Sormenjälkimenetelmät

Koko: px
Aloita esitys sivulta:

Download "Sormenjälkimenetelmät"

Transkriptio

1 Sormejälkimeetelmät Matti Risteli Semiaariesitelmä T Satuaisalgoritmit Tietotekiika laitos Tekillie korkeakoulu Tiivistelmä Sormejälkimeetelmät ovat satuaisuutta hyväksikäyttäviä algoritmeja, joilla pyritää ratkaisemaa s. ekvivalessiogelmia. Nämä ovat ogelmia, joissa tietojoukkoje A ja B sisällö yhtäläisyyttä halutaa tutkia. Sormejälkimeetelmiä hyödytävät algoritmit voivat olla sekä Mote Carlo että Las Vegas -tyyppisiä. Satuaisalgoritmeilla voidaa pieetää tietojoukkoje vertailussa tarvittava tiedo määrää esim. tilateissa joissa jokaise tavu vertailu ei ole soveltuvaa(suuri tietomäärä hitaa yhteyde päässä toisistaa). Satuaiset sormejälkimeetelmät perustuvat todistajie rusaus -paradigmaa ja iide virhetodeäköisyyttä voidaa parataa helposti. 1 Johdato Tämä semiaarityö käsittelee satuaisuutee perustuvia sormejälkimeetelmiä. Sormejälkimeetelmillä pyritää ratkaisemaa s. ekvivalessiogelmia, joissa kahde tietojouko yhtäläisyys halutaa selvittää tilateissa joissa iide suora vertailu tai kryptografiste tiivisteide laskemie ei ole käytäöllistä esimerkiksi suure datamäärä vuoksi. Tällöi tietojoukkoje suora vertailu sijaa verrataa iide sormejälkiä. Sormejäljet ovat epätarkkoja kuvauksia, joilla alkuperäie tietojoukko esitetää pieemmässä tilassa. Tällä yhtäältä saavutetaa suorituskykyetua mutta toisaalta myös mahdollistetaa virheelliset päätelmät. Sormejälkimeetelmät voidaa ähdä yleisesti todistajie rusaus -paradigma erityistapauksea, joka virhetodeäköisyyttä voidaa pieetää amplifioimalla. Sormejälkimeetelmiä voidaa käyttää hyväksi sekä Las Vegas että Mote Carlo -algoritmeissa. Teksti perustuu Juraj Hromcovici kirjaa Desig ad Aalysis of Radomized Algorithms [1] ja mukailee pääpiirteissää kirja Figerpritig-luvu sisältöä. Aluksi esittele mitä ekvivalessiogelmalla tarkoitetaa ja mite sormejälkimeetelmät periaatteellisella tasolla toimivat. Se jälkee käydää läpi sekä Las Vegas että Mote Carlo -algoritmejä käyttävät esimerkkiogelmat ja lopuksi iide käytäö sovelluksia. 1

2 2 Ekvivalessiogelmista Ekvivalessiogelma o ogelma, joka muodostuu kahdesta tietojoukosta, joide yhtäläisyys halutaa selvittää. Yksikertaisilla tietojoukoilla tämä voidaa tehdä helposti vertailemalla tietoja toisiisa suoraa, mutta usei se ei ole soveltuvaa joko suure tietomäärä tai vertailu vaikeude aiheuttamie suorituskykyogelmie vuoksi. Yksikertaie esimerkki tällaisesta ogelmasta o polyomie ekvivalessi ts. mite ratkaista oko esimerkiksi polyomit (x 1)(x 2 + 4) ja x 3 + 4x 4 toistesa eri esitysmuotoja. Normaali lähestymistapa olisi tietysti johtaa molemmat polyomit jokilaisee ormaalimuotoo ja tarkistaa jokaise termi yhtäläisyys eriksee. Tämä ei kuitekaa moimutkaisemmissa tapauksissa ole järkevää, koska sekä vertailu että se valmistelut ovat hitaita. Sormejälkimeetelmällä tehty tarkistus o opeampi ja virhetodeäköisyys o joko hyvi piei tai virhettä ei ole ollekaa. Polyomiesimerki tapauksessa sormejälkimeetelmii perustuva tarkistus evaluoisi molemmat polyomit samalla syötteellä ja tutkisi vastauste yhtäsuuruutta. Virhetodeäköisyys olisi tässä tapauksessa yhtälö asteesta riippuva mutta tuettu. 3 Sormejälkimeetelmät Sormejälkimeetelmä voidaa ajatella todistajie joukkoa, joide avulla voidaa kuvata lähdetietojouko moimutkaise esitykse helpommi vertailtavaksi sormejäljeksi. Polyomiesimerkissä todistajia ovat satuaisesti valitut x: arvot ja sormejälkiä polyomeille valittuje x: arvoje perusteella saadut arvot. Triviaalisti voidaa saoa että x: arvo 0 o huoo todistaja. Yleisesti hyvä sormejälkimeetelmä täyttää seuraavat vaatimukset: Sormejälkie tulee olla tarpeeksi yksikertaisia ja pieiä että iitä voidaa vertailla tehokkaasti. Tämä saavuttamiseksi sormejälki saa olla jopa epätäydellie esitys alkuperäisestä tietojoukosta. Sormejälje tulee sisältää mahdollisimma paljo oleaista iformaatiota alkuperäisestä tietojoukosta. Yleisemmi sormejälkimeetelmää voidaa kuvata joukkoa M, joka jokaie alkio o fuktio, joka tuottaa tietojouko täydellisestä kuvauksesta sitä vastaava sormejälje. Yksittäisessä tapauksessa ogelmaa o löytää M, joka tarpeeksi moi fuktio f tuottaa kuvaukse, jolla erilaisille tietojoukoille O 1 ja O 2 pätee f(o 1 ) f(o 2 ). Tästä johtue sormejälkimeetelmä oki todistajie rusaus -meetelmä erityistapaus. Joukko M voidaa ajatella joukoksi todistajakadidaatteja, joilla pyritää todistamaa että O 1 O 2 ja h M yksittäiseksi todistajaksi sille että O 1 O 2, jos h(o 1 ) h(o 2 ). 3.1 Sormejälkimeetelmä toimita Tarkoitus o selvittää kahde suure tietojouko O 1 ja O 2 ekvivalessi. Sormejälkii perustuva ekvivalessitarkistus eteee seuraavasti: 2

3 1. Tuetaa joukko M, joka sisältää fuktioita, joista jokaie kuvaa tietojouko täydellise sisällö pieempää tilaa. Valitaa tästä joukosta yksi fuktio h satuaisesti. 2. Lasketaa h(o 1 ) ja h(o 2 ), h(o i ):tä kutsutaa O i : sormejäljeksi, i = 1,2 3. Verrataa h(o 1 ): ja h(o 2 ): arvoja. Jos h(o 1 ) = h(o 2 ), ovat O 1 ja O 2 ekvivaletit. Sormejälkimeetelmä suuittelussa oleaista o oikea jouko M löytämie. Yhtäältä tavoiteltavaa o että käytetyt meetelmät tuottavat mahdollisimma uiiki sormejälje ja täte M sisältää paljo todistajiksi sopivia kadidaatteja, toisaalta sormejälje täytyy olla mahdollisimma piei jotta sitä voidaa vertailla tehokkaasti. Nämä tavoitteet ovat selkeästi ristiriidassa, jote soveltuva kompromissi löytämie o tärkeää. 4 Esimerkkiogelmia Tässä kappaleessa kuvataa aluksi kaksi läheisesti toisiisa liittyvää ogelmaa ja iihi Mote Carlo -tyyppisee algoritmii perustuvat ratkaisut, jotka sallivat site pieellä todeäköisyydellä myös virhepäätelmät. Toisee ogelmatyyppii esitä Las Vegas -algoritmi, joka suorituksessa sormejälkiä käytetää hyväksi ilma virhee mahdollisuutta. Molemmat algoritmit käyttävät hyväksee samatyyppisiä sormejälkiä, mutta ovat silti hyvi erityyppiset. 4.1 Tietoliikee Tutkitaa skeaarioita, joissa kahde tietokoee, R 1 ja R 2, muistie sisältöä halutaa vertailla tehokkaasti. Koska tarkoitus o esitellä sormejälkimeetelmiä oletetaa, että jokaisessa ogelmassa tietokoeet ovat ii kaukaa, joko fyysisesti kaukaa tai muute vaa hitaa yhteyde päässä, toisistaa, ettei muistie sisällö suora vertailu ole tehokasta. Tästä syystä algoritmie tehokkuus mitataa iide siirtämä tiedo perusteella. Esimmäisessä tapauksessa halutaa tutkia oko tietokoee R 1 sisältämä bittijoo x {0,1} sama kui tietokoee R 2 sisältämä bittijoo y {0,1}. Determiistie algoritmi lähettäisi data kooaisuudessaa toiselta koeelta toiselle, mikä jälkee vertailu tehtäisii saa(word) kerrallaa. Lisäksi siirrety tiedo eheys aiheuttaa lisäkustauksia. Merkitää bittijooja x = x 1 x 2 x 3...x ja y = y 1 y 2 y 3... y, x i,y i 0,1, i = 1,...,. Number(x) tarkoittaa bittijoo x kymmekataista lukutulkitaa. Mahdolliste todistajie joukoksi otetaa kaikki alkuluvut < 2, merkitää tätä joukkoa Prim( 2 ). Sormejälkialgoritmi toimii seuraavasti 1. R 1 valitsee sormejälje geeroitia varte luvu p Prim( 2 ) 2. R 1 laskee valitu luvu avulla s = Number(x) mod p ja lähettää sekä s: että p: R 2 :lle 3

4 3. R 2 vastaaottaa s: ja p: ja laskee q = Number(y) mod p Jos q = s, todetaa että x = y, muute x y. Algoritmi toimia kaalta oleaista ovat siirrety tiedo määrä ja algoritmi virhetodeäköisyys. Tiedo määrästä tiedetää, että s p < 2. Tästä seuraa että s tai p vie maksimissaa log 2 2 bittiä, jote koko viesti pituudeksi tulee 2 log log 2. Jos = saadaa siirrettävä tiedo määräksi 4 16 log 2 10 = 256 bittiä, joka o huomattava väheys bittii ähde. Virhetodeäköisyyde arvioitia varte jaetaa kaikki p: mahdolliset arvot(alkuluvut jotka ovat pieempiä kui 2, merkitää Prim( 2 )) kahtee joukkoo, iihi jotka aiheuttavat virhee ja iihi jotka eivät). Koska jokaise p Prim( 2 ) valitatodeäköisyys o sama o virhetodeäköisyys huootluvutprim( 2 ) : ssa Prim( 2. ) Alkulukuteoreema perusteella tiedetää, että Prim( 2 ) > 2 2 l. Bad(2 ): maksimiarvoksi voidaa l 2 äyttää 1. Tästä saadaa, että kuvatu algoritmi virhetodeäköisyys o. Tapuksessa = 10 16, virhetodeäköisyydeksi saadaa 0, , mikä ei ole todellie riski. Toie tapaus o laajeettu esimmäisestä. Tässä koee R 1 muistissa o bittijoo x {0,1}. Toise koee R 2 muistissa o bittijoojoukko U = {u 1,u 2,u 3,...,u k },u i {0,1},i = 1,...,k. Halutaa selvittää kuuluuko joo x joukkoo U. Determiistisellä algoritmillä aioa tapa olisi lähettää joo x kokoaisuudessaa koeelle R 2, joka se jälkee vertaisi x:ää jokaisee U: alkioo. Satuaisalgoritmi PSet eteee esimmäisessä tapauksessa kuvatu mukaisesti mutta R 2 laskee p: avulla q i = Number(u i ) mod p, i = 1,...,k, mikä jälkee jos s {q 1,q 2,...,q k } todetaa että x U, muute x U. Kuvatu protokolla vaatima tiedosiirto o triviaalisti sama kui aiemmassa esimerkissä(4 log 2 ), jote tutkitaa järjestelmä virhetodeäköisyyttä. Tilae jaetaa kahtee tapauksee Jos x U, tiedetää että o olemassa j {1,...,k} jolla x = u j ts. Number(x) = Number(u j ) mod m, jote algoritmi toimii varmasti ku x U. Jos x U, merkitää A i sitä tapausta ku ja Number(x) mod p = Number(u i ) mod p,i = 1,...,k A = k i=1 A i, joka o tapaus, jossa PSet tuottaa väärä vastaukse x U. Aiemma esimerki perusteella tiedetää, että ja täte P(A i ) 1 Prim(2) 2 l, kaikille i {1,...,k}. 4

5 josta seuraa että V irhet PSet (x,u) = V irhet PSet (x,u) 1 2, ku k P(A) = P( k i=1a i ) Σ k i=1p(a i ) Σ k 2 l i=1 = k 2 l, 4 l. Täte PSet o yksipuolise virhee(oe-sided error) Mote Carlo -algoritmi, joka tarkistaa kuuluuko x joukkoo U, ku k 4 l. Molemmissa kuvatuissa ogelmissa algoritmi virhetodeäköisyyttä voidaa pieetää käyttämällä useampaa alkulukua todistajaa. Lisäksi voidaa äyttää, että virhee aiheuttavie alkulukuje määrä o aia maksimissaa 1, jote virheelliste ja hyvie alkulukuje suhdetta voidaa parataa myös kasvattamalla joukkoa, josta alkulukuja valitaa. Algoritmia voidaa amplifioida jopa ii että hyötyje katoamatta algoritmi virhetodeäköisyys saadaa ii pieeksi että muista syistä(rautavika, luoo katastrofi tms.) johtuvie virheide todeäköisyys o suurempi. 4.2 Alimerkkijoo-ogelma Hahmotuistus(patter matchig) o yksi yleisimmistä tekstikäsittelyy ja algoritmeihi liittyvistä ogelmista. Sillä o myös käytäö sovellutuksia yleisesti molekyylibiologiassa. Hahmotuistamise perusteella voidaa jaotella asioita eri kategorioihi tai tehdä hakuja tietojoukosta. Tässä kappaleessa kuvataa sormejälkiä käyttävä tapa tuistaa alimerkkijooja tehokkaasti. Aluksi tuetaa merkkijoo x = x 1 x 2 x 3...x ja teksti y = y 1 y 2...y m aakkostossa Σ(ts. x i Σ, i = 1,..., ja y j Σ, j = 1,...,m). Halutaa selvittää sisältääkö y merkkijoo x. Lisäksi, mikäli x o y: alimerkkijoo, halutaa tietää myös piei ideksi r, jolla x 1 x 2...x = y r y r+1...y r+ 1. Selvyyde vuoksi tässä esimerkissä valitaa aakkostoksi Σ = {0,1}. Jokaiselle k {1,...,m 1} ja r 1,...,m k + 1 merkitä y(r,k) = y r y r+1... y r+k 1 tarkoittaa sitä k-pituista alimerkkijooa, joka alkaa ideksistä r. Aetuille x = x 1 x 2... x ja y = y 1 y 2... y m yksikertaie determiistie algoritmi vertaa x:ää jokaisee y(r,):ää, r = 1, 2,..., m +1. Yksikertaie, jokaise merki vertailuu vasemmalta oikealle perustuva algoritmi suorittaa O( + m) operaatiota etsiessää x:ää y:stä. Alla esitellää sormejälkiä hyväksikäyttävä algoritmi, joka suoriutuu tehtävästä opeammi. Algoritmi suorittamista varte määritellää fuktio f : N N N, joka arvoa pieempiä alkulukuja algoritmissa käytetää. STRING(f)-algoritmi eteee seuraavasti 5

6 1. Valitaa satuaisesti alkuluku p joukosta P rim(f(, m)). 2. Lasketaa Figer p (x) = Number(X) mod p 3. Lasketaa järjestyksessä Figer p (y(r,)) = Number(y(r,)) mod p ja verrataa Figer p (y(r,)):ää Figer p (x):he, kaikille r {1,2,...,m + 1}.. Jos Figer p (y(r,)) = Figer p (x), verrataa x:ää y(r,):ää. Jokaiselle j {1,2,...,m + 1}, jolle pätee Figer p (y(j,)) = Figer p (x), tarkistetaa vielä että x vastaa oikeasti y(j, ):ää. Jos y(j, ) = x, algoritmi palauttaa j: pieimmäksi ideksiksi josta merkkijoo x löytyi. Muussa tapauksessa jatketaa vertailua Figer r (y(j + 1,)):ästä. Yllä esitelty algoritmi o Las Vegas -tyyppie, koska kaikki osumat tarkistetaa vielä alkuperäisiä merkkijooja käyttäe, mikä estää virheelliste osumie palauttamise. Algoritmi aikakompleksisuutta tutkitaa seuraavaksi. Triviaalisti Figer p (x) tai Figer p (1,) vie aikaa O(). Kaikki sormejäljet Figer p (y(r,)), ku r = 1,...,m + 1 voidaa laskea ajassa O(m). Tämä pitää paikkasa koska valitusta aakkostosta johtue Number(y(r + 1,)) = 2 [Number(y(r,)) 2 1 y r ] + y r+ ja tästä johtue sormejälki Figer p (y(r + 1,)) voidaa laskea Figer p (y(r + 1,)) = (2 [Figer p (y(r,)) (2 1 y r ) mod p] + y r+ ) mod p. Myös millä tahasa muulla aakkostolla voidaa alimerkkijooje lukuarvot laskea edellise alimerkkijoo arvo avulla. Tutkitaa tapaukse, jossa y ei sisällä alimerkkijooa x:ää, aikavaatimukse ylärajaa. Merkitää A r sitä tapausta, jossa silti Figer p (x) = Figer p (y(r,)). Edellisestä kappaleesta tiedetää että virheellise sormejälje todeäköisyys o P(A r ) Täte STRING(f)-algoritmi aikavaatimus o 1 Prim(f(,m)) lf(,m) f(,m) O(m) + Σ m +1 r=1 (1 + Prob(A r ) ), O(m)-ajassa saadaa laskettua Figer p (x) ja kaikki Figer p (y(r,)): arvot. O(m) + m 2 l f(,m) f(,m) Jos valitaa f(,m) = 2 m l( 2 m), saadaa Aikavaatimus STRING( 2 m l( 2 m))(x,y) O(m) Tilatee, jossa x löytyy y:stä aikavaatimus o pieempi, koska algoritmi suoritus loppuu tällöi aiemmi. 6

7 5 Käytäö sovelluksia Yllä kuvatut esimerkit ovat luoteeltaa hyvi teoreettisia, jote tässä kuvaa muutamia käytäö sovelluksia, missä sormejälkitekiikoista o hyötyä. Useat sormejälkitekiikoide käytäö sovellukset perustuvat Las Vegas -algoritmeihi, joissa jotai vaikeaa hakua opeutetaa filtteröimällä tietoa alimerkkijooesimerki(ks. 4.2) tapaisesti ja hakemalla tästä suppeammasta joukosta osumia tehokkaasti. Tällaisia ogelmia o usei esimerkiksi tekstikäsittelyssä. Mote Carlo -tyyppie esimerkki esitetää Idetifyig redudacy i source code usig figerprits -kofferessipaperissa[2] tapa käyttää sormejälkiä toisteisuude tutkimisee isossa lähdekoodimäärässä. Tämäki meetelmä perustuu osittai kappaleessa 4.2 esitety alimerkkijooogelma ratkaisuu. Tässä tapauksessa lähdekoodeista geeroidaa sormejäljet vastaavasti kui alimerkkijooesimerki tekstistä y. Toisi kui alimerkkijooesimerkissä tässä käytettyje alimerkkijooje pituus o joki rivimäärä lähdetiedostoissa, mikä aiheuttaa se että eri kohdissa syötettä sormejälki geeroidaa eri pituisista merkkijooista. Koska tietoa o huomattava määrä sormejälkie geeroimiseki jälkee, poimitaa kaikista geeroiduista sormejäljistä e, jotka kattavat pisimmät merkkijoot, kuvaamaa kaikkia merkkijooja, jotka sisältyvät sormejälkee. Jäljelle jääeistä sormejäljistä poistetaa vielä e jotka esiityvät vai kerra, sekä yhdistetää peräkkäiset sormejäljet, jotka esiityvät joka paikassa samalla tavalla peräkkäi. Nyt jäljelle jääeide sormejälkie perusteella voidaa tutkia mahdollisia toisteisuus tarkemmi. 6 Yhteeveto Sormejälkimeetelmiä voidaa käyttää hyväksi tietytyyppisissä päätösogelmissa. Sormejälkie tarkoituksea o kuvata iso tietojoukko pieempää tilaa, site että sormejälkie perusteella tehty vertailu o tehokkaampaa. Sormejälkitekiikoide käyttötapoja o sekä Mote Carlo -tyyppisissä että Las Vegas -tyyppisissä algoritmeissa. Mote Carlo -algoritmeissa ogelma ratkaisu perustuu suoraa tietojoukoista tuotettuu sormejälkee, mikä sormejälje omiaisuuksie vuoksi aiheuttaa virheitä tietyllä todeäköisyydellä. Usei kuiteki virhetodeäköisyys o ii piei(tai voidaa amplifioimalla saattaa hyvi pieeksi), että sitä ei tarvitse ottaa huomioo. Toie tapa käyttää sormejälkiä o käyttää iitä tiedo filtteröitii jolloi tarkempi vertailu voidaa tehdä sille tietojoukolle, joka sormejälki vastaa toista vertailtavaa. Tässä tapauksessa virheitä ei tule ja täte algoritmi o Las Vegas -tyyppie, mutta filtteröiti vähetää silti vaadittavie vertailuje määrää ja site tehostaa ogelma ratkaisua. 7

8 Viitteet [1] Juraj Hromkovic. Desig Ad Aalysis of Radomized Algorithms, Itroductio to Desig Paradigms, chapter 4. Spriger, [2] J. Howard Johso. Idetifyig redudacy i source code usig figerprits,

Tilastolliset menetelmät: Tilastolliset testit

Tilastolliset menetelmät: Tilastolliset testit Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.

Lisätiedot

4.3 Signaalin autokorrelaatio

4.3 Signaalin autokorrelaatio 5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

3 10 ei ole rationaaliluku.

3 10 ei ole rationaaliluku. Harjoitukset / 011 RATKAISUT Lukuteoria 1. Etsi Eratostheee seulalla samatie kaikki lukua 400 pieemmät alkuluvut. (Tai ohjelmoi tietokoeesi etsimää paljo lisää.) Kirjoita rivii kaikki luvut 1-00. Poista

Lisätiedot

2. Mittaus ja data 2.1. Johdanto. 2.2. Mittaustyypit

2. Mittaus ja data 2.1. Johdanto. 2.2. Mittaustyypit 2. Mittaus ja data 2.. Johdato Voidaksemme keksiä tosimaailma relaatioita tarkastelemme sitä kuvaavaa dataa, jote esiksi selvitämme, mitä data perimmiltää o. Data kerätää kuvaamalla mielekiitoaluee oliot

Lisätiedot

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla. Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä

Lisätiedot

Bloom-filtterit. Juho Mäkinen jvmakine(at)cs.hut.fi

Bloom-filtterit. Juho Mäkinen jvmakine(at)cs.hut.fi Bloom-filtterit Juho Mäkie jvmakie(at)cs.hut.fi Semiaariesitelmä 9.4.2008 T-106.5800 Satuaisalgoritmit Tietotekiika laitos Tekillie korkeakoulu Tiivistelmä Bloom-filtteri o probabilistie tietorakee, joho

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu 83A Tietoraketeet ja algoritmit 06-07, Harjoitus ratkaisu Harjoitukse aiheea o algoritmie oikeellisuus. Tehtävä. Kahvipurkkiogelma. Kahvipurkissa P o valkoisia ja mustia kahvipapuja, yhteesä vähitää kaksi

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

2.5. Eksponenttifunktio ja eksponenttiyhtälöt

2.5. Eksponenttifunktio ja eksponenttiyhtälöt Eksoettifuktio ja -htälöt Eksoettifuktio ja eksoettihtälöt Ku otessi käsitettä laajeetaa sallimalla eksoetille muitaki arvoja kui kokoaislukuja, tämä taahtuu ii, että ii saotut otessikaavat ovat voimassa,

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla:

ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla: 10 a) Valo opeus levyssä o vakio v 0 = c / 0, jote ajaksi matkalla L laskemme L t0 = = 0 L. v0 c b) Valo opeus levyssä riippuu z:sta: c c v ( z) = = ( z ) 0 (1 + 3az 3 ) ja läpäisyaika lasketaa (esim)

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi SMG-400 Sähkömageettiste järjestelmie lämmösiirto Ehdotukset harjoitukse 6 ratkaisuiksi Tarkastellaa suljetu järjestelmä tehotasaaioa joka o P + P P = P i g out st Oletetaa että verkotetussa alueessa jossa

Lisätiedot

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia?

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia? Kuluttajahitaideksi (KHI) Kysymys Mite mitata raha arvo muutoksia? Kuluttajahitaideksi (KHI) o sovittu kulutustavaroide ja palveluide hitakehitykse mittari. KHI muodostetaa paiotettua keskiarvoa eri pääryhmie

Lisätiedot

Tehtäviä neliöiden ei-negatiivisuudesta

Tehtäviä neliöiden ei-negatiivisuudesta Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:

Lisätiedot

Harjoitustehtävien ratkaisuja

Harjoitustehtävien ratkaisuja 3. Mallitamie lukujooje avulla Lukujoo määritelmä harjoituksia Harjoitustehtävie ratkaisuja 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3 a) 6,, 8, 4, 30. b) 8,, 6, 0,

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen

T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen T-1.1 Datasta tietoo, syksy 5 Laskuharjoitus.1., ratkaisuja Joui Seppäe 1. Simuloidaa tasoittaista algoritmia. Esimmäisessä vaiheessa ehdokkaia ovat kaikki yhde muuttuja joukot {a}, {b}, {c} ja {d}. Aaltosulkeide

Lisätiedot

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015 Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,

Lisätiedot

Kompleksiluvut. Johdanto

Kompleksiluvut. Johdanto Kompleksiluvut Johdato Tuomo Pirie tuomo.pirie@tut.fi Aikoje kuluessa o matematiikassa kohdattu tilateita, jolloi käytetyt määrittelyt ja rajoitukset (esimerkiksi käytetyt lukujoukot) eivät ole olleet

Lisätiedot

Ryhmän osajoukon generoima aliryhmä ja vapaat ryhmät

Ryhmän osajoukon generoima aliryhmä ja vapaat ryhmät Ryhmä osajouko geeroima aliryhmä ja vapaat ryhmät LuK-tutkielma Joose Heioe Matemaattiste tieteide tutkito-ohjelma Oulu yliopisto Kevät 2017 Sisältö Johdato 2 1 Ryhmät ja aliryhmät 2 1.1 Ryhmä.................................

Lisätiedot

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria

Lisätiedot

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

Valvontakortit. Sovelletun Matematiikan Erikoistyö. Pastinen Tommi 23.4.2010

Valvontakortit. Sovelletun Matematiikan Erikoistyö. Pastinen Tommi 23.4.2010 Valvotakortit Sovelletu Matematiika Erikoistyö Pastie Tommi 3.4. Tässä työssä perehdytää valvotakortteihi tilastollisessa laaduvalvoassa perusteoria ja esimerkkitapauste kautta. Sisältö Johdato... 3 Tilastollisesta

Lisätiedot

LASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000

LASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000 LASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000 Laskuharjoitus Detaljibalassi Osoita, että siirtymätodeäköisyydet π m α m ; ρ, m ρ α m ----- ; ρ < ρ, m m π m, m m ja π m ρ α m ------------------ ρ +, m π

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu 111A Tietoraketeet ja algoritmit, 016-017, Harjoitus, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje kompleksisuusluokat

Lisätiedot

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

811312A Tietorakenteet ja algoritmit II Algoritmien analyysi

811312A Tietorakenteet ja algoritmit II Algoritmien analyysi 811312A Tietoraketeet ja algoritmit 2016-2017 II Algoritmie aalyysi Sisältö 1. Algoritmie oikeellisuus 2. Algoritmie suorituskyvy aalyysi 3. Master Theorem 811312A TRA, Algoritmie aalyysi 2 II.1. Algoritmie

Lisätiedot

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Talousmatematiikka (3 op) Tero Vedejuoksu Oulu yliopisto Matemaattiste tieteide laitos 2010 Sisältö Yhteystiedot: Tero Vedejuoksu tero.vedejuoksu@oulu.fi Työhuoe M231 Kurssi kotisivu http://cc.oulu.fi/~tvedeju/talousmatematiikka/

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Differentiaali- ja integraalilaskennan jatkokurssi

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Differentiaali- ja integraalilaskennan jatkokurssi Calculus Lukio 8 MAA Differetiaali- ja itegraalilaskea jatkokurssi Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Differetiaali- ja itegraalilaskea jatkokurssi

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k =

Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k = Diskreeti Matematiika Paja Ratkaisuja viikolle 4. (7.4-8.4) Jeremias Berg. Osoita iduktiolla että k = ( + ) Ratkaisu: Kute kaikissa iduktiotodistuksissa meidä täytyy siis osoittaa asiaa. Ns. perustapaus,

Lisätiedot

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku

Lisätiedot

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan RATKAISUT 8 17 8 a) Paraabelie y x ja y x + x + 1 leikkauspisteet saadaa määritettyä, ku esi ratkaistaa yhtälö x x + x + 1, eli x x, joka o yhtäpitävä yhtälö x x. Toise astee yhtälö ratkaisukaavalla saadaa

Lisätiedot

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Satunnaisalgoritmit Topi Paavilainen Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 1 Johdanto Satunnaisalgoritmit ovat algoritmeja, joiden

Lisätiedot

Kombinatoriikka. Iiro Honkala 2015

Kombinatoriikka. Iiro Honkala 2015 Kombiatoriikka Iiro Hokala 2015 Sisällysluettelo 1. Haoi torit 1 2. Lokeroperiaate 3 3. Tuloperiaate 3 4. Permutaatioista ja kombiaatioista 4 5. Toistokombiaatioista 5 6. Biomikertoimista 5 7. Multiomikertoimista

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua) Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse

Lisätiedot

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät Matematiika tukikurssi Kertausta. välikokeesee Tehtävät Algebraa Tämä kappale sisältää rusaasti harjoitustehtäviä. Suurimpaa osaa tehtävistä löytyy ratkaisut lopusta. Syyä rusaasee tehtävämäärää o, että

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0402 Diskreeti matematiika perusteet Yhteeveto, osa I 1 Joukko-oppi ja logiikka Iduktioperiaate G. Gripeberg 2 Relaatiot ja fuktiot Aalto-yliopisto 3. huhtikuuta 2014 3 Kombiatoriikka ym. G. Gripeberg

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kertauslueto. välikokeesee Algebraa Tämäkertaie kurssimoiste sisältää rusaasti harjoitustehtäviä. Syyä tähä o se, että matematiikkaa oppii parhaite itse tekemällä ja laskemalla.

Lisätiedot

pq n s n Kyllä Ei N Jäsenyys 5,4% 94.6 % 1500 Adressi 21,6% 78.4 % 1495 Lahjoitus 23,7% 76.3 % 1495 Mielenosoitus 1,1% 98.9 % 1489

pq n s n Kyllä Ei N Jäsenyys 5,4% 94.6 % 1500 Adressi 21,6% 78.4 % 1495 Lahjoitus 23,7% 76.3 % 1495 Mielenosoitus 1,1% 98.9 % 1489 Perusjoukko ja otos Kvatitatiiviset meetelmät Sami Fredriksso Yleie valtio-oppioppi Havaitoyksikkö o empiirise mittaukse kohde Perusjoukko o kaikkie havaitoyksiköide muodostama kokoaisuus Otos o perusjoukkoa

Lisätiedot

Tunnuslukuja 27 III TUNNUSLUKUJA

Tunnuslukuja 27 III TUNNUSLUKUJA Tuuslukuja 27 III TUNNUSLUKUJA Tuuslukuja 28 Tuuslukuja käytetää, ku tilastoaieistoa havaiollistetaa tiivistetysti yksittäisillä luvuilla. Tuusluvut lasketaa muuttujie arvoje perusteella ja e kuvaavat

Lisätiedot

PUUNKORJUUN ERIKOISAMMATTITUTKINTO 2013

PUUNKORJUUN ERIKOISAMMATTITUTKINTO 2013 Näyttötutkio perusteet PUUNKORJUUN ERIKOISAMMATTITUTKINTO 2013 Määräys 8/011/2013 Määräykset ja ohjeet 2013:17 Opetushallitus ja tekijät Määräykset ja ohjeet 2013:17 ISBN 978-952-13-5458-8 (id.) ISBN 978-952-13-5459-5

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2015-2016, Harjoitus 2, Ratkaisu

811312A Tietorakenteet ja algoritmit, 2015-2016, Harjoitus 2, Ratkaisu 8111A Tietoraketeet ja algoritmit, 15-16, Harjoitus, Ratkaisu Harjoituksessa käsitellää asymptoottista merkitätapaa ja algoritmie aikakompleksisuutta. Tehtävä.1 a Oko f ( O( tai f (, ku 1 f ( f, 4 ( 5

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Työ 55, Säteilysuojelu

Työ 55, Säteilysuojelu Työ 55, Säteilysuojelu Ryhmä: 18 Pari: 1 Joas Alam Atti Tehiälä Selostukse laati: Joas Alam Mittaukset tehty: 7.4.000 Selostus jätetty: 1.5.000 1. Johdato Tutkimme työssämme kolmea eri säteilylajia:, ja

Lisätiedot

8. laskuharjoituskierros, vko 11, ratkaisut

8. laskuharjoituskierros, vko 11, ratkaisut Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse

Lisätiedot

T TESTAUSRAPORTTI - MedicMinder "!! # $! %!!# & #

T TESTAUSRAPORTTI - MedicMinder !! # $! %!!# & # T-76.115 TESTAUSRAPORTTI - MedicMider! " " #!! $ % % $! " " #! &! #! $ $ ' % ( %!! % # ) # #! $ $! * +! " " #! $ ' % ( " &! " $!! $ $ $ % % )! #! % % ) $ % # #! + +! " " #! &! $, $ $ $!! "!! # $! %!!#

Lisätiedot

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen. 10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).

Lisätiedot

tilavuudessa dr dk hetkellä t olevien elektronien

tilavuudessa dr dk hetkellä t olevien elektronien Semiklassie johtavuusmalli Metalleissa vastus aiheutuu virrakuljettajie törmäyksistä, joita karakterisoi relaksaatioaika τ Oletetaa, että ifiitesimaalisella aikavälillä dt elektroi törmäystodeäköisyys

Lisätiedot

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat: Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut

Lisätiedot

Kun vuoden alussa varastossa oli 100 karaattia ja Antwerpenin ostot oheisen kuvan

Kun vuoden alussa varastossa oli 100 karaattia ja Antwerpenin ostot oheisen kuvan Optimoitimeetelmät Kirjallisuutta: Rardi Roald R.: Optimizatio i Operatios Research, 998 Wisto Waye L.: Operatios Research. Applicatios ad Algorithms, 3rd editio, 994. Matemaattie mallius ja ogelmie ratkaisu

Lisätiedot

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims 75 4 POTENSSISARJOJA 4.1 ÄÄRETTÖMÄT SARJAT Lukujoo { a k } summaa S a a a a a k 0 1 k k0 saotaa äärettömäksi sarjaksi. Summa o s. osasumma. S a a a a a k 0 1 k0 Äärettämä sarja (tai vai sarja) saotaa suppeeva

Lisätiedot

3 x < < 3 x < < x < < x < 9 2.

3 x < < 3 x < < x < < x < 9 2. Matematiika johdatokurssi Kertaustehtävie ratkaisuja 1. Ratkaise epäyhtälöt: a) 3 x < 3, b) 5x + 1. Ratkaisu. a) Ratkaistaa epäyhtälö poistamalla esi itseisarvot: 3 x < 3 3 < 3 x < 3 9 < x < 3 3 < x

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

Oppimistavoite tälle luennolle

Oppimistavoite tälle luennolle Oppiistavoite tälle lueolle Yksikköoperaatiot ja teolliset prosessit CHEM-A00 (5 op) Tislaus ja uutto Yärtää erotusprosessie suuittelu perusteet Tutea tislaukse ja uuto toiitaperiaatteet Tutea tpillisipiä

Lisätiedot

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut:

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut: Varsi arkiäiväisiä, geometrise joo teoriaa liittyviä käytäö sovellutuksia ovat jaksottaisii maksuihi ja kuoletuslaiaa (auiteettilaiaa) liittyvät robleemat. Tällaisii joutuu lähes jokaie yhteiskutakeloie

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasa yliopisto, kevät 04 Talousmatematiika perusteet, ORMS030 6. harjoitus, viikko 0 3. 7.3.04 R ma 0 D5 R5 ti 4 6 C09 R ma 4 6 D5 R6 to 4 C09 R3 ti 08 0 D5 R7 pe 08 0 D5 R4 ti 4 C09 R8 pe 0 D5. Laske

Lisätiedot

TIIVISTELMÄRAPORTTI (SUMMARY REPORT)

TIIVISTELMÄRAPORTTI (SUMMARY REPORT) 2012/MAT814 ISSN 1797-3457 (vekkojulkaisu) ISBN (PDF) 978-951-25-2408-2 TIIVISTELMÄRAPORTTI (SUMMARY REPORT) Vaiheistettu heijastipita valemaalia Joha Ste, Päivi Koivisto, Ato Hujae, Tommi Dufva, VTT,

Lisätiedot

Tehtävä 1. Etsi Neperin luvulle e vaihtoehtoisia esitysmuotoja joko suppenevia lukujonoja tai päättymättömiä summia eli sarjamuotoja.

Tehtävä 1. Etsi Neperin luvulle e vaihtoehtoisia esitysmuotoja joko suppenevia lukujonoja tai päättymättömiä summia eli sarjamuotoja. POHDIN rojekti Jatkuva korko ja e Eksoettifuktioille voidaa johtaa omiaisuus f ( x) f (0) f( x). Riittää ku oletetaa, että f (0) o olemassa. Nyt eksoettifuktioide f( x) 2 x ja gx ( ) 3 x välistä yritää

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0402 Diskreeti matematiika perusteet Yhteeveto, osa I G. Gripeberg Aalto-yliopisto 12. maaliskuuta 2015 G. Gripeberg (Aalto-yliopisto) MS-A0402 Diskreeti matematiika perusteet Yhteeveto, 12. osa maaliskuuta

Lisätiedot

5. Lineaarisen optimoinnin perusprobleemat

5. Lineaarisen optimoinnin perusprobleemat 2 5. Lieaarise optimoii perusprobleemat Optimoitiprobleema o lieaarise optimoii tehtävä, jos kohdefuktio o lieaarie fuktio ja rajoitusehdot ovat lieaarisia yhtälöitä tai lieaarisia epäyhtälöitä. Yleisessä

Lisätiedot

2. Algoritmien analyysi

2. Algoritmien analyysi . Algoritmie aalyysi Tässä osassa käsitellää algoritmie aalyysia, joka tarkoittaa algoritmie oikeellisuustarkasteluja sekä iide suorituskyvy aalysoitia. Joskus algoritmie aalyysi katsotaa sisältävä aioastaa

Lisätiedot

HEIJASTUMINEN JA TAITTUMINEN

HEIJASTUMINEN JA TAITTUMINEN S-08-0 OPTIIKKA /6 HEIJASTUMINEN JA TAITTUMINEN Laboratoriotyö S-08-0 OPTIIKKA /6 Sisällysluettelo Teoria... 3 Työ suoritus... 4. Kokoaisheijastus... 4. Brewsteri kulma... 5 3 Mittauspöytäkirja... 6 S-08-0

Lisätiedot

Aikaisemmat selvitykset. Hammaslääkäriliitto on selvittänyt terveyskeskusten. terveyskeskusten hammaslääkäritilannetta

Aikaisemmat selvitykset. Hammaslääkäriliitto on selvittänyt terveyskeskusten. terveyskeskusten hammaslääkäritilannetta S E L V I T Y S Terveyskeskuste hammaslääkäritilae lokakuussa 2005 ANJA EEROLA, TAUNO SINISALO Hammaslääkäriliitto selvitti julkise ja yksityise sektori hammaslääkärie työvoimatilatee lokakuussa 2005 kahdella

Lisätiedot

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa. Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mitä tilastotiede o? Mat-.04 Tilastollise aalyysi perusteet, kevät 007. lueto: Johdato Tilastotiede kehittää ja soveltaa meetelmiä: reaalimaailma ilmiöistä johtopäätökset ilmiöitä kuvaavie tietoje perusteella

Lisätiedot

1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet.

1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet. a) ristid, puolijohtid ja talli tyypillist rgiakaistaraktt. i) NRGIAKAISTAT: (lktroi sallitut rgiatilat) Kaksiatoi systi: pottiaalirgia atoi väliatka fuktioa pot rpulsiivi kopotti -lktroit hylkivät toisiaa

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I MS-A040 Diskreeti matematiika perusteet Yhteeveto ja esimerkkejä ym., osa I G. Gripeberg Aalto-yliopisto 8. syyskuuta 06 Joukko-oppi ja logiikka Todistukset logiikassa Predikaattilogiikka Iduktioperiaate

Lisätiedot

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Turingin kone on kuin äärellinen automaatti, jolla on käytössään 4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille. Heikki Ruskeepää

Todennäköisyyslaskenta sivuaineopiskelijoille. Heikki Ruskeepää Todeäköisyyslasketa sivuaieopiskelijoille Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 5 1.3 Aksiomaattie todeäköisyys 7 1.4 Ehdollie todeäköisyys 12

Lisätiedot

Puolijohdekomponenttien perusteet A Ratkaisut 5, Kevät Ideaalisen normaalimoodin pnp-transistorin kollektorivirta on.

Puolijohdekomponenttien perusteet A Ratkaisut 5, Kevät Ideaalisen normaalimoodin pnp-transistorin kollektorivirta on. OY/PJKOMP R5 7 Puolijohdekooettie erusteet 57A Ratkaisut 5, Kevät 7. (a) deaalise oraalioodi -trasistori kollektorivirta o,6 L -9 D Ł L - C 3,6 5-6,9...A» 8, A L 6-4 s - Ø qu Œex º Ł k T deaalise oraalioodi

Lisätiedot

Sote-alueen muodostamisen tarkemmat kriteerit on todettu väliraportin luvussa 4.1.2. (sivut 18 19).

Sote-alueen muodostamisen tarkemmat kriteerit on todettu väliraportin luvussa 4.1.2. (sivut 18 19). KYSYMYKSET Sosiaali- ja terveydehuoltoalueet (sote-alue) Väliraporti perusteella kua tulee kuulua sote-alueesee, joka järjestää sille sosiaali- ja terveyspalvelut. Sote-alue muodostuu maakutie keskuskaupukie

Lisätiedot

Tietojärjestelmän kehittäminen syksy 2003

Tietojärjestelmän kehittäminen syksy 2003 Tietojärjestelmä kehittämie syksy 2003 Ryhmä C2 Väliraportti 5 2..2003 Päivi Laiterla Tomas Widahl Toi ikkae Atti Lehto Sisällysluettelo Johdato...3 2 Mittarit... 4 2. IO-taso mittarit...4

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvatitatiiviset meetelmät Pieryhmii ilmoittautumie alkaa ke 2.2. klo 9.00 Ryhmä 1: Jussi Kiue: Esimmäie kokootumie to 24.2. klo 14-16, paikka?? SPSS-harjoitukset: ti 29.3. klo 11-13 ja to 7.4. klo 15-19

Lisätiedot

Eräs matematiikassa paljon hyödynnetty summa on ns. luonnollisten lukujen neliöiden summa n.

Eräs matematiikassa paljon hyödynnetty summa on ns. luonnollisten lukujen neliöiden summa n. POHDIN projekti Neliöide summa Lukujoo : esimmäise jäsee summa kirjoitetaa tavallisesti muotoo S ai i 1. Aritmeettisesta lukujoosta ja geometrisesta lukujoosta muodostetut summat voidaa johtaa varsi helposti.

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802 Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2007 104,1 2009 108,3 108,3 a) Jakamalla 1,040345 104,1 saadaa iflaatioprosetiksi 4,03 %. 104,1 b) Jakamalla 0,96121 saadaa, että raha

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2002 104,2 2004 106,2 a) Jakamalla 106,2 1,01919 saadaa iflaatioprosetiksi 1,92 %. 104,2 b) Jakamalla 104,2 0,98116 saadaa, että raha

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Mite opit parhaite? Valmistaudu pitkä- tai lyhye matematiika kirjoituksii ilmaiseksi Mafyetti-ohjelmalla! Harjoittelu tehdää aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa tarvittavat

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto

DEE Sähkömagneettisten järjestelmien lämmönsiirto DEE-54 Sähköageettiste järjestelie läösiirto Lueto 7 Sähköageettiste järjestelie läösiirto Risto Mikkoe..4 Läöjohtuise leie osittaisdiffereretiaalihtälö t E g c p Sähköageettiste järjestelie läösiirto

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot

Harjoitukset 1 : Tilastokertaus

Harjoitukset 1 : Tilastokertaus 31C99904, Capstoe: Ekoometria ja data-aalyysi TA : markku.siikae(a)aalto.fi & tuuli.vahapelto(a)aalto.fi Harjoitukset 1 : Tilastokertaus (Palautus 10.1.2017) Palautellaa mielii hiema tilasto-oppia ja todeäköisyyslasketaa.

Lisätiedot

Tilastotieteen perusteet

Tilastotieteen perusteet VAASAN YLIOPISTO Tilastotieteeperusteet Luetoruko Christia Gustafsso SISÄLLYSLUETTELO 1. JOHDANTO... 3 1.1. Mitä tilastotiede o?... 3 1.. Tilastotietee historiaa... 4. HAVAINTOAINEISTO JA MITTAAMINEN...

Lisätiedot

Ruletti ja Martingaalistrategia

Ruletti ja Martingaalistrategia POHDIN projekti Ruletti ja Martigaalistrategia Ruletti o uhkapeli, jossa pelaaja pyrkii veikkaamaa kuula pysähtymiskohda pyörivältä kehältä. Euroopassa käytettävässä ruletissa o käytössä 37 umeroa (0-36)

Lisätiedot

Laajennetaan lukualuetta lisäämällä murtoluvut

Laajennetaan lukualuetta lisäämällä murtoluvut 91 5 KOMPLEKSILUVUT 5.1 LUKUALUEEN LAAJENNUS Luoolliset luvut N : 1,, 3,... Määritelty - yhteelasku ab N, ku a, b N - kertolasku ab N, ku a, b N Kysymys: Löytyykö aia sellaie x N, että ax b, ku a, b N

Lisätiedot

Todennäköisyyslaskenta I. Heikki Ruskeepää

Todennäköisyyslaskenta I. Heikki Ruskeepää Todeäköisyyslasketa I Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 4 1.3 Aksiomaattie todeäköisyys 8 1.4 Ehdollie todeäköisyys 13 1.5 Riippumattomuus

Lisätiedot

LASKUHARJOITUKSIA. 1. Myllyn ainetase ja kiertokuorman laskeminen. syöte F,f. A lite A,a MYLLY. tuote P,p LUO KITIN. Ylite Y,y. Tehtävä 1.

LASKUHARJOITUKSIA. 1. Myllyn ainetase ja kiertokuorman laskeminen. syöte F,f. A lite A,a MYLLY. tuote P,p LUO KITIN. Ylite Y,y. Tehtävä 1. LASKUHARJOITUKSIA. Mylly aietase ja kiertokuorma laskemie Tehtävä. Kuvassa o mylly suljetussa iirissä luokittime kassa. Mylly kiertokuorma o 00 % ja mylly rimäärisyötevirta F = t/h. Laske mylly tuotevirta

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

5. Väliestimoi tehtävän 3 tilanteessa tulppien keskimääräinen kestoa.

5. Väliestimoi tehtävän 3 tilanteessa tulppien keskimääräinen kestoa. MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuiee luetomoistee lukuu 5 liittye 1. Olkoo puoluee A kaatusosuus populaatiossa 30 %. Tarkastellaa tästä populaatiosta tehtyä satuaisotosta, joka koko

Lisätiedot

Liike-elämän matematiikka Opettajan aineisto

Liike-elämän matematiikka Opettajan aineisto Liike-elämä matematiikka Opettaja aieisto Pirjo Saarae, Eliisa Kolttola, Jarmo Pösö ISBN 978-951-37-5741-0 Päivitetty 13.8.2014 Tehtävie ratkaisut - Luku 1 Verotus - Luku 2 Katelaskut ja talousfuktiot

Lisätiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille

Lisätiedot

Mat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit

Mat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit Mat-.09 Sovellettu todeäköisyyslasku Mat-.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Estimoiti Luottamusvälit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Estimaattori, Estimoiti, Frekvessi,

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot