Statistinen fysiikka, osa B (FYSA242)
|
|
- Akseli Honkanen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Käytännön asioita Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 Käytännön asioita 1
2 Käytännön asioita Ajat, paikat, käytännöt Ajan tasalla olevat tiedot kurssin kotisivulta tulappi/fysa242kl16/. Luennot: 20h ma, ke klo 10.15, FYS1, huom pääsiäistauko Opettajat: Tuomas Lappi, luennot Huone FL240 (toimiston vieressä) Harjoitukset: Henri Hänninen, Toni Ikonen Kurssin arvostelu: Loppukoe tai tai myöhemmin 48 pistettä Harjoitukset: 12 pistettä (tämän kurssin pisteet voimassa kevääseen 2017) 1 Laboratoriotyö: ei arvostelua Max 60 pistettä. 2
3 Käytännön asioita Laskuharjoitukset Laskuharjoitustehtävät jaetaan maanantain luennolla Saatavilla myös kotisivulla ja aulan lokerossa Demotilaisuus ke (FYS5) heti samalla viikolla. Tilaisuus toimii laskupajana, assistentin avustuksella tehdään tehtäviä yhdessä Poikkeus saleihin: ensimmäisellä kerralla ke 2.3. klo alakerrassa FL140 Laskupajaan saa tulla ja mennä klo aikana kuten haluaa, ilmoittautumisilla ei merkitystä Palautus seuraavan viikon aluksi: ma klo 10 aulan laatikkoon Epäselväksi jääneitä edellisen viikon tehtäviä saatetaan käsitellä (demota) lyhyesti maanantain luennolla Pyynnöt käsiteltävistä tehtävistä assistenttien kautta tai suoraan luennoitsijalle Assistenttien ratkaisuehdotukset tulevat saataville koppaan. 3
4 Käytännön asioita Materiaali Virallinen kurssimateriaali Kirja: Bowley & Sanchez, Introductory Statistical Mechanics. Nämä kalvot ja kalvoja hieman laajempi luentomoniste: tulappi/fysa242kl16/ Luentomonistetta jaetaan luennolla, ylim. kappaleet laskuharjoitustehtävien lokerossa. Kalvojen ja monisteen teksti on hyvin suppea, ja muun kirjallisuuden lukeminen on tärkeää. Muita kirjoja: F. Mandl: Statistical Physics, Wiley (entinen kurssikirja) J. Arponen & J. Honkonen: Statistinen fysiikka, Limes (laajempi) Muuta materiaalia (Luennot luultavasti seuraavat näitä aika läheltä) J. Merikosken luentomuistiinpanot merikosk/statistinen-fysiikka-2002-jm.pdf J. Timosen muistiinpanot edellisten vuosien kursseilta. 4
5 Käytännön asioita Sisältöä [BS]= Bowley, Sanchez, [M] = Mandl 7. Kidevärähtelyt, kiinteän aineen lämpökapasiteetti [M 6], [BS ] Dulongin-Petit n laki Einsteinin malli Tilatiheys, Debyen malli 8. Klassinen ideaalikaasu [M 7], [BS 7] Kineettinen kaasuteoria, Translaatioliike, Maxwellin nopeusjakauma Sisäiset vapausasteet, lämpökapasiteetti Sovellukset: hilakaasu, liuos, Sackur-Tetrode-yhtälö Klassinen statistinen mekaniikka, energian ekvipartitio 9. Muuttuva hiukkasluku [BS 9] [M ] Ensemblet, Gibbsin entropia, yhteys termodynaamisiin potentiaaleihin Suurkanoninen joukko, kemiallinen potentiaali Rajapinnat, kemiallinen reaktio 10. Kvanttimekaaninen ideaalikaasu [BS , 10] [M 9,10, ] Fermionit ja bosonit Bosonikaasuja; kuuma: musta kappale, kylmä: Bose-Einstein-kondensaatti Kylmiä fermionikaasuja: johtavuuselektronit, neutronitähti Laboratoriotyö: terminen elektroniemissio 11. Kertausta 5
6 Käytännön asioita Contents of the course [BS]= Bowley, Sanchez, [M] = Mandl 7. Week 1: Heat capacity of solids [M 6], [BS ] Dulong-Petit law Einsteinin model Density of states, Debye model 8. Week 2: Classical ideal gas [M 7], [BS 7] Kinetic theory of gases Translational movement, Maxwell velocity distribution Internal degrees of freedom, heat capacity Applications: lattice gas, solution, Sackur-Tetrode equations Classical statistical mechanics 9. Week 3: Variable number of particles [BS 9] [M ] Ensembles, Gibbs entropy, connection to thermodynamic potentials Grand canonical ensemble Surfaces, chemical reactions 10. Weeks 4 & 5: The ideal quantum gas [BS , 10] [M 9,10, ] Fermions and bosons Bose gases, hot: black body, cold: Bose-Einstein-condensate Cold Fermi gases: conduction electrons, neutron star Laboratory work: thermal electron emission 11. Summary 6
7 Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl Kidevärähtelyt 7
8 Dulongin ja Petit n laki Petit, Dulong, Annales de Chimie et de Physique 10 (1819) Kokeellinen havainto: ominaislämpökapasiteetti moolimassa aineesta riippumaton vakio Nykykielellä Dulongin ja Petit n laki C V 3Nk B Ominaislämpökapasiteetti riippuu vain hiukkasten lukumäärästä Tämä pitäisi statistisen fysiikan kyetä selittämään! 8
9 Matalissa lämpötiloissa Muistetaan TD3:sta seuraava C V (T ) 0, kun T 0, jotta S(T ) S(0) = Kokeellisesti pienillä lämpötiloilla: Selitys: Eristeille Johteille C V (T ) = αt 3 C V (T ) = γt + αt 3 T 0 dt C V (T ) T αt 3 kaikille kiinteille aineille: liittyy atomien liikkeeseen kiteessä γt vain johtimille: liittyy jotenkin johdinelektroneihin < Lähdetään etsimään selitystä T 3 -käytökselle. TD3 ja siten C V (T ) 0 liittyvät kvanttimekaaniseen tilojen diskreettiyteen. = Rakennetaan kvanttistatistinen malli atomien liikkeelle hilassa. 9
10 Einsteinin malli Ensimmäinen yritys mallin rakennukseen: Kiinteä aine: kide, jossa N atomia Kukin liikkuu toisista riippumatta kemiallisten sidosten muodostamassa potentiaalissa Atomien poikkeamat pieniä: kukin atomi 3D harmoninen oskillaattori Harmoninen potentiaali sama kaikille atomeille, joka suunnassa U({x i }) = N i=1 ( u ) 2 mω2 Ex 2 i +... Nyt osataan tehdä kvanttimekaaninen tarkastelu, energiatilat ( ) 1 ε n = 2 + n ω E 10
11 Einsteinin malli: lämpökapasiteetin lasku Yhdelle 1-ulott. värähtelijälle partitiofunktio geometrisen sarjan summana { ( ) } 1 Z 1 = e βεn = exp β 2 + n ω E n=0 n=0 = exp { β ω/2} (exp { β ω}) n n=0 = exp { β ω/2} 3N riippumatonta 1-ulotteistä värähtelijää (joka atomille x,y,z- suunnat) Z 3N = [Z 1 ] 3N = ln Z 3N = 3N ln Z exp { β ω} Energia ja lämpökapasiteetti ε = d dβ Z 1 = ω E C V = [ ] exp {β ω} 1 E = 3N ε ( ) E x 2 e x = = 3Nk B T V (e x 1), x ω E 2 k B T 11
12 Einsteinin malli: matalan ja korkean lämpötilan raja x 2 e x C V (T ) = 3Nk B (e x 1), x ω E 2 k B T θ E T Korkea lämpötila: T θ E ω E /k B = x 1 Dulongin ja Petit n laki C V (T ) 3Nk B x 2 (1 + x +... ) (1 + x + 1) 2 3Nk B Matala lämpötila: T θ E = x 1 ( ) 2 θe C V (T ) 3Nk B e θ E /T T Tulkintaa C V (T ) 0 = Kvanttimekaaninen malli: sopusoinnussa TD3:n kanssa Mutta käytös ei ole kokeellinen T 3 = Jossain mallin oletuksista fysiikka väärin, mikä? 12
13 Yksiulotteinen seisova aalto Aaltoyhtälö Reunaehdot d 2 dx 2 φ(x) + k 2 φ(x) = 0 φ(0) = φ(l) = 0 Diskreetit ratkaisut φ(x) = A sin(kx), k = π L n, n = 0,1,2,... 0 L x π/l π/l 0 π L 2 π L 3 π L 4 π L Rajalla L tilat tiheässä: 1 tila k-avaruuden välillä π/l dk = π/l n 0 k 13
14 Kolme ulottuvuutta Aaltoyhtälö 2 φ(x) + k 2 φ(x) = 0 Diskreetit ratkaisut k 2 = k 2 k = π {nx,ny,nz}, nx = 0,1,2,..., ny = 0,1,2,... nz = 0,1,2,... L Yksi tila = k-avaruuden koppi : tilavuus (π/l) 3 = π 3 /V Summa yli tilojen = integraali k-avaruuden jaettuna kopin tilavuudella: n x,n y,n z k x,k y,k z >0 d 3 k π 3 /V 14
15 Aaltovektorin itseisarvon avulla θ Pallokoordinaatit: d 3 k = k 2 dk dϕ d(cos θ) Integroidaan oktantin yli: ϕ [0,π/2] dϕ = π/2 θ [0,π/2] d(cos(θ)) = 1 ϕ Eli kulmaintegraali = π/2 (1/8 pallon pinta-alasta 4πR 2 ) n x,n y,n z k x,k y,k z >0 d 3 k π 3 /V = dk V π π 3 2 k 2 = V 2π 2 dkk 2 15
16 Tilatiheys Tilatiheys f (k) dk = [ ] n x,n y,n z V 2π k 2 dk 2 kmax 0 f (k) dk [ ] Tulkinta: näin monta tilaa pallokuorella k [k,k + dk] Rajoituksia (eivät haittaa tällä kurssilla, paitsi Bose-Einstein kondensaatio.) Käyttö: Pätee suuren V :n rajalla, korvattiin summa tilojen yli integraalilla Oletettiin rotaatioinvarianssi: integroitiin kulmien yli Jos tunnetaan dispersiorelaatio eli energia/taajuus k:n funktiona: muuttujanvaihto k ω (muista myös dω = ( dω(k)/ dk) dk) 16
17 Debyen malli lämpökapasiteetille: tilat Oletus: vapausasteet kimmoaaltoja: 2 poikittaista ja 1 kpl pitkittäinen Dispersiorelaatiot ω(k) = v k ja ω(k) = v k Tilatiheys ( ) f (k) dk k 2 dk = f (ω) dω ω dω v 2 v 2 Määritellään keskimääräinen v: 3 v v 2 v 2 Lyhin mahdollinen λ = suurin taajuus ω D Moodien lukumäärästä λ = 2a ωd 0 dω 3C D v 2 ω2 = 3N = C D = 3v 2 N/ω 3 D = f (ω) dω = 9N ω 2 dω ωd 3 0 a 2a 3a 4a aallon lyhin aallonpituus x 17
18 Debyen malli: partitiofunktio ja energia Elastiset aallot ovat kvanttimekaanisia harmonisia oskillaattoreita. Yhden oskillaattorin partitiofunktio ( Z 1 (ω) = exp β ω n + 1 ) = = e 1 2 β ω 2 1 e β ω n=0 Yhden oskillaattorin energia E = d ( ) 1 dβ ln Z 1(ω) = ω e β ω Kaikkien oskillaattorien energia E = E tilat ωd 0 dω f (ω) {}}{ 9N ω 2 ω ωd 3 ( ) e β ω = 9 8 N ω D + 9N (θ D ) 3 k BT 4 θd /T 0 x 3 dx e x 1 Tässä määriteltiin Debyen lämpötila θ D ω D /k B 18
19 Debyen malli: lämpökapasiteetti C V (T ) = [ 9 T 8 N ω D + 9N θd k θd 3 B T 4 /T dx 0 ( ) 3 T θd /T 9Nk B [4 dx θ D 0 x 3 e x 1 x 3 ] e x 1 = = ( ) ] 4 θd 1 T e θ D /T 1 Rajat: T θ D : C V (T ) 3Nk B : Dulong-Petit (θ D /T 1: kehitetään integrandi sarjaksi) ( ) 3 T θ D : C V (T ) 12π4 T Nk 5 B θ T 3 D = kokeellisesti havaittu käytös! (θ D /T 1: korvataan θ D /T, kehitetään sarjaksi ja integroidaan) Tarvitaan Riemannin zeta-funktio ζ(4) = n=1 1 n 4 = π4 90 C V (T )/(3Nk B ) T /θ D :n funktiona, sekä pienen lämpötilan T 3 -käytös 19
20 Tulkintaa: kidevärähtelyt ja lämpökapasiteetti Keskeinen ero: Einstein: kaikilla oskillaattoreilla sama omega, Debyellä jakauma tilatiheyden mukaan Einsteinin mallissa kaikki oskillaattorit antavat e βθ E matalalla lämpötilalla Debyen mallissa pienelläkin lämpötilalla jotkut oskillaattorit ω k B T eivätkä ole eksponentiaalisesti suppressoituja Dulong-Petit suurillä lämpötiloilla väkisin: kun k B T θ E & k B T θ D jokainen oskillaattori antaa k B Tilatiheys f (ω) = 9N ω2 ω 3 D = 3 V 2π 2 ω 2 v 3 = ω 3 D = 6π 2 N V v 3 Voidaan mitata lämpökapasiteetista ω D ja suoraan kimmoaalloista v ja verrata; toimii ok. Johteiden C V T jäi vielä selittämättä 20
21 Statistisen fysiikan koneisto toiminnassa Molemmissa malleissa toimintatapa oli: 1. Identifioidaan keskeiset vapausasteet/fysikaaliset ainekset: Atomit värähtelevät hilassa Kimmoaallot etenevät aineessa 2. Tehdään sopiva yksinkertaistava oletus Riippumattomat värähtelijät Kimmoaalloilla sama nopeus 3. Väännetään kammesta ja lasketaan joku makroskooppien ominaisuus 4. Verrataan kokeellisiin havaintoihin Oliko tärkein fysiikka tunnistettu oikein (1)? Oliko malli liian yksinkertainen (2)? 21
Statistinen fysiikka, osa B (FYSA242)
Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi kl 26 Ajat, paikat, käytännöt Ajan tasalla olevat tiedot kurssin kotisivulta http://users.jyu.fi/ tulappi/fysa242kl6/. Luennot:
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
LisätiedotStatistinen fysiikka, osa A (FYSA241)
Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 0. Käytännön asioita 1 Ajat, paikat Ajan tasalla olevat tiedot kurssin kotisivulta
LisätiedotStatistinen fysiikka, osa B (FYSA2042)
Käytännön asioita Statistinen fysiikka, osa B (FYSA2042) Kimmo Kainulainen kimmo.kainulainen@jyu.fi Huone: FL220. Ei kiinteitä vastaanottoaikoja. kl 2018 Käytännön asioita 1 Käytännön asioita Ajat, paikat,
Lisätiedot8. Klassinen ideaalikaasu
Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti
LisätiedotLuento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli
Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen
Lisätiedot1. Johdanto. FYSA241, kevät Tuomas Lappi kl Huone: FL249. Ei kiinteitä vastaanottoaikoja.
FYSA241, kevät 2012 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 1. Johdanto 1 Ajat, paikat Luennot: 20h ma, ke klo 10.15, FYS1,, 9.1.-22.2 Demot: 10h, ke
LisätiedotStatistinen fysiikka, osa A (FYSA241)
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 1 Ajat, paikat 0. Käytännön asioita Ajan tasalla olevat tiedot kurssin kotisivulta
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta
Lisätiedot10. Kvanttikaasu. Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi kl Huone: FL240. Ei kiinteitä vastaanottoaikoja.
Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL24. Ei kiinteitä vastaanottoaikoja. kl 26. Kvanttikaasu Aaltofunktio ja hiukkasten vaihto Tunnettua kvanttimekaniikasta
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.
Lisätiedot6. Yhteenvetoa kurssista
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä
LisätiedotZ 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
Lisätiedot3. Statistista mekaniikkaa
Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Kvanttimekaniikka: diskreetit
Lisätiedot4. Termodynaamiset potentiaalit
Statistinen fysiikka, osa A (FYSA241) uomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 4. ermodynaamiset potentiaalit 1 asapainotila Mikrokanoninen ensemble Eristetty
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 1: Lämpötila ja Boltzmannin jakauma Ke 24.2.2016 1 YLEISTÄ KURSSISTA Esitietovaatimuksena
LisätiedotFononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa
Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan
Lisätiedot1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta
766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio
LisätiedotPakotettu vaimennettu harmoninen värähtelijä Resonanssi
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
LisätiedotOsittaisdifferentiaaliyhtälöt
Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,
Lisätiedotψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)
76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa
LisätiedotTILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)
TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) Kvanttimekaniikassa yhden hiukkasen systeemin täydellisen kuvauksen antaa tilavektori, joka on
LisätiedotE p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis
763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion
Lisätiedotkertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma
infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin
LisätiedotTASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko
1 TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko Aivan kuten klassisessa tapauksessa, myös kvanttimekaanisille monihiukkassysteemeille voidaan määritellä
Lisätiedot4. Termodynaamiset potentiaalit
FYSA241, kevät 2012 uomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 4. ermodynaamiset potentiaalit 1 asapainotila Mikrokanoninen ensemble Eristetty järjestelmä
Lisätiedot3. Statistista mekaniikkaa
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Kvanttimekaniikka: diskreetit
LisätiedotBM30A0240, Fysiikka L osa 4
BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,
LisätiedotTASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko
TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko Aivan kuten klassisessa tapauksessa, myös kvanttimekaanisille monihiukkassysteemeille voidaan määritellä
Lisätiedot3. Statistista mekaniikkaa
FYSA241, kevät 2012 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Muistelua johdanto-osasta: Kvanttimekaniikassa
LisätiedotBOSONIJÄRJESTELMÄT (AH 8.1, 8.2) Bosekondensaatio
BOSONIJÄRJESTELMÄT (AH 8.1, 8.2) Bosekondensaatio Atomien aaltoluonne tulee parhaiten esiin matalissa lämpötiloissa, jossa niiden terminen de Broglien aallonpituus λ T = h2 2πmT lähestyy niiden keskimääräistä
LisätiedotPotentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
Lisätiedotinfoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2
infoa tavoitteet Huomenna keskiviikkona 29.11. ei ole luentoa. Oppikirjan lukujen 12-13.3. lisäksi kotisivulla laajennettu luentomateriaali itse opiskeltavaksi Laskarit pidetään normaalisti. Ymmärrät mitä
LisätiedotPHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
LisätiedotVoima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
LisätiedotJakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti
Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
LisätiedotI PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ
I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ 1.1 Tilastollisen fysiikan ja termodynamiikan tutkimuskohde... 2 1.2 Mikroskooppiset ja makroskooppiset teoriat... 3 1.3 Terminen tasapaino ja lämpötila... 5 1.4 Termodynamiikan
LisätiedotErityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.
Lisätiedot766328A Termofysiikka Harjoitus no. 10, ratkaisut (syyslukukausi 2014)
7668A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 4). Johdetaan yksiatomisen klassisen ideaalikaasun kemiallisen potentiaalin µ(t,, N) lauseke. (a) Luentojen yhtälön mukaan kemiallinen potentiaali
LisätiedotMikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset
LisätiedotVapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /
MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella
LisätiedotLuento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat
LisätiedotVärähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.
Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)
LisätiedotAikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
LisätiedotDifferentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /
M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43
LisätiedotKULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta
LisätiedotPHYS-C0240 Materiaalifysiikka (5op), kevät 2016
PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen
LisätiedotKLASSISET TASAPAINOJOUKOT (AH 4.3, , 7.2) Yleisesti joukoista
KLASSISET TASAPAINOJOUKOT (AH 4.3, 6.1-6.7, 7.2) 1 Yleisesti joukoista Seuraavaksi tarkastelemme konkreettisella tasolla erilaisia termodynaamisia ensemblejä eli joukkoja, millä tarkoitamme tiettyä makrotilaa
LisätiedotKLASSISISTA REAALIKAASUISTA (AH 10.1)
KLASSISISTA REAALIKAASUISTA (AH 10.1) Palaamme kurssin lopuksi vielä hetkeksi tasapainosysteemien pariin, mutta tarkastelemme nyt todellisten systeemien kannalta realistisempaa tilannetta, jossa hiukkasten
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
LisätiedotS Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
Lisätiedot4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
LisätiedotMustan kappaleen säteily
Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin
LisätiedotFERMIONIJÄRJESTELMÄT (AH 9.1, 9.2) Metallien johtavuuselektronit
FERMIONIJÄRJESTELMÄT (AH 9., 9.) Metallien johtavuuselektronit Tyypillinen esimerkki lähes ideaalisesta fermionisysteemistä on metallin johtavuuselektronien muodostama järjestelmä. Metallissa atomien ulkokuorten
LisätiedotEkvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
LisätiedotEkvipartitioteoreema
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli
Lisätiedot1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =
S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
LisätiedotV KVANTTISTATISTIIKAN SOVELLUTUKSIA
V KVANTTISTATISTIIKAN SOVELLUTUKSIA... 18 5.1 Hiukkastilojen tiheys potentiaalilaatikossa...18 5. Elektronitilojen miehittyminen johtovyössä...11 5. Johtavuuselektronien lämpökapasiteetti...11 5.4 Mustan
LisätiedotFY9 Fysiikan kokonaiskuva
FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin
LisätiedotMiksi tarvitaan tilastollista fysiikkaa?
Miksi tarvitaan tilastollista fysiikkaa? cm 3 kaasua NTP ssä ~ 3 9 molekyyliä P, T? (paine ja lämpötila?) tarvitaan joitakin estimaatteja jokaisen hiukkasen dynaamisesta tilasta, todennäköisyysjakaumia
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 11 / versio 23. marraskuuta 2015 Aaltojohdot ja resonaattorit (Ulaby 8.6 8.11) TE-, TM- ja TEM-aaltomuodot Suorakulmaisen aaltoputken perusaaltomuoto
LisätiedotLuento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike
Lisätiedot3.6 Feynman s formulation of quantum mechanics
3.6 Feynman s formulation of quantum mechanics Course MAT-66000: Quantum mechanics and the particles of nature Ilkka Kylänpää Tampere University of Technology 14.10.2010 Sisältö Johdattelua Klassinen action
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät
Lisätiedot6.2.3 Spektrikertymäfunktio
ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotV KVANTTISTATISTIIKAN SOVELLUTUKSIA
V KVANTTISTATISTIIKAN SOVELLUTUKSIA... 18 5.1 Hiukkastilojen tiheys potentiaalilaatikossa... 18 5. Elektronitilojen miehittyminen johtovyössä... 11 5. Johtavuuselektronien lämpökapasiteetti... 11 5.4 Mustan
LisätiedotJohdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
LisätiedotEsimerkki 1 Ratkaise differentiaaliyhtälö
Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi
Lisätiedot780392A/782631S Fysikaalinen kemia II, 5 op / 4 op
78392A/782631S Fysikaalinen kemia II, 5 op / 4 op Luennot: 5.9.-15.11.216 Ma klo 8-1 PR12 Ti klo 12-14 PR12 Risto Laitinen (22.2.-14.3.) Epäorgaanisen kemian tutkimusyksikkö (KE 313) PL 3 914 Oulun yliopisto
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 2: Kaasujen kineettistä teoriaa Pe 26.2.2016 1 AIHEET 1. Maxwellin-Boltzmannin
LisätiedotMS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset
MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,
LisätiedotFERMIONIJÄRJESTELMÄT (AH 9.1, 9.2) Metallien johtavuuselektronit
FERMIONIJÄRJESTELMÄT (AH 9., 9.) Metallien johtavuuselektronit Tyypillinen esimerkki lähes ideaalisesta fermionisysteemistä on metallin johtavuuselektronien muodostama järjestelmä. Metallissa atomien ulkokuorten
Lisätiedotkertausta edellisestä seuraa, että todennäköisimmin systeemi löydetään sellaisesta mikrotilasta, jollaisia on
tavoitteet kertausta Tiedät mitä on Boltzmann-jakauma ja osaat soveltaa sitä Ymmärrät miten päädytään kaasumolekyylien nopeusjakaumaan Ymmärrät kuinka voidaan arvioida hiukkasen vapaa matka Kaikki mikrotilat,
Lisätiedot4. Selitä sanoin ja kuvin miten n- ja p-tyypin puolijohteiden välinen liitos toimii tasasuuntaajana?
Tentti 4..2006. a) Selitä Braggin laki röntgensäteiden heijastukselle kiteistä. b) Tutki onko tasoissa (00), (0) ja () sammuneita heijastuksia tilakeskeisessä kuutiollisessa rakenteessa. Toista sama pintakeskeisessä
Lisätiedot5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
Lisätiedotdx = d dψ dx ) + eikx (ik du u + 2ike e ikx u i ike ikx u + e udx
763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 5 Kevät 2014 1. Tehtävä: Johda luetomateriaali kaavat d 2 u i k du 2 m + Uxu = E k 2 u p = k + u x i d ux. Ratkaisu: Oletetaa, että ψx = e ikx ux, missä ux +
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,
LisätiedotCHEM-A1250 KEMIAN PERUSTEET kevät 2016
CHEM-A1250 KEMIAN PERUSTEET kevät 2016 Luennoitsijat Tuula Leskelä (huone B 201c, p. 0503439120) sähköposti: tuula.leskela@aalto.fi Gunilla Fabricius (huone C219, p. 0504095801) sähköposti: gunilla.fabricius@aalto.fi
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
LisätiedotLuento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r
Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely
LisätiedotLuento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit
Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä
Lisätiedot1 Eksergia ja termodynaamiset potentiaalit
1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian
LisätiedotFysiikka ei kerro lopullisia totuuksia. Jokin uusi havainto voi vaatia muuttamaan teorioita.
766323A Mekaniikka Mansfield and O Sullivan: Understanding physics kpl 1 ja 2. Näitä löytyy myös Young and Freedman: University physics -teoksen luvuissa 2 ja 3, s. 40-118. Johdanto Fysiikka on perustiede.
LisätiedotKerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)
Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 3A (Vastaukset) Alkuviikolla
Lisätiedot