmpi ja sittn pinmpi pistmäärä tai toisinpäin. Pistmäärin 60, 70 ja 80 aluilla on sama pinta-ala π 0 π 0 00π, jotn näillä pistmäärillä on sama todnnäköisyys 00π. 900π 9

17 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty Siis P(60) P(70) P(80). 9 Pistmäärin 0, 0 ja 40 aluilla on sama pinta-ala kuin pistmäärällä 0, joka laskttiin jo kohdassa a. Näidn pistmäärin todnnäköisyydt ovat siis P(0) P(0) P(40) P(0). 6 Erillistn tapahtumin yhtnlaskusäännöllä saadaan P(kahdlla hitolla 00) = P(80 ja 0) + P(0 ja 80) + P(70 ja 0) + P(0 ja 70) + P(60 ja 40) + P(40 ja 60) , ,09. 4

18 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty a) Kaikkia alkistapauksia vastaa suorakulmio, jossa ja y. Tämän suorakulmion pinta-ala on = 4. Tapahtumaa " y " vastaa s käyrän y osa, joka jää suorakulmion alull. Käyrän pinta-ala on nolla, jotn tapahtuman on nolla. y todnnäköisyys b) Tapahtumaa A = " y " vastaa suorakulmion s osa, joka jää käyrän y alapuolll. Slvittään nsin, missä käyrä y likkaa nliön ylärunan li suoran y = : : ln Haluttu alu muodostuu siis suorakulmiosta välillä ln skä käyrin y ja y = väliin jäävästä alusta välillä ln.

19 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty Sn sijaan tapahtuman A vastatapahtuma A muodostuu käyrin y ja y = väliin jäävästä alusta välillä ln. Koska s saadaan laskttua krralla, lasktaan tapahtumaa A vastaavan alun pinta-ala. ln ln ln ln ln / d d ( )d Näin olln 4 ln P( A) ln 0,6. 4 4

20 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty Mrkitään = hnkilön A saapumisaika ja y = hnkilön B saapumisaika minuuttina kllo 9 jälkn. Alkistapauksia ovat siis lukuparit (, y), joissa 0 60 ja 0 y 60. Kaikkia alkistapauksia kuvaa nliö, jonka sivun pituus on 60 ja pinta-ala 60 = 600. Tapahtuman A ja B ovat kahvilassa samaan aikaan vastatapahtuma on A ja B ivät ol kahvilassa samaan aikaan. Tämä tarkoittaa, ttä A saapuu yli minuuttia myöhmmin kuin B tai vastaavasti B saapuu yli minuuttia myöhmmin kuin A; siis > y + tai y > +. Vastatapahtuman kannalta suotuisa osa kuviota koostuu kahdsta kolmiosta, joissa toisssa > y + li y < ja toisssa y > +. Kummankin kolmion kanta on 4 ja korkus samoin 4, jotn vastatapahtuman todnnäköisyys on 44 9 P(A ja B ivät ol kahvilassa samaan aikaan) Niinpä kysytty todnnäköisyys on 9 7 P(A ja B ovat kahvilassa samaan aikaan). 6 6

21 Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty Slvittään nsin s kahvimäärä, jolla kahvin pinta on 0,7 cm:n päässä mukin runasta. Muki on katkaistun ympyräkartion muotoinn. Katkaistun kartion tilavuus saadaan vähntämällä kokonaisn kartion tilavuudsta katkaistun osan tilavuus. Hahmotllaan siis poikkilikkauskuva tilantsta ja täydnntään kartio kokonaisksi. Mrkitään mukin sädttä kahvin pinnan korkudlla kirjaimlla r, skä katkaistun osan korkutta kirjaimlla. Nyt kahvin tilavuus kuutiomillilitroina on π r (9 ) π. Ratkaistaan r ja. Kuvan kolmiot ABC ja ADE ovat kk-lausn nojalla yhdnmuotoist, sillä niissä on molmmissa suora kulma ja yhtinn kulma A. Vastinosin suhtista saadaan yhtälö 00, josta = 0 (mm). Samoin yhdnmuotoistn kolmioidn avulla voidaan ratkaista r. r r 4, (mm) Kahvin tilavuus, kun pinta yltää 7 mm päähän runasta, on siis π 4, (9 0) π 0 498,49... mm 4,9... cm. Kahviautomaatin laskmaa kahvimäärää (kuutiosnttimtrinä) kuvaa satunnaismuuttuja X ~ N(μ, ). Thtävänä on määrätä odotusarvo μ sitn, ttä P(X > 4,9 ) = 0,00, li ttä P(X 4,9 ) = 0,99. Ratkaistaan ohjlman avulla numrissti yhtälö Normaalijakauma(,, 4,9 ) = 0,99, jolloin ratkaisuksi saadaan =,4 cm. Kskiarvoksi tul siis säätää noin cm.

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774

Lisätiedot

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat

Lisätiedot

1. Laske sivun 104 esimerkin tapaan sellainen likiarvo luvulle e, että virheen itseisarvo on pienempi kuin 10 5.

1. Laske sivun 104 esimerkin tapaan sellainen likiarvo luvulle e, että virheen itseisarvo on pienempi kuin 10 5. MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi II Harjoitus Ratkaisuhdotuksia Aapo Tvanlinna. Lask sivun 4 simrkin tapaan sllainn likiarvo luvull, ttä virhn itsisarvo on pinmpi kuin 5. Huomataan nsin,

Lisätiedot

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ LIITE 8A: RAKENNELUVUN 37 YHTÄLÖITÄ Raknnluvusta 37 on tämän työn yhtydssä syntynyt yli 00 yhtälöä, joista 00 yhtälöä on analysoitu. Näistä on osoittautunut 70 yhtälöä milnkiintoisiksi ja saman vrran otaksutaan

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ YLIOPPILSTUTKINTO- LUTKUNT..7 MTEMTIIKN KOE PITKÄ OPPIMÄÄRÄ -osa Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän alla olevaan ruudukkoon.

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa

Lisätiedot

riippumattomia ja noudattavat samaa jakaumaa.

riippumattomia ja noudattavat samaa jakaumaa. 12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta

Lisätiedot

exp(x) = e x x n n=0 v(x, y) = e x sin y

exp(x) = e x x n n=0 v(x, y) = e x sin y 4 Alkisfunktioita 41 Eksponnttifunktio Eksponnttifunktio xp : R R on määritlty khitlmällä xp(x) = x x n = n! Pyrimm laajntamaan määritlmän koko tasoon C sitn, ttä 1 xp : C C on analyyttinn ja xp(x) = x,

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti MAA8 Ko 5..04 T konsptiin pisttsruudukko! Muista kirjata nimsi ja rhmäsi. Lu ohjt huolllissti A-Osio: Ei saa kättää laskinta. MAOL saa olla alusta asti kätössä. Maksimissaan h aikaa suorittaa A- Osio.

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13 Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 2 x 2 3 2 3 x 1 4, (b) (x + 1)(x 2)

Lisätiedot

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat:

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat: MAA6 Loppukoe 26..203 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! Lue ohjeet huolella! A-Osio. Ei saa

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

8. RAKENNELUKU /α = 137, (8.1)

8. RAKENNELUKU /α = 137, (8.1) 8. RAKENNELUKU 37 Raknnluku 37 on skä matmatiikassa ttä fysiikassa samantapainn ja prustavalaatuinn raknnluku kuin luonnonluku /. Fysiikassa luvun 37 kääntisarvoa kutsutaan hinoraknnvakioksi, jonka tarkka

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

V ar(m n ) = V ar(x i ).

V ar(m n ) = V ar(x i ). Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

1 Ensimmäisen asteen polynomifunktio

1 Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f

Lisätiedot

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: 8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)

Lisätiedot

Kenguru 2016 Student lukiosarja

Kenguru 2016 Student lukiosarja sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

6. laskuharjoitusten vastaukset (viikot 10 11)

6. laskuharjoitusten vastaukset (viikot 10 11) 6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu. RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2

Lisätiedot

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

5 Rationaalifunktion kulku

5 Rationaalifunktion kulku Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 5 Rationaalifunktion kulku. Funktion f määrittelyehto on. Muodostetaan symbolisen laskennan ohjelman avulla derivaattafunktio f ja

Lisätiedot

Empiiriset sovellukset

Empiiriset sovellukset Empiirist sollukst Kotithtään ratkaisu.4. S ystmianalyysin Tknillinn korkakoulu Esitlmä # - Esitlmöijän nimi Optimointiopin sminaari - Kät Kotithtää Epäsymmtrisn tidon huutokauppa öljysiintymästä Piirrä

Lisätiedot

Kartio ja pyramidi

Kartio ja pyramidi Kartio ja pyramidi Kun avaruuden suora s liikkuu pitkin itseään leikkaamatonta tason T suljettua käyrää ja lisäksi kulkee tason T ulkopuolisen pisteen P kautta, suora s piirtää avaruuteen pinnan, jota

Lisätiedot

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +

Lisätiedot

TODENNÄKÖISYYS JA TILASTOT MAA6 KERTAUS

TODENNÄKÖISYYS JA TILASTOT MAA6 KERTAUS TODENNÄKÖISYYS JA TILASTOT MAA6 KERTAUS Klassinen todennäköisyys P suotuisten alkeistapausten lkm kaikkien alkeistapausten lkm P( mahdoton tapahtuma ) = 0 P( varma tapahtuma ) = 1 0 P(A) 1 Todennäköisyys

Lisätiedot

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a) Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 16.11.2017/1 MTTTP5, luento 16.11.2017 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla ~,, ~,,. 16.11.2017/2 Esim. Tutkittiin uuden menetelmän käyttökelpoisuutta

Lisätiedot

30A02000 Tilastotieteen perusteet

30A02000 Tilastotieteen perusteet 30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 6.3.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

a b c d

a b c d 1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on

Lisätiedot

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi)

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi) Kenguru 2012 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Energian säilymislain perusteella elektronin rekyylienergia on fotnien energioiden erotus: (1)

Energian säilymislain perusteella elektronin rekyylienergia on fotnien energioiden erotus: (1) S-11446 Fysiikka IV (Sf), I Väliko 544 1 Osoita, ttä Comptonin sironnassa lktronin suurin mahdollinn rkyylinrgia voidaan sittää muodossa E Kin hf 1 + mc /hf Enrgian säilymislain prustlla lktronin rkyylinrgia

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

4 Todennäköisyysjakauma

4 Todennäköisyysjakauma Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8..08 Todennäköisyysjakauma. a) Pistevaihtoehdot ovat,, ja 0. Heittoyritys tuottaa k pistettä silloin, kun kyseessä on k pisteen heitto

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K1. a) Ratkaistaan suorakulmaisen kolmion kateetin pituus x tangentin avulla. tan9 x,5,5 x,5 tan 9 x 2,8... x» 2,8 (cm) Kateetin pituus x on 2,8 cm. b) Ratkaistaan vinokulmaisen kolmion sivun pituus

Lisätiedot

PYÖRÄHDYSKAPPALEEN PINTA-ALA

PYÖRÄHDYSKAPPALEEN PINTA-ALA PYÖRÄHDYSKAPPALEEN PINTA-ALA PYÖRÄHDYSKAPPALEEN PINTA-ALA Pyörädyskappaleen pinta syntyy, kun funktion kuvaaja pyörätää suoran ympäri., suomennos Matti Pauna LIERIÖ JA KARTIO Lieriöt ja kartiot ovat yksinkertiaisimpia

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafitoriaan Syksy 2017 Lauri Hlla Tamprn yliopisto Luonnontitidn tidkunta 2 Luku 1 Pruskäsittitä 1.1 Määritlmiä 1.2 Esimrkkjä 1.3 Trminologiaa 1.4 Joitakin rikoisia yksinkrtaisia graafja 1.5

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 19: Gaussin integrointi emojanan alueessa.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 19: Gaussin integrointi emojanan alueessa. / ELEMENIMENEELMÄN PERUSEE SESSIO : Gaussin intgrointi mojanan alussa. JOHDANO Ylisssä lujuusopin lmnttimntlmässä lmntin jäykkyysmatriisi [ k ] ja kvivalnttinn solmukuormitusvktori { r } lasktaan määrätyistä

Lisätiedot

Differentiaaliyhtälöt, Syksy 2015 Harjoitus 2, Ratkaisut Ratkaise separoituvat differentiaaliyhtälöt. a) y = y

Differentiaaliyhtälöt, Syksy 2015 Harjoitus 2, Ratkaisut Ratkaise separoituvat differentiaaliyhtälöt. a) y = y Diffrntiaaliyhtälöt, Syksy 215 Harjoitus 2, Ratkaisut 1.11.215 1. Ratkais sparoituvat diffrntiaaliyhtälöt a) y = y 3, b) y = 1 + y 2 y 2. y Ratkaisu. a): Yhtälö y = 3 on hyvin määritlty kun 3. Lisäksi

Lisätiedot

= 9 = 3 2 = 2( ) = = 2

= 9 = 3 2 = 2( ) = = 2 Ratkaisut 1.1. (a) + 5 +5 5 4 5 15 15 (b) 5 5 5 5 15 16 15 (c) 100 99 5 100 99 5 4 5 5 4 (d) 100 99 5 100 ( ) 5 1 99 100 4 99 5 1.. (a) ( 100 99 5 ) ( ( 4 ( ) ) 4 1 ( ) ) 4 9 4 16 (b) 100 99 ( 5 ) 1 100

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Henkilötunnus Sukunimi Etunimet

Henkilötunnus Sukunimi Etunimet Valintakokeessa on kaksi osaa: Osa 1 sisältää viisi esseetehtävää kansantaloustieteestä. Osasta 1 voi saada 0 30 pistettä. Osa sisältää kuusi matematiikan laskutehtävää. Osasta voi saada 0 30 pistettä.

Lisätiedot

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio. Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

11 MATEMAATTINEN ANALYYSI

11 MATEMAATTINEN ANALYYSI Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 MATEMAATTINEN ANALYYSI ALOITA PERUSTEISTA 444A. a) Funktion arvot ovat positiivisia silloin, kun kuvaaja on x-akselin yläpuolella.

Lisätiedot

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2 HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Y56 laskuharjoitukset 6 - mallivastaukset

Y56 laskuharjoitukset 6 - mallivastaukset Y56 Kvät 00 Harjoitus. Monopsoni Y56 laskuharjoitukst 6 - mallivastaukst Tavoittna on ymmärtää panosmarkkinoidn luonntta, kun markkinoilla on vain yksi ostaja. Monopsoni tuottaa hyödykttä y kilpailullisill

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

3.7 Todennäköisyysjakaumia

3.7 Todennäköisyysjakaumia MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

Kokelaan sukunimi ja kaikki etunimet selväsi kirjoitetuna. Kaava 1 b =2a 2 b =0,5a 3 b =1,5a 4 b = 1a. 4 5 b =4a 6 b = 5a

Kokelaan sukunimi ja kaikki etunimet selväsi kirjoitetuna. Kaava 1 b =2a 2 b =0,5a 3 b =1,5a 4 b = 1a. 4 5 b =4a 6 b = 5a 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 28.9.2016 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

c) 22a 21b x + a 2 3a x 1 = a,

c) 22a 21b x + a 2 3a x 1 = a, Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. 1. Lukion A ja lukion B oppilasmäärien suhde oli a/b vuoden 2017 lopussa. Vuoden 2017 aikana

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

4. laskuharjoituskierros, vko 7, ratkaisut

4. laskuharjoituskierros, vko 7, ratkaisut 4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia

Lisätiedot

2 Raja-arvo ja jatkuvuus

2 Raja-arvo ja jatkuvuus Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti

Lisätiedot

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ô ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Kauppias on ostanut

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 5 (vko 4/003) (Aihe: jatkuvia satunnaismuuttujia ja jakaumia, sekamalli, Laininen luvut 5.1 5.7, 6.1 6.3)

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2. MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi)

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi) Kenguru 2013 Student sivu 1 / 7 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot