Statistinen fysiikka, osa A (FYSA241)
|
|
- Sanna-Kaisa Nieminen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl
2 Ajat, paikat 0. Käytännön asioita Ajan tasalla olevat tiedot kurssin kotisivulta veapaja/statistical_physics/. Luennot: 20h ma, ke klo 10.15, FYS1, Demot: alkavat viikolla 3 (20.1.); kolme demoryhmää, ajat Korpissa Opettajat: Luennot: Vesa Apaja YN212 (Nanotalo) Harjoitukset: Toni Ikonen ja Henri Hänninen Kurssin arvostelu: Loppukoe tai tai myöhemmin: 48 pistettä Harjoitukset (demot): 12 pistettä Laboratoriotyöt: 12 pistettä Max 72 pistettä. Arvostelu: Kurssin läpäisyyn vaaditaan puolet tentin ja laskuharjoituspisteiden summasta sekä hyväksytysti suoritetut laboratoriotyöt. Arvosanaan 5 tarvitaan vähintään 64 pistettä, arvosanaan 1 riittää 36 pistettä. 2
3 Materiaali Ensisijainen kurssimateriaali Kirja: Bowley & Sanchez, Introductory Statistical Mechanics. Luennot: veapaja/statistical_physics/ Kalvot ja moniste antavat vain suppean kuvauksen, muun kirjallisuuden lukeminen auttaa täyttämään aukkoja. Muita kirjoja: F. Mandl: Statistical Physics, Wiley (entinen kurssikirja) J. Arponen & J. Honkonen: Statistinen fysiikka, Limes (laajempi) Luentoja netissä: David Tong: Lectures on Statistical Physics The Feynman Lectures on Physics (sisältää paljon muutakin asiaa) Tuomas Lapin luentomateriaali tulappi/fysa241kl13 Juha Merikosken luentomuistiinpanot merikosk/statistinen-fysiikka-2002-jm.pdf Jussi Timosen muistiinpanot edellisten vuosien kursseilta. 3
4 Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl Johdanto 4
5 Motivaatio Luonnon peruslait kuvaavat vuorovaikutuksia hiukkasten välillä. Käytännön tilanteissa yleensä suuri määrä hiukkasia, Esim 1 mooli = N A hiukkasta. Liian monimutkainen, ei voida seurata kaikkien liikeyhtälöitä, voimia jne. Järjestelmän osien keskinäinen vuorovaikutus Vuorovaikutus ulkopuolisen maailman kanssa Joudutaan keskiarvoistamaan hiukkasjoukon ominaisuuksia statistinen fysiikka Käytännön kannalta tärkeät suureet ovat makroskooppisia, termodynaamisia muuttujia: lämpötila T, paine P... 5
6 Kurssin aihemaailmaa Kiinteä aine tiheää, järjestäytynyt kiderakenne. Esim. magnetismi, kidevirheet, hilavärähtelyt, johtavuuselektronit... Fluidi Virtaava aine. Neste Epäjärjestynyt, tiheä. Mikroskooppinen teoria monimutkainen Kaasu Epäjärjestynyt, harva. Kokoonpuristuvuus, lämpeneminen tärkeitä sovelluksissa. Muita Mustan kappaleen säteily (= fotonikaasu), alkeishiukkasaine, suprajohtavuus, plasma, polymeerit, lasit... Ylivoimaisesti tärkein uusi asia tällä kurssilla on entropian käsite ja se miten se liittyy systeemin tiloihin. Myös lämpötila ja lämpö määritellään tarkasti. Laskutekniikkana osittaisderivaatat tulevat rutiiniksi, ja osittaisderivaatan arvojen riippuminen vakiona pidettävistä suureista hiotaan useissa esimerkeissä. 6
7 Termodynamiikka ja statistinen mekaniikka statistinen fysiikka Tällä kurssilla esitetään rinnakkain kaksi erilaista lähestymistapaa: Termodynamiikka TD (Termo lämpö, dynamiikka liikeoppi) Luonnon kuvaus makroskooppisilla suureilla, joiden välillä empiirisiä lakeja: Postulaatit: termodynamiikan pääsäännöt 0 3. ( TD0... TD3 ) Kaikille aineille yhteisiä Aineelle/systeemille ominainen tilayhtälö (Esim. kaasulle P = P(T, V, N)) Perinteiset sovellukset: olomuodon muutokset, lämpövoimakoneet ( lähes kaikki energian tuotto ja käyttö!) Statistinen mekaniikka SM Termodynamiikan johtaminen mikroskooppisesta kuvauksesta tilastollisena keskiarvona Sovellukset perinteistä termodynamiikkaa laajempia, voivat olla myös fysiikan ulkopuolella (biologia, talous, tietojenkäsittely) 7
8 Historiaa 1800-luvun alku Kuinka rakennetaan mahdollisimman tehokas höyryveturi? Klassinen termodynamiikka, mystinen entropian käsite Clausius, Kelvin 1800-luvun loppupuoli Voidaanko termodynamiikka ja entropia selittää mikroskooppisten ominaisuuksien avulla? klassinen statistinen mekaniikka Boltzmann (Tuolloin atomi oli vielä spekulatiivinen teoreettinen rakenne, ei todellisuutta) 1900-luku Klassinen statistinen mekaniikka on epäkonsistentti, miten se voidaan korjata? Kvanttimekaniikka oikea mikroskooppinen teoria oikea, toimiva, ristiriidaton statistinen mekaniikka. Nyt Laaja kirjo tutkimuskohteita: epätasapainoilmiöt, kompleksiset systeemit, sovellukset perinteisen fysiikan ulkopuolelle, laskennallinen fysiikka, biologiset systeemit... Hyvin matalan lämpötilan räätälöidyt systeemit, kuten spinsysteemit ja kylmät kvanttikaasut, mahdollistavat termodynamiikan ja statistisen mekaniikan perusolettamusten tarkan verifioinnin. 8
9 Terminologiaa Tarkastelukohteena järjestelmä = systeemi = kasa ainetta, jossa on suuri määrä (10 n ) atomeja sekä ympäristö eli muu maailmankaikkeus. Avoin systeemi voi vaihtaa ainetta ja lämpöä ympäristön kanssa (Esim. kuutiometri ilmaa keskellä huonetta, vesilasi pöydällä) Suljettu systeemi voi vaihtaa lämpöä, muttei ainetta, ympäristön kanssa (Esim. suljettu pullo vettä pöydällä) Eristetty systeemi ei vaihda ainetta eikä lämpöä (ideaalinen termospullo) Makrotila ja mikrotila Systeemin Tila joukko tunnuslukuja, jotka riittävät systeemin kuvaamiseen. Makrotila termodynaamisten suureiden arvot Kvanttimekaniikan avulla: makrotilassa hiukkasten jakautuminen energiatiloille on määritelty. Mikrotila täydellinen atomitason kuvaus, usein kvanttimekaniikan tunnuslukuja (Esim A: kaasu: 3N koordinaattia, 3N liikemäärää. B: Kestomagneetti: N spinin suunnat.) Kvanttimekaniikan avulla: mikrotilassa kaikki systeemin kvanttiluvut on määritelty. Usein puhutaan tilasta abstraktina otuksena, joka määritellään tarvittaessa tunnusluvuilla. (Vrt. geometria: abstrakti vektori ja sen komponenttiesitys) 9
10 Miksi kvanttimekaniikka on tärkeä termodynamiikassa? Ludwig Boltzmann huomasi, ettei termodynamiikan statistisia perusteita voi esittää olettamatta, että mikrotiloja pitää pystyä laskemaan ja niiden pitää olla diskreettejä. Jos mikrotiloja on aina ääretön määrä ja ne ovat äärettömän tiheässä (eli tunnusluvut ovat äärettömän tiheässä), kuten klassinen fysiikka ennustaa, putoaa koko statistiselta mekaniikalta pohja. Boltzmann sivuutti puutteen ylimalkaisesti ja vasta Planck teki oleellisen pohjatyön kvanttimekaniikan avulla. Tilojen kvantittuminen mahdollistaa statistisen mekaniikan formalismin. 10
11 Esimerkkejä mikrotiloista Hiukkanen laatikossa Vapaita kvanttimekaanisia hiukkasia laatikossa Schrödingerin yhtälö ) ( 2 2m 2 + U(x) ψ(x) = εψ(x), U(x, y, z) = laatikkoa kuvaa potentiaali { 0, kun 0 < x < L, 0 < y < L, 0 < z < L muuten ( ψ(x) = 0 tässä alueessa) Ratkaisu: ε k = 2 k 2 2m, k = π (nx, ny, nz), nx, ny, nz N L Harmoninen oskillaattori Yksiulotteinen Schrödinger Ratkaisuna energiatilat E = ( 2 d 2 2m d 2 x + 1 ) 2 mω2 x 2 ψ(x) = Eψ(x) ( n + 1 ) ω, n = 0, 1,
12 Lisää esimerkkejä mikrotiloista Magneettinen dipoli Elektroneilla on magneettinen momentti µ, Ulkoisessa magneettikentässä B dipolin energia on µ B. Kvanttimekaniikassa magneettisen momentin B:n suuntainen komponentti riippuu hiukkasen spinistä. Se ei voi olla mikä tahansa, vaan voi saada vain kaksi arvoa ±µ. Nyt hiukkasella on kaksi mahdollista energiatilaa ja. E = µb E = µb Kvanttimekaniikassa tilat voidaan laskea Diskreetit makrotilat (mahdolliset kokonaisenergiat), äärellinen ( 1) määrä mikrotiloja vastaa yhtä makrotilaa. 12
13 Monen hiukkasen tilat Oletetaan nyt N hiukkasta / värähtelijää / spiniä. Mikrotila voidaan kuvata antamalla kaikkien hiukkasten / värähtelijöiden / spinien tilat. Jos nämä eivät vuorovaikuta keskenään on tämä N hiukkasen systeemin energian ominaistila Esim. 8 vuorovaikuttamatonta spiniä Mahdollisia mikrotiloja: E = 8µB E = 2µB E = 2µB Yhteensä 2 8 tilaa, mutta vain 9 mahdollista kokonaisenergian arvoa, eli 9 makrotilaa. 13
14 Todennäköisyys Määritelmiä Klassinen: satunnaiskoe, N mahdollista tulosta, kaikki yhtä todennäköisiä Todennäköisyys p i = 1 N, i = 1,... N Tilastollinen: satunnaiskoe, N mahdollista tulosta i = 1... N. Toistetaan koe M N kertaa, saadaan tulos i n i kertaa: ( n N ) i Todennäköisyys p i = lim M M, i = 1,... N n i = M i=1 Ominaisuuksia Normitusehto i p i = 1 0 p i 1 kaikille tuloksille i Poissulkevat tapahtumat i ja j: P(i tai j) = p i + p j 2 riippumatonta satunnaiskoetta: P(i kokeessa 1 ja j kokeessa 2) = p i p j 14
15 Jakauma, odotusarvo ja keskihajonta Jakauma Kaikkien tulosten todennäköisyydet p i, i = 1... N ovat todennäköisyysjakauma. (Jakauma on siis normitettava niin, että i p i = 1.) Satunnaismuuttuja, jakauman tunnuslukuja Jos jokaiseen satunnaiskokeen lopputulokseen i liittyy joku mitattava suure x i eli satunnaismuuttuja, voidaan laskea jakauman tunnuslukuja, esim. Odotusarvo x = i p ix i (Usein merkitään x x ) Varianssi ( x) 2 (x x ) 2 = i p i(x i x ) 2 Sama kuin neliöllinen keskipoikkeama Eri merkintöjä, esim. ( x) 2 σ 2 (x) Varianssin neliöjuuri on keskihajonta x σ(x) (x x ) 2 = x 2 x 2 15
16 Kolikon heitto Yksi heitto Kaksi mahd. lopputulosta, p(klaava +) = p(kruuna ) = 1 2 Määritellään satunnaismuuttuja x klaavojen lukumäärä x =0, x +=1 Odotusarvo x = 1 2, varianssi σ2 (x) = 1 4 Suhteellinen keskihajonta σ(x)/ x = 1 Kaksi heittoa Neljä lopputulosta: ++, +, +,, kaikkien p = 1 4 Klaavojen lukumäärät x ++ = 2, x + = x + = 1, x = 0. Odotusarvo x = 1, varianssi σ 2 (x) = 1 2, Suhteellinen keskihajonta σ(x)/ x = 1 2 Suhteellisesta keskihajonnasta nähdään, että suuremmalla heittojen määrällä tulos heilahtelee vähemmän keskiarvon ympärillä. 16
17 Kertoma Laskettaessa monen toiston todennäköisyyksiä tarvitaan kertomaa: Kertoma n! n (n 1)... 1 n erilaista oliota voidaan järjestää riviin n! tavalla N oliosta voidaan valita n:n olion järjestetty osajoukko N oliosta voidaan valita n:n olion järjestämätön osajoukko N! ( N n!(n n)! n) tavalla N! (N n)! tavalla Statistisessa fysiikassa tarvitaan usein suurten lukujen kertomaa, jonka laskemiseen käytetään Stirlingin approksimaatiota: Stirling ln N! N ln N N, kun N 1. 17
18 N kolikon heittoa 2 mahd. tapausta/heitto, yhteensä 2 N tapausta Kuinka monessa näistä on n klaavaa? Ensimmäinen klaava joku N:stä heitosta, toinen joku muista N 1:stä... n:s klaava joku N n + 1:stä N (N n + 1) = N!/(N n)! tapaa. n klaavaa eivät oikeasti ole numeroituja laskettiin n(n 1) 1 = n! kertaa sama tapaus N! Johtopäätös: ( N n!(n n)! n) tapaa saada n klaavaa. Tarkistus: N ( N n=0 n) = (1 + 1) N = 2 N (binomikaavasta, x = y = 1) ) Todennäköisyys saada n klaavaa on p n = 1 ( N 2 N n suotuisat tapaukset ( kaikki tapaukset N n) tapaa saada n klaavaa 2 N on kaikkien tapausten lukumäärä (ja normitus) Yksi tulkinta: p n = Binomikaava (x + y) n = ( ) n n x n k y k k k=0 18
Statistinen fysiikka, osa A (FYSA241)
Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 0. Käytännön asioita 1 Ajat, paikat Ajan tasalla olevat tiedot kurssin kotisivulta
Lisätiedot1. Johdanto. FYSA241, kevät Tuomas Lappi kl Huone: FL249. Ei kiinteitä vastaanottoaikoja.
FYSA241, kevät 2012 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 1. Johdanto 1 Ajat, paikat Luennot: 20h ma, ke klo 10.15, FYS1,, 9.1.-22.2 Demot: 10h, ke
Lisätiedot6. Yhteenvetoa kurssista
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä
LisätiedotStatistinen fysiikka, osa A (FYSA241)
Statistinen fysiikka, osa A (FYSA241 uomas Lappi tuomas.v.v.lappi@jyu.fi kl 2013 Käytännön asioita Ajat, paikat Ajan tasalla olevat tiedot kurssin kotisivulta http: //users.jyu.fi/ tulappi/fysa241kl13/.
LisätiedotMikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 1: Lämpötila ja Boltzmannin jakauma Ke 24.2.2016 1 YLEISTÄ KURSSISTA Esitietovaatimuksena
Lisätiedot3. Statistista mekaniikkaa
Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Kvanttimekaniikka: diskreetit
Lisätiedotinfoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2
infoa tavoitteet Huomenna keskiviikkona 29.11. ei ole luentoa. Oppikirjan lukujen 12-13.3. lisäksi kotisivulla laajennettu luentomateriaali itse opiskeltavaksi Laskarit pidetään normaalisti. Ymmärrät mitä
Lisätiedot3. Statistista mekaniikkaa
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Kvanttimekaniikka: diskreetit
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN
LisätiedotStatistinen fysiikka, osa A (FYSA241)
Statistinen fysiikka, osa A (FYSA241 Vesa Apaja vesa.apaja@jyu.fi kl 2017 Käytännön asioita 0. Käytännön asioita Ajat, paikat Ajan tasalla olevat tiedot kurssin kotisivulta http://users.jyu.fi/ veapaja/
LisätiedotStatistinen fysiikka, osa A (FYSA241)
Käytännön asioita Taustaa Mikrotiloja Todennäköisyyslaskentaa Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone YN212 kl 2017 1 Käytännön asioita Taustaa Mikrotiloja Todennäköisyyslaskentaa
Lisätiedot8. Klassinen ideaalikaasu
Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti
Lisätiedot1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta
766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio
Lisätiedot3. Statistista mekaniikkaa
FYSA241, kevät 2012 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Muistelua johdanto-osasta: Kvanttimekaniikassa
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 4: entropia Pe 3.3.2017 1 Aiheet tänään 1. Klassisen termodynamiikan entropia
LisätiedotStatistinen fysiikka, osa B (FYSA242)
Käytännön asioita Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 Käytännön asioita 1 Käytännön asioita Ajat, paikat, käytännöt
LisätiedotMuita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:
Muita lämpökoneita Nämäkin vaativat ovat työtälämpövoimakoneiden toimiakseen sillä termodynamiikan pääsääntö Lämpökoneita lisäksi laitteet,toinen jotka tekevät on Clausiuksen mukaan: laiteilmalämpöpumppu
LisätiedotLämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH
Muita lämpökoneita Nämäkin vaativat työtä toimiakseen sillä termodynamiikan toinen pääsääntö Lämpökoneita ovat lämpövoimakoneiden lisäksi laitteet, jotka tekevät on Clausiuksen mukaan: Mikään laite ei
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
LisätiedotS Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
LisätiedotOPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen
LisätiedotTILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)
TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) Kvanttimekaniikassa yhden hiukkasen systeemin täydellisen kuvauksen antaa tilavektori, joka on
LisätiedotFYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 16. lokakuuta 2013 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
Lisätiedot1 Eksergia ja termodynaamiset potentiaalit
1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta
LisätiedotFYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 13. lokakuuta 2014 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
LisätiedotDiskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi
TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti
LisätiedotFYSA241/K1. Juha Merikoski ja Sami Kähkönen (1999,2005) Janne Juntunen (2006) ja Vesa Apaja (2006-)
ISING-MALLIN MONTE CARLO -SIMULOINTI Statistinen fysiikka FYSA1/K1 Juha Merikoski ja Sami Kähkönen (1999,005) Janne Juntunen (00) ja Vesa Apaja (00-) Työssä tutustutaan magneettiseen järjestäytymiseen
LisätiedotKvanttimekaniikan tulkinta
Kvanttimekaniikan tulkinta 20.1.2011 1 Klassisen ja kvanttimekaniikan tilastolliset formuloinnit 1.1 Klassinen mekaniikka Klassisen mekaniikan systeemin tilaa kuvaavat kappaleiden koordinaatit ja liikemäärät
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......
LisätiedotJ 2 = J 2 x + J 2 y + J 2 z.
FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,
LisätiedotFYSA2031 Potentiaalikuoppa
FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali
LisätiedotFysiikan maailmankuva 2015 Luento 8. Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa?
Fysiikan maailmankuva 2015 Luento 8 Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa? Ajan nuoli Aika on mukana fysiikassa niinkuin jokapäiväisessä
LisätiedotLuento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
LisätiedotPotentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
LisätiedotZ 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
Lisätiedot1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori
FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa
LisätiedotLuento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit
Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä
LisätiedotEntrooppiset voimat. Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit
Entrooppiset voimat Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) Makroskooppisia voimia, jotka syntyvät pyrkimyksestä
Lisätiedot5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
LisätiedotVapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
LisätiedotIdeaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua
Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi
LisätiedotMiten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?
21.3.2019/1 MTTTP1, luento 21.3.2019 7 TILASTOLLISEN PÄÄTTELYN PERUSTEITA Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä
LisätiedotTodennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan
LisätiedotOPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit
LisätiedotOPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit
LisätiedotMiten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja.
Luku 1 Johdanto 1.1 Todennäköisyys ja tilastotiede Kurssi käsittelee todennäköisyyslaskentaa ja tilastotiedettä. Laaditaan satunnaisilmiöille todennäköisyysmalleja. Miten hyvin mallit kuvaavat todellisuutta?
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen
Lisätiedot= 84. Todennäköisin partitio on partitio k = 6,
S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat
Lisätiedot5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3
Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,
Lisätiedotkertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma
infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä
LisätiedotCh7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.
Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu
Lisätiedot3.7 Todennäköisyysjakaumia
MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen
LisätiedotSuurkanoninen joukko
Suurkanoninen joukko Suurkanonisessa joukossa systeemi on kanonisen joukon tavoin yhdistettynä lämpökylpyyn, mutta nyt systeemin ja kylvyn väliset (kuvitellut) seinät läpäisevät energian lisäksi myös hiukkasia
LisätiedotV ar(m n ) = V ar(x i ).
Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia
LisätiedotVoima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 5: Termodynaamiset potentiaalit Ke 9.3.2016 1 AIHEET 1. Muut työn laadut sisäenergiassa
Lisätiedot&idx=2&uilang=fi&lang=fi&lvv=2015
20.10.2015/1 MTTTP5, luento 20.10.2015 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa
Lisätiedothttps://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015
12.1.2016/1 MTTTP5, luento 12.1.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa
LisätiedotTilastolliset jakaumat, niiden esittäminen ja tunnusluvut
TILASTO-OPPIA Tilastolliset jakaumat, niiden esittäminen ja tunnusluvut Diskreetit jakaumat ja niiden esittäminen frekvenssitauluna ja kaaviona Jakauma on diskreetti jos tilastomuuttuja voi saada vain
LisätiedotMiksi tarvitaan tilastollista fysiikkaa?
Miksi tarvitaan tilastollista fysiikkaa? cm 3 kaasua NTP ssä ~ 3 9 molekyyliä P, T? (paine ja lämpötila?) tarvitaan joitakin estimaatteja jokaisen hiukkasen dynaamisesta tilasta, todennäköisyysjakaumia
LisätiedotPHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
Lisätiedot4. Termodynaamiset potentiaalit
FYSA241, kevät 2012 uomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 4. ermodynaamiset potentiaalit 1 asapainotila Mikrokanoninen ensemble Eristetty järjestelmä
Lisätiedothttps://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015
25.10.2016/1 MTTTP5, luento 25.10.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa
LisätiedotTutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet
LisätiedotTermodynamiikan suureita ja vähän muutakin mikko rahikka
Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,
LisätiedotKvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri
Kvanttimekaniikka: Luento 2 Mar$kainen Jani- Petri Assarointimainos Fyssa tarvitsee assareita Noin 30 euroa tun$+ lisiä tyypillises$ n. 4h/viikko, muba voi olla enemmän/vähemmän Opintosuoritukset+ lyhyt
LisätiedotInversio-ongelmien laskennallinen peruskurssi Luento 7
Inversio-ongelmien laskennallinen peruskurssi Luento 7 Kevät 2012 1 Tilastolliset inversio-ongelmat Tilastollinen ionversio perustuu seuraaviin periaatteisiin: 1. Kaikki mallissa olevat muuttujat mallinnetaan
LisätiedotLuento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli
Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen
Lisätiedot2. Termodynamiikan perusteet
Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 2. Termodynamiikan perusteet 1 TD ja SM Statistisesta fysiikasta voidaan
LisätiedotEkvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
LisätiedotEkvipartitioteoreema
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2017 Emppu Salonen Lasse Laurson Touko Herranen Toni Mäkelä Luento 11: Faasitransitiot Ke 29.3.2017 1 AIHEET 1. 1. kertaluvun transitioiden (esim.
LisätiedotHarjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
LisätiedotJuuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774
LisätiedotTermodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita
Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska
Lisätiedot4. Termodynaamiset potentiaalit
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2015 4. ermodynaamiset potentiaalit 1 ermodynaaminen tasapaino kanonisessa joukossa Mikrokanoninen
LisätiedotLuku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde
Luku 20 Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Uutta: Termodynamiikan 2. pääsääntö Jäähdytyskoneen hyötykerroin ja lämpöpumpun lämpökerroin Entropia Tilastollista termodynamiikkaa
LisätiedotS-114.1327 Fysiikka III (Est, 6,0 op) Viikko 11
S-114.1327 Fysiikka III (Est, 6,0 op) LUENTOSUUNNITELMA KEVÄT 2007, 2. PUOLILUKUKAUSI Toisen puolilukukauden aikana käydään läpi keskeiset kohdat Kvanttifysiikan opetusmonisteen luvuista 3-7. Laskuharjoituksia
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 1: lämpötila, Boltzmannin jakauma Ke 22.2.2017 1 Richard Feynmanin miete If,
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin
LisätiedotMolaariset ominaislämpökapasiteetit
Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen
LisätiedotBiofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia.
Biofysiikka Luento 7 1 6. Entropia, lämpötila ja vapaa energia Shannonin entropia Boltzmannin entropia M I NK P ln P S k B j1 ln j j Lämpötila Vapaa energia 2 Esimerkkiprobleemoita: Miten DNA-sekvenssistä
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.
LisätiedotAikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
LisätiedotLämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.
Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole
LisätiedotKorkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli
LisätiedotS , Fysiikka III (Sf) tentti/välikoeuusinta
S-114.45, Fysiikka III (Sf) tentti/välikoeuusinta.11.4 1. välikokeen alue 1. Osoita, että hyvin alhaisissa lämpötiloissa elektronin FD systeemin energia on U = (3/ 5) ε F. Opastus: oleta, että kaikki tilat
Lisätiedot766326A Atomifysiikka 1 - Syksy 2013
766326A Atomifysiikka 1 - Syksy 2013 Luennot n. 46 tuntia Torstaisin 8-10 sali IT116 Perjantaisin 8-10 sali L6 Poikkeuksia: to 19.9. luento vain 8-9 to 17.10. luento vain 8-9 to 14.11. luento vain 8-9
Lisätiedot4. Termodynaamiset potentiaalit
Statistinen fysiikka, osa A (FYSA241) uomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 4. ermodynaamiset potentiaalit 1 asapainotila Mikrokanoninen ensemble Eristetty
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Lisätiedot