Työ 55, Säteilysuojelu

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Työ 55, Säteilysuojelu"

Transkriptio

1 Työ 55, Säteilysuojelu Ryhmä: 18 Pari: 1 Joas Alam Atti Tehiälä Selostukse laati: Joas Alam Mittaukset tehty: Selostus jätetty:

2 1. Johdato Tutkimme työssämme kolmea eri säteilylajia:, ja -säteilyä. Kaikki edellä maiitut säteilytyypit sytyvät atomie ytimissä tapahtuvista ilmiöistä. -säteily sytyy ku labiili ydi emittoi 4e-ytime, jossa o kaksi protoia ja kaksi eutroia. -säteily katama riippuu se liike-eergiasta, mutta o yleesä suhteellise lyhyt. Se absorboituu ohuisiiki esteisii, ja ilmassa katama o muutamie settimetrie luokkaa. -säteilyä o kahta eri tyyppiä. - -hajoamisessa, ytime eutroi muuttuu elektroiksi, protoiksi ja atieutriioksi, joista vai elektroi ja atieutriio emittoituvat pois ytimestä, ja ytime varausluku kasvaa täte yhdellä. + -hajoamisessa taas protoi muuttuu positroiksi, eutroiksi ja eutriioksi. -säteily ei ole hiukkassäteilyä kute edelliset, vaa lyhytaaltoista sähkömageettista säteilyä. Sitä sytyy ytimie siirtyessä alempii viritystiloihi ja yleesä myös muide säteilylajie yhteydessä.. Laitteisto ja meetelmät Gammasäteily mittaamie Gammasäteily lähde oli 60Co-isotooppi, jossa yhde atoimi hajotessa sytyy kaksi gammakvattia eergioiltaa 117 ja 1 kev. Lisäksi säteilylähteestä vapautuu betahiukkasia, joita käyttämämme BICRON-tuikedetektori ei havaitse. Lähtee aktiivisuus oli , 16 Ci ja 60Co: puoliitumisaika o 5,7 a. Detektori pohja ala o a=5,07 cm^ ja se havaitsee oi =% siihe osuvista gammakvateista ja detektori etäisyys lähteestä oli helposti säädeltävissä ja mitattavissa. Esimmäiseksi mittasimme gammasäteily pulssitaajuude kymmeellä eri sopivasti valitulla etäisyydellä, mittausajalla t=10s. Sitte selvitimme taustasäteily vaikutukse mittauksii, mittaamalla säteilyä t=00s aja r=80cm: etäisyydellä lyijytiili lähtee ja detektori välissä ja ilma. Seuraavaksi tutkimme pulssimäärä hajotaa suorittamalla mittaukset 15 kertaa etäisyydellä r=5cm, t=10s ja r=0cm, t=10s. Lopuksi mittasimme lyijylevy vaimeusta pulssitaajuutee etäisyydellä r=0cm. - ja -säteily Alphalähteeä käytimme 41Am- ja betalähteeä 90Sr-isotooppita. 41Am: puoliitumisaika o 4 a ja lähteestä saatavie alphahiukkaste liike-eergia o 5,5 MeV. 90Sr: lähettämie betahiukkaste maksimiliike-eergia o 0,5 MeV ja lähtee puoliitumisaika o 9 a. Mittaria käytimme Nuclear Eterprises P, C.M.5/1 ja aturia ZS-tuikepäätä ja valomoistiputkea. Aturi havaitsee tuikepäähä osueista alphahiukkasista 1% ja betahiukkasista %. Lähtee halkaisija o (10,00,) mm, mylarkalvo tiheys o 1600 kg/m^ ja pleksi tiheys o 100 kg/m^.

3 Kaavoja ajoamie o tapahtuma, joka oudattaa todeäköisyyslakeja. ajoamislai mukaa N t N 0 e (1) missä o ajasta riippumato hajoamisvakio ja N0 o ytimie määrä alkuhetkellä. Puoliitumisaika T½ o aika, joka kuluessa radioaktiiviste ytimie määrä o vähetyyt puolee. Kaavasta (1) saadaa puoliitumisajaksi l T 1 / () ajoamistapahtumie opeude mittaa käytetää aktiivisuutta A, joka o hajoamiste lukumäärä aikayksikössä Absorboituut aos dn A () dt E D (4) m o pieee massa-alkioo absorboituut säteilyeergia ja se imitys o Gray. Se sopii kaikille säteilylajeille kaikissa väliaieissa. Edellisestä saadaa suoraa aosopeus eli absorboituut aos aikayksikköä kohti D D (5) t Seuraavaksi tutkitaa gammasäteily koeasetelmaa. Jos radioaktiivie pistelähde o etäisyydellä r detektorista, o detektori havaitsema pulssitaajuus A (6)

4 missä o gammakvattie lukumäärä radioaktiivista hajoamista kohti, o detektori efektiivisyys ja se avaruuskulma, jossa lähde äkee detektori. Ku kaavaa lasketaa : arvo, saadaa pulssitaajuudeksi a A (7) 4r missä a o detektori pita-ala. Kirjoitetaa vielä aosopeus muotoo 1 D A (8) r missä tekijä o aosopeusvakio, joka riippuu säteilylähteeä olevasta isotoopista. Aosopeudesta saadaa biologie aosopeus kertomalla se altistumisajalla ja säteilykohtaisella laatukertoimella Q QtA (9) r Aosopeudeksi s: paksuise kudokse taakse saadaa D s D 0 e (10) missä D0 o aosopeus kudokse edessä ja o kudokse matkavaimeuskerroi. Ku D0: paikalle sijoitetaa kaava (8) aosopeus, saadaa D e A r s (11). Tulokset Gammasäteily Aktiivisuus Liitteesee () o piirretty pulssitaajuus 1/r^: fuktioa, eli kaava (7) kuvaaja. Kuvaaja arvot o taulukoitu liitteesee (1) ja virheet o laskettu liitteessä ().

5 Kuvaajasta ähdää että suora ei kulje origo kautta, mikä johtuu taustasäteilystä. Taustasäteily ei vakioa kuitekaa vaikuta kulmakertoimee, joka avulla aktiivisuus A lasketaa. Ratkaistaa suora yhtälö kulmakertoimesta A, ja sijoitetaa arvot. Kulmakertoime arvo virherajoiee o laskettu liitteessä (). A 4k a (1) 4,96m / s Sijoittamalla saadaa A 114, 6kBq 4. Aktiivisuude 0, 5,07 10 m virheeksi saadaa A 4k a (1) 4 0,11m / s Sijoittamalla arvot, saadaa A, 7kBq 4. Lähtee 0,75,0710 m alkuperäie aktiivisuus. 1 vuotta sitte oli 59 kbq. Tämähetkie aktiivisuus saadaa kaavasta A t l 1/ A e (14) 0 T 1,099al 5,7a Sijoittamalla arvot kaavaa (14), saadaa A 59kBq e 10,6kBq, mikä o samaa suuruusluokkaa mittauksista saadu aktiivisuude (1154) kbq: kassa, mutta ei teoreettisea arvoa ole täsmällee sama. Puoliitumispaksuus Pulssitaajuude pieeemie väliaieessa voidaa laskea kaavasta s 0 e (15) missä o matkavaimeuskerroi ja s kuljettu matka. Matkavaimeuskertoime avulla voidaa laskea puoliitumispaksuus kaavalla

6 l s 1 / (16) Ratkaisemalla kaavoista (15) ja (16) puoliitumispaksuus, saadaa s 1 / sl (17) l 0 missä s = (4,40,1) mm o lyijylevy paksuus, 0 = 1175/00s 8,6 1/s o pulssitaajuus ilma lyijylevyä ja = 1087/00s 8,6 1/s o pulssitaajuus lyijylevy kassa. Taustasäteily pulssitaajuus o saatu liitteestä (1) ja se suuruus o 8,6 1/s. 0,0044m l Sijoitetaa arvot: s1/ 1, 1cm. Virheet saadaa kaava (17),8 l 0,0 osittaisdifferetiaalilla: s l s s 1 / 0 l s 0 l (18) mihi arvot sijoittamalla saadaa puoliitumismatka virheeksi 0,0 cm. Virhetarkastelu Toistokokee tulokset o taulukoitu liitteesee (1). Saimme N=15: mittaukse tuloksia r=5,0cm: mittauksille keskiarvoksi 11,4 1/s ja r=0,0cm: mittauksille keskiarvoksi 61, 1/s. Keskiarvo keskivirhe voidaa laskea iille kaava i N( N 1) (19) Poisso-jakautueelle jakaumalle keskihajota voidaa laskea kaavalla (0)

7 Sijoittamalla arvot saadaa seuraavat tulokset: Taulukko 1. Virheet r (cm) 5 15, ,0 4,7 Biologie säteilyaos Lasketaa biologie aosopeus työsketelyetäisyydellä kaava (9) avulla: 1,0 1,0h, Svm h 0,80m 1 Bq 1 114,6 10 Bq 0,061Sv Virheet saadaa kaava (9) osittaisdifferetiaalilla: QtA t A r (1) r t A r 1,0 1,0h, Svm h 0,80m 1 Bq 1 114,6 10 Bq 0,1h,7Bq 0,10m 0,0Sv 1,0h 114,6Bq 0,80m Taustasäteily Mittasimme pulssitaajuude 80 cm: etäisyydellä lähteestä ilma lyijytiileä välissä, ja se kassa. Näi saimme selville taustasäteily vaikutukse mittauksii. Taustasäteily pulssitaajuudeksi saatii 8,6 1/s ja taustasäteily ja lähtee yhteiseksi pulssitaajuudeksi ko. etäisyydellä saatii,9 1/s. uomataa siis että taustasäteily aiheuttama aos o suuruusluokaltaa merkittävästi suurempi (oi 87% säteilystä ku r=80cm) kui lähtee aiheuttama aos työ aikaa työsketelyetäisyydellä. - ja -säteily Alphasäteily pulssitaajuudeksi 5 mm: päässä kalvosta saimme (900100) 1/s ja 14 m: paksuise mylarkalvo kassa (0,0,) 1/s, eli lähes olla. Raja-etäisyydeksi, jolla alphasäteilyä ei eää havaittu, saimme (01) mm. Betasäteilylle mittasimme (050) 1/s 5mm: etäisyydellä lähteestä, ja vastaavasti mylarkalvo välissä (050) 1/s. Mittasimme myös betasäteily pulssitaajuude (,10,5) mm: paksuise pleksilevy läpi ja saimme (4510) 1/s. Mylarkalvo massa voidaa laskea kaava

8 d m h () Kaavoista (4), (5), (8), (9) ja (1) saadaa biologiseksi aosopeudeksi 4Q hd E t () joho sijoittamalla saadaa alphasäteily aiheuttama aos mylarkalvoo / 0,1 1/ s 5,5 10 1,6010 J m 0,0100m 1600kg / m 600s 67Sv / h : virhe saadaa osittaisdifferetoimalla kaavaa (): 4Q E hd t d d (4) =67,4(0,4+0,04)=5Sv/h Lasketaa yt kaava () avulla betasäteily aiheuttama aos mylarkalvolle: / 0,1/ s 0,510 1,60 10 J m (0,0100m) 1600kg / m 600s 0,0187Sv / h =0,0187(0,1+0,04) Sv/h =0,007Sv/h ja pleksilevylle: (0 45) / 0,1/ s 0,510 1,6010 J 0,001m (0,0100m) 100kg / m 600s 0,000097Sv / h =0,0001(0,+0,04) Sv/h =0,00006Sv/h

9 4. Yhteeveto Gammasäteilyltä o hakala suojautua, koska se läpäisee väliaieita paremmi kui alpha- ja betasäteily. Alphasäteily o kuiteki vaarallisempaa joutuessa sisäelimii esimerkiksi ravio mukaa, koska alphahiukkasilla o sähkövaraus kohtalaise suuri massa. Vaarallisuus huomataa suuresta aoksesta mylarkalvolle, mikä o laskettu yllä. Mittauksia tehdessämme emme saaeet suuria aoksia mitatuista lähteistä verrattua säädettyihi rajoihi ja taustasäteilyy. Aktiivisuusmittaukse tulos (1154) kbq äyttää oistuee kohtalaise hyvi, ku verrataa sitä teoreettisee arvoo. Liitteet Liite 1. Mittauspöytäkirja Liite. =f(1/x^) -kuvaaja Lähdeviitteet Classical ad Moder Physics, Iteratioal editio, Gettys, Keller, Skove, 1989 Fysiika Laboratoriotyöt, Jukka Vaari, Suome fyysikkoseura r.y, Gummerus 1994 Maol-taulukot, Matematiikka, Fysiikka, Kemia, Seppäe, Otava 199.

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki).

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). TYÖ 68. GAMMASÄTEILYN VAIMENEMINEN ILMASSA Tehtävä Välineet Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). Radioaktiivinen mineraalinäyte

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. Fysiikan laboratorio Työohje 1 / 5 Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. 1. Työn tavoite Työn tavoitteena on tutustua ionisoivaan sähkömagneettiseen säteilyyn ja tutkia sen absorboitumista

Lisätiedot

RADIOAKTIIVISUUS JA SÄTEILY

RADIOAKTIIVISUUS JA SÄTEILY RADIOAKTIIVISUUS JA SÄTEILY 1 Johdanto 1.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu positiivisesti varautuneista protoneista ja neutraaleista neutroneista. Samalla alkuaineella on aina

Lisätiedot

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate.

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate. Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 5: RADOAKTVSUUSTYÖ Teoriaa Radioaktiivista säteilyä syntyy, kun radioaktiivisen aineen ytimen viritystila purkautuu

Lisätiedot

40D. RADIOAKTIIVISUUSTUTKIMUKSIA

40D. RADIOAKTIIVISUUSTUTKIMUKSIA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 40D. RADIOAKTIIVISUUSTUTKIMUKSIA 1. TYÖN TAVOITE 2. TEORIAA Työssä tutustutaan radioaktiiviseen säteilyn kuvaamisessa käytettäviin käsitteisiin ja fysikaalisiin lakeihin,

Lisätiedot

25A40B 4h. RADIOAKTIIVINEN SÄTEILY

25A40B 4h. RADIOAKTIIVINEN SÄTEILY TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/9 25A40B 4h. RADIOAKTIIVINEN SÄTEILY TYÖN TAVOITE Työn tavoitteena on tutustua radioaktiiviseen säteilyyn ja mahdollisuuksiin suojautua siltä. RADIOAKTIIVISEN SÄTEILYN

Lisätiedot

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman

Lisätiedot

GEIGERIN JA MÜLLERIN PUTKI

GEIGERIN JA MÜLLERIN PUTKI FYSP106/K3 GEIGERIN J MÜLLERIN PUTKI 1 Johdanto Työssä tutustutaan Geigerin ja Müllerin putkeen. Geigerin ja Müllerin putkella tarkoitetaan tietynlaista säteilymittaria. Samaisesta laitteesta käytetään

Lisätiedot

Työ 15B, Lämpösäteily

Työ 15B, Lämpösäteily Työ 15B, Läpösäteily urssi: Tfy-3.15, Fysiikan laoratoriotyöt Ryhä: 18 Pari: 1 Jonas Ala Antti Tenhiälä Selostuksen laati: Jonas Ala Mittaukset tehty:.3.000 Selostus jätetty:..000 1. Johdanto Läpösäteily

Lisätiedot

55 RADIOAKTIIVISUUS JA SÄTEILY

55 RADIOAKTIIVISUUS JA SÄTEILY 55 RADIOAKTIIVISUUS JA SÄTEILY 55.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu sähkövaraukseltaan positiivisista protoneista ja neutraaleista neutroneista hyvin tiheästi pakkautuneina (ytimen

Lisätiedot

RADIOAKTIIVISUUS JA SÄTEILY

RADIOAKTIIVISUUS JA SÄTEILY RADIOAKTIIVISUUS JA SÄTEILY 1 Johdanto 1.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu sähkövaraukseltaan positiivisista protoneista ja neutraaleista neutroneista hyvin tiheästi pakkautuneina

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473 Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson

Lisätiedot

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä

Lisätiedot

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

j = I A = 108 A m 2. (1) u kg m m 3, (2) v =

j = I A = 108 A m 2. (1) u kg m m 3, (2) v = 764A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 6 Kevät 28. Tehtävä: Aiemmi olemme laskeeet kupari johtavuuselektroie tiheydeksi 8.5 28 m. Kuparijohdossa, joka poikkipita-ala o mm 2, kulkee A: virta. Arvioi Drude

Lisätiedot

Työturvallisuus fysiikan laboratoriossa

Työturvallisuus fysiikan laboratoriossa Työturvallisuus fysiikan laboratoriossa Haarto & Karhunen Tulipalo- ja rajähdysvaara Tulta saa käyttää vain jos sitä tarvitaan Lämpöä kehittäviä laitteita ei saa peittää Helposti haihtuvia nesteitä käsitellään

Lisätiedot

Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti

Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti Aineopintojen laboratoriotyöt 1 Veden ominaislämpökapasiteetti Aki Kutvonen Op.nmr 013185860 assistentti: Marko Peura työ tehty 19.9.008 palautettu 6.10.008 Sisällysluettelo Tiivistelmä...3 Johdanto...3

Lisätiedot

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita

Lisätiedot

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä

Lisätiedot

1 Johdanto. 2 Lähtökohdat

1 Johdanto. 2 Lähtökohdat FYSP106/K4 VIRITYSTILAN ELINAIKA 1 Johdanto Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan 661.7 kev keskimääräinen elinaika ja puoliintumisaika. 2 Lähtökohdat 2.1 Radioaktiivinen

Lisätiedot

Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016

Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016 Tapio Hansson 20. lokakuuta 2016 Milloin säteily on ionisoivaa? Milloin säteily on ionisoivaa? Kun säteilyllä on tarpeeksi energiaa irrottaakseen aineesta elektroneja tai rikkoakseen molekyylejä. Milloin

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa.

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa. S-114.46 Fysiikka V (Sf) Tetti 16.5.00 välikokee alue 1. Oletetaa, että protoi ja elektroi välie vetovoia o verraollie suureesee r ( F =- kr) eikä etäisyyde eliö kääteisarvoo ( F =-k / r ). Käytä kulaliikeäärä

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

25A40B 4h. RADIOAKTIIVINEN SÄTEILY

25A40B 4h. RADIOAKTIIVINEN SÄTEILY TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/8 25A40B 4h. RADIOAKTIIVINEN SÄTEILY TYÖN TAVOITE Työn tavoitteena on tutustua radioaktiiviseen säteilyyn ja mahdollisuuksiin suojautua siltä. RADIOAKTIIVISEN SÄTEILYN

Lisätiedot

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3 LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi

Lisätiedot

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Sivu 1/10 Fysiikan laboratoriotyöt 1 Työ numero 3 Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Työn suorittaja: Antero Lehto 1724356 Työ tehty: 24.2.2005 Uudet mittaus tulokset: 11.4.2011

Lisätiedot

Kantobiomassan määrän mallintaminen leimikoissa hakkuukonemittausten avulla

Kantobiomassan määrän mallintaminen leimikoissa hakkuukonemittausten avulla Metsätietee päivä, 6.0.0 Katobiomassa määrä mallitamie leimikoissa hakkuukoemittauste avulla Heikki Ovaskaie, Itä Suome yliopisto Pirkko Pihlaja, UPM Kymmee Teijo Palader, Itä Suome yliopisto Johdato Suomessa

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

Työ 5: Putoamiskiihtyvyys

Työ 5: Putoamiskiihtyvyys Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

5B. Radioaktiivisen isotoopin puoliintumisajan määrittäminen

5B. Radioaktiivisen isotoopin puoliintumisajan määrittäminen TURUN AMMATTIKORKEAKOULU työohje 1(8) 5B. Radioaktiivisen isotoopin puoliintumisajan määrittäminen 1. TYÖN TAVOITE 2. TEORIAA 2.1. Aktivointi Työssä perehdytään radioaktiivisuuteen ja radioaktiivisen säteilyn

Lisätiedot

SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI

SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI 1 Sisällysluettelo 1. Luonnossa esiintyvä radioaktiivinen säteily... 2 1.1. Alfasäteily... 2 1.2. Beetasäteily... 3 1.3. Gammasäteily... 3 2. Radioaktiivisen

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia. HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var

Lisätiedot

Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan kev keskimääräinen elinaika ja puoliintumisaika.

Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan kev keskimääräinen elinaika ja puoliintumisaika. FYSP106/K4 VIRITYSTILAN ELINAIKA 1 Johdanto Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan 661.7 kev keskimääräinen elinaika ja puoliintumisaika. 2 Lähtökohdat 2.1 Radioaktiivinen

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ). HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä

Lisätiedot

Säteily ja suojautuminen Joel Nikkola

Säteily ja suojautuminen Joel Nikkola Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa

Lisätiedot

Alkuräjähdysteoria. Kutistetaan vähän...tuodaan maailmankaikkeus torille. September 30, fy1203.notebook. syys 27 16:46.

Alkuräjähdysteoria. Kutistetaan vähän...tuodaan maailmankaikkeus torille. September 30, fy1203.notebook. syys 27 16:46. Alkuräjähdysteoria Maailmakaikkeude umerot Ikä: 14. 10 9 a Läpimitta: 10 26 m = 10 000 000 000 valovuotta Tähtiä: Aiaki 10 24 kpl Massaa: 10 60 kg Atomeja: 10 90 kpl (valtaosa vetyä ja heliumia) syys 27

Lisätiedot

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

8. laskuharjoituskierros, vko 11, ratkaisut

8. laskuharjoituskierros, vko 11, ratkaisut Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Työ 4249 4h. SÄHKÖVIRRAN ETENEMINEN

Työ 4249 4h. SÄHKÖVIRRAN ETENEMINEN TUUN AMMATTKOKEAKOULU TYÖOHJE 1/7 FYSKAN LABOATOO V. 5.14 Työ 449 4h. SÄHKÖVAN ETENEMNEN TYÖN TAVOTE Perehdytään vaihtovirran etenemiseen värähtelypiirissä eri taajuuksilla eli resonanssi-ilmiöön ja sähköenergian

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia?

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia? Kuluttajahitaideksi (KHI) Kysymys Mite mitata raha arvo muutoksia? Kuluttajahitaideksi (KHI) o sovittu kulutustavaroide ja palveluide hitakehitykse mittari. KHI muodostetaa paiotettua keskiarvoa eri pääryhmie

Lisätiedot

CBRNE-aineiden havaitseminen neutroniherätteen avulla

CBRNE-aineiden havaitseminen neutroniherätteen avulla CBRNE-aineiden havaitseminen neutroniherätteen avulla 18.11.2015 Harri Toivonen, projektin johtaja* Kari Peräjärvi, projektipäällikkö Philip Holm, tutkija Ari Leppänen, tutkija Jussi Huikari, tutkija Hanke

Lisätiedot

Mittaustulosten tilastollinen käsittely

Mittaustulosten tilastollinen käsittely Mittaustulosten tilastollinen käsittely n kertaa toistetun mittauksen tulos lasketaan aritmeettisena keskiarvona n 1 x = x i n i= 1 Mittaustuloksen hajonnasta aiheutuvaa epävarmuutta kuvaa keskiarvon keskivirhe

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten

Lisätiedot

TASAVIRTAPIIRI - VASTAUSLOMAKE

TASAVIRTAPIIRI - VASTAUSLOMAKE TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan

Lisätiedot

Pinnoitteen vaikutus jäähdytystehoon

Pinnoitteen vaikutus jäähdytystehoon Pinnoitteen vaikutus jäähdytystehoon Jesse Viitanen Esko Lätti 11I100A 16.4.2013 2 SISÄLLYS 1TEHTÄVÄN MÄÄRITTELY... 3 2TEORIA... 3 2.1Jäähdytysteho... 3 2.2Pinnoite... 4 2.3Jäähdytin... 5 3MITTAUSMENETELMÄT...

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasa yliopisto, kevät 04 Talousmatematiika perusteet, ORMS030 6. harjoitus, viikko 0 3. 7.3.04 R ma 0 D5 R5 ti 4 6 C09 R ma 4 6 D5 R6 to 4 C09 R3 ti 08 0 D5 R7 pe 08 0 D5 R4 ti 4 C09 R8 pe 0 D5. Laske

Lisätiedot

Työ 0. Esimerkki selostuspohjasta. Työvuoro 82 pari 3. Omanimi Omasukunimi oppilasnumero Parinnimi Parinsukunimi oppilasnumero

Työ 0. Esimerkki selostuspohjasta. Työvuoro 82 pari 3. Omanimi Omasukunimi oppilasnumero Parinnimi Parinsukunimi oppilasnumero Työ 0 Esimerkki selostuspohjasta Työvuoro 82 pari 3 Omanimi Omasukunimi oppilasnumero Parinnimi Parinsukunimi oppilasnumero Selostuksen laati Omanimi Omasukunimi Mittaukset suoritettu 26.1.2013 Selostus

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä:

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

25A40B 4h. RADIOAKTIIVINEN SÄTEILY

25A40B 4h. RADIOAKTIIVINEN SÄTEILY TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/8 25A40B 4h. RADIOAKTIIVINEN SÄTEILY TYÖN TAVOITE Työn tavoitteena on tutustua radioaktiiviseen säteilyyn ja mahdollisuuksiin suojautua siltä. A. RADIOAKTIIVISEN SÄTEILYN

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360)

Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360) Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360) Jarmo Ala-Heikkilä, VIII/2017 Useissa tämän kurssin laskutehtävissä täytyy ensin muodostaa tilannekuva: minkälaista säteilyä lähteestä tulee, mihin se kohdistuu,

Lisätiedot

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan RATKAISUT 8 17 8 a) Paraabelie y x ja y x + x + 1 leikkauspisteet saadaa määritettyä, ku esi ratkaistaa yhtälö x x + x + 1, eli x x, joka o yhtäpitävä yhtälö x x. Toise astee yhtälö ratkaisukaavalla saadaa

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

FYSN300 Nuclear Physics I. Välikoe

FYSN300 Nuclear Physics I. Välikoe Välikoe Vastaa neljään viidestä kysymyksestä 1. a) Hahmottele stabiilien ytimien sidosenergiakäyrä (sidosenergia nukleonia kohti B/A massaluvun A funktiona). Kuvaajan kvantitatiivisen tulkinnan tulee olla

Lisätiedot

Radioaktiivinen hajoaminen

Radioaktiivinen hajoaminen radahaj2.nb 1 Radioaktiivinen hajoaminen Radioaktiivinen hajoaminen on ilmiö, jossa aktivoitunut, epästabiili atomiydin vapauttaa energiaansa a-, b- tai g-säteilyn kautta. Hiukkassäteilyn eli a- ja b-säteilyn

Lisätiedot

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269)

Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Sisällysluettelo 1. Johdanto... 2 2. Tutkimusmenetelmät... 2 2.1 Kokeellinen

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

Ydinfysiikka lääketieteellisissä sovelluksissa

Ydinfysiikka lääketieteellisissä sovelluksissa Ydinfysiikka lääketieteellisissä sovelluksissa Ari Virtanen Professori Jyväskylän yliopisto Fysiikan laitos/kiihdytinlaboratorio ari.j.virtanen@jyu.fi Sisältö Alkutaival Sädehoito Radiolääkkeet Terapia

Lisätiedot

Vastaus: Kertymäfunktio on F( x) = x, kun 0 x 20. Todennäköisyydet ovat molemmat 1. Frekvenssi f

Vastaus: Kertymäfunktio on F( x) = x, kun 0 x 20. Todennäköisyydet ovat molemmat 1. Frekvenssi f 0, ku x < 0 Vastaus: Kertymäfuktio o F( x) = x, ku 0 x 0 0, ku x > 0 Todeäköisyydet ovat molemmat 0. Laudatur MAA ratkaisut kertausharjoituksii Tilastoje esittämie 3. a) Tietty kasvi b) Kukkie lukumäärä

Lisätiedot

Differentiaalilaskennan tehtäviä

Differentiaalilaskennan tehtäviä Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn

Lisätiedot

tilavuudessa dr dk hetkellä t olevien elektronien

tilavuudessa dr dk hetkellä t olevien elektronien Semiklassie johtavuusmalli Metalleissa vastus aiheutuu virrakuljettajie törmäyksistä, joita karakterisoi relaksaatioaika τ Oletetaa, että ifiitesimaalisella aikavälillä dt elektroi törmäystodeäköisyys

Lisätiedot

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:

Lisätiedot

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,

Lisätiedot

dx = d dψ dx ) + eikx (ik du u + 2ike e ikx u i ike ikx u + e udx

dx = d dψ dx ) + eikx (ik du u + 2ike e ikx u i ike ikx u + e udx 763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 5 Kevät 2014 1. Tehtävä: Johda luetomateriaali kaavat d 2 u i k du 2 m + Uxu = E k 2 u p = k + u x i d ux. Ratkaisu: Oletetaa, että ψx = e ikx ux, missä ux +

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo Valosähköinen ilmiö Vuonna 1887 saksalainen fyysikko Heinrich Hertz havaitsi sähkövarauksen purkautuvan metallikappaleen pinnalta, kun siihen kohdistui valoa. Tarkemmissa tutkimuksissa todettiin, että

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

FYSP101/K1 KINEMATIIKAN KUVAAJAT

FYSP101/K1 KINEMATIIKAN KUVAAJAT FYSP101/K1 KINEMATIIKAN KUVAAJAT Työn tavoitteita tutustua kattavasti DataStudio -ohjelmiston käyttöön syventää kinematiikan kuvaajien (paikka, nopeus, kiihtyvyys) hallintaa oppia yhdistämään kinematiikan

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte

Lisätiedot

Mat. tukikurssi 27.3.

Mat. tukikurssi 27.3. Mat. tukikurssi 7.. Tänään oli paljon vaikeita aiheita: - suunnattu derivaatta - kokonaisdierentiaali - dierentiaalikehitelmä - implisiittinen derivointi Nämä kaikki liittvät aika läheisesti toisiinsa.

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

Säteilyturvakeskuksen määräys turvallisuusluvasta ja valvonnasta vapauttamisesta

Säteilyturvakeskuksen määräys turvallisuusluvasta ja valvonnasta vapauttamisesta 1 (33) LUONNOS 2 -MÄÄRÄYS STUK SY/1/2017 Säteilyturvakeskuksen määräys turvallisuusluvasta ja valvonnasta vapauttamisesta Säteilyturvakeskuksen päätöksen mukaisesti määrätään säteilylain ( / ) 49 :n 3

Lisätiedot

Radioaktiivisten jätteiden kartoitus kiihdytinlaboratoriossa

Radioaktiivisten jätteiden kartoitus kiihdytinlaboratoriossa Radioaktiivisten jätteiden kartoitus kiihdytinlaboratoriossa Aki Puurunen JYVÄSKYLÄN YLIOPISTO FYSIIKAN LAITOS Pro Gradu -tutkielma Ohjaaja: Jaana Kumpulainen 3. lokakuuta 2011 Tiivistelmä Kiihdytinlaboratoriossa

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

1 Oikean painoisen kuulan valinta

1 Oikean painoisen kuulan valinta Oikean painoisen kuulan valinta Oheisessa kuvaajassa on optimoitu kuulan painoa niin, että se olisi mahdollisimman nopeasti perillä tietyltä etäisyydeltä ammuttuna airsoft-aseella. Tulos on riippumaton

Lisätiedot

Jousen jousivoiman riippuvuus venymästä

Jousen jousivoiman riippuvuus venymästä 1 Jousen jousivoiman riippuvuus venymästä Mikko Vestola Koulun nimi Fysiikka luonnontieteenä FY3-Projektityö 12..2002 Arvosana: K+ (10) 2 1. Tutkittava ilmiö Tehtävänä oli tehdä oppikirjan tutkimustehtävä

Lisätiedot