Kompleksiluvut. Johdanto

Koko: px
Aloita esitys sivulta:

Download "Kompleksiluvut. Johdanto"

Transkriptio

1 Kompleksiluvut Johdato Tuomo Pirie Aikoje kuluessa o matematiikassa kohdattu tilateita, jolloi käytetyt määrittelyt ja rajoitukset (esimerkiksi käytetyt lukujoukot) eivät ole olleet riittäviä yhteäise teoria raketamiseksi. Näi kävi mm. pythagoralaiselle koulukualle. 600-luvulla ekr.[1] Pythagoralaiset olivat Krotoissa (alue ykyise Italia eteläraikolla, jossa tuolloi oli kreikkalaisia siirtokutia) vaikuttava puoliuskoollie yhteisö, joka uskoi, että umerot kuvaavat maailmakaikkeude todellise merkitykse. He olivat vakuutueita, että maailma voitii täsmällisesti esittää lukuje avulla. Tämä lisäksi he uskoivat, että maailmassa o olemassa vai ratioaalilukuja (lukuja, jotka voidaa esittää kahde kokoaisluvu osamäärää). Niipä veljeskualle oliki kohtuullie järkytys, ku havaittii, että o olemassa myös sellaisia lukuja, jotka eivät kuulu ratioaalilukuje joukkoo. Tällaie luku sytyy esimerkiksi muodostamalla lävistäjä eliölle, joka sivu pituus o yksi. Lävistäjä pituusha o Pythagoraa imeä katava teoreema mukaisesti, joka tuetusti o irratioaaliluku. Tarkastellaa käytettävä lukujouko vaikutusta yhtälö ratkaisuje lukumäärää. Yhtälöllä x + 5 = ei ole ratkaisuja, mikäli x N. Jos x Z, ii yhtälöllä o ratkaisu x = 3. Reaaliluvuista kompleksilukuihi Lukujoukkoje riittämättömyyde ogelma kohdattii myös eliöjuurifuktio kohdalla. Positiiviste reaalilukuje eliöjuuri osattii laskea, mutta egatiiviste lukuje osalta tilae oli tutemato. Ogelma olisi helppo kiertää toteamalla, ettei egatiivisilla luvuilla ole eliöjuurta, ja site lauseke x ei olisi määritelty, ku x < 0. Tämäkaltaie ogelma kiertämie muodostaisi varsi suure epäkohda eikä äyttäisi kovikaa kauiilta osaa matemaattista teoriaa. Tutkitaa tilaetta lähemmi yhtälö x = a avulla. 1. Mikäli a 0, o ratkaisu selvä, x = ± a.. Jos a < 0, ei yhtälöllä ole ratkaisua joukossa R. Tapaus. herättää kysymykse siitä, voisiko yhtälöllä olla ratkaisu jossai joukkoa R laajemmassa lukujoukossa. 1

2 Olkoo s 0 ja s R. Tällöi s < 0 ja eliöjuure laskusäätöje mukaisesti 1 s = 1 s Tämä osoittaa, että kaikkie egatiiviste lukuje s eliöjuuret voidaa ilmoittaa tuloa, joka tekijöiä ovat s: vastaluvu eliöjuuri s sekä 1, joista 1 o toistaiseksi määrittelemätö. Mikäli 1 voidaa määritellä hyvi, saadaa samalla määriteltyä kaikkie egatiiviste reaalilukuje eliöjuuret. Tällaie hyvä määritelmä o olemassa. Määritellää imagiaariyksikkö: i = 1 i = 1 (1) Imagiaariyksiko avulla voidaa muodostaa puhtaasti imagiaarisia lukuja kertomalla imagiaariyksikköä reaaliluvulla. Imagiaariyksikköä merkitää myös kirjaimella j. Tämä o yleie käytätö esimerkiksi sähköopissa. i3, i 3 4 ja i 5 ovat puhtaita imagiaarilukuja. Edellä maiittu reaalilukuje jouko laajetamie tapahtuu yhdistämällä siihe imagiaarilukuje joukko I. Imagiaariluvut (huomaa, että yt emme käsittele pelkästää puhtaita imagiaarilukuja) ovat muotoa z = x + iy olevia lukuja, missä i = 1 (siis imagiaariyksikkö), x R sekä y R y 0. i lg 5, 6 i 3 ja 5 + i cos 3 ovat imagiaarilukuja. 1 ja 8 7 e3 eivät ole imagiaarilukuja, vaa reaalilukuja. 1 Ku oletetaa, että egatiiviste lukuje eliöjuurille pätevät samat laskusääöt kui positiiviste lukuje eliöjuurille. Määritelmä o hyvä, mikäli se o yhteesopiva muu teoria kassa ja tuottaa laskeallisesti järkeviä ja käyttökelpoisia tuloksia.

3 Yhdistämällä reaalilukuje ja imagiaarilukuje joukot sytyy kompleksilukuje joukko Kompleksiluvut ovat muotoa C = R I z = x + iy olevia lukuja, missä x R sekä y R. Huomaa, että joukoissa R ja C sallitaa tilae y = 0, mutta y 0 aia joukossa I. Täsmällisesti määriteltyä edellä maiitut lukujoukot ovat: I = {z z = x + iy, x R y R y 0} C = {z z = x + iy, x R y R} Toisiaa kompleksiluku saatetaa ilmoittaa järjestettyä paria (x, y): z = (x, y) = x + iy, 1 + i5 ja i si π ovat kompleksilukuja. Mikäli luvut ilmoitetaa 3 7 järjestettyiä pareia, e ovat (, 0), ( 1, 5) ja (0, si π) 3 7 Reaali- ja imagiaariosa Kompleksiluvussa z = x + iy luku x o z: reaaliosa Re (z) ja y o z: imagiaariosa Im (z). Siis Re (z) = x ja Im (z) = y Reaali- ja imagiaariosa ovat reaalilukuja. Kompleksiluvut muodostavat site reaalilukuparie jouko, jolle o omat laskusäätösä. Kompleksiluvu z = 3 i reaaliosa Re (z) = 3 ja imagiaariosa Im (z) =. 3

4 Kompleksilukuje yhtäsuuruus Olkoo kompleksiluvut z 1 = x 1 + iy 1 ja z = x + iy. Kompleksiluvut ovat yhtäsuuret, jos iide reaaliosat ovat keskeää yhtäsuuret ja imagiaariosat ovat keskeää yhtäsuuret, siis: z 1 = z Re (z 1 ) = Re (z ) Im (z 1 ) = Im (z ) x 1 = x y 1 = y Kompleksilukuje esittämie graafisesti Kompleksilukuje graafie esittämie saattaa tutua moimutkaiselta, koska reaalilukuje joukko voidaa esittää yksiulotteisella lukusuoralla Kuva 1: Lukusuora Tarkastellaa kompleksilukua järjestettyä paria z = (x, y). Tästä parista voimme esittää reaaliosa x lukusuoralla samalla tavoi kui tavallise reaaliluvuki. Imagiaariosa y o myös reaalie, jote seki esittämie lukusuoralla o mahdollista. Yksikäsitteise graafise esitykse muodostamiseksi riittää, ku pystymme esittämää reaalilukupari (x, y) graafisesti. Tämä oistuu tavallise karteesise koordiaatisto avulla. Kompleksiluvut esitetää koordiaatistossa asettamalla reaaliosa x-akselille ja imagiaariosa y-akselille. Tällaisessa esityksessä x-akseli o reaaliakseli ja y-akseli o imagiaariakseli. Käytettyä koordiaatistoa kutsutaa kompleksitasoksi. Toisiaa termiä kompleksitaso käytetää ku tarkoitetaa kompleksilukuje joukkoa C. Itseisarvo ja vaihekulma Kompleksiluvu z = x + iy itseisarvo z (moduli) lasketaa kute kaksikompoettise vektori pituus. Se ilmoittaa kompleksitasoo asetetu pis- 4

5 Im(z) y x z = x + iy Im(z) y z = x + iy x Re(z) x Re(z) Kuva : Kompleksitaso Im(z) -1 + i x - + i x x 1 + i x + i - - i x -1 - i x - i x x 1 - i Re(z) Kuva 3: Muutamia kompleksitaso pisteitä tee etäisyyde origosta. z = Re (z) + Im (z) = x + y Olkoo kompleksiluku z = x + iy 0 ja v tämä kompleksiluvu paikkavektori kompleksitasossa. Kompleksiluvu vaihekulma θ = arg (z) (argumetti) o kompleksitaso reaaliakseli positiivise osa ja paikkavektori v välie kulma. Suorakulmaise kolmio geometria perusteella vaihekulma toteuttaa yhtälö Im (z) ta θ = Re (z) = y () x Arkustageti avulla voidaa selvittää joki kulma θ 0, joka toteuttaa yhtälö (). Tämä jälkee tarkastellaa reaali- ja imagiaariosie merki perusteella missä kompleksitaso eljäeksessä luku z sijaitsee. Mikäli saatu kulma θ 0 o samassa eljäeksessä kui luku z, voidaa se valita argumetiksi. Kulma θ 0 lisäksi kaikki se π-moikerrat toteuttavat 5

6 yhtälö ja ovat samassa koordiaatisto eljäeksessä kui z. Site vaihekulma arg (z) = θ 0 + π, missä Z. Jos eljäekset eivät täsmää, tulee saatuu arvoo θ 0 lisätä tai vähetää π tilateesta riippue. Tämä jälkee voidaa korjattu kulma valita vaihekulmaksi π-moikerroi. Siis arg (z) = θ 0 ± π + kπ, missä kaksoismerkistä ± valitaa vai toie operaatio. Im(z) y z q x z = x + iy Re(z) Kuva 4: Itseisarvo ja argumetti kompleksitasossa Lasketaa luvu z = i 1 itseisarvo ja vaihekulma z = + ( 1) = = 16 = ta(arg (z)) = = 3 = 3 Saadu tagettiarvo perusteella voidaa etsiä kulma θ θ = arcta ( 3) = π 3 Reaali- ja imagiaariosa etumerkeistä havaitaa, että z o kompleksitaso eljäessä eljäeksessä, siis saatu kulma θ kelpaa ratkaisuksi sellaiseaa. Vaihekulmaa ei ole määritelty luvulle z = 0. Useimmite tämä ei tuota ogelmia. Luvulla z = 0 voidaa ajatella oleva kaikki mahdolliset vaihekulma arvot (äärettömä mota) tai ei vaihekulmaa laikaa. 6

7 Mikäli z o puhtaasti imagiaarie, x = 0 ja osamäärä y ei ole määritelty. x Tällöi vaihekulma θ määrittämie arkustageti avulla ei oistu. O kuiteki ilmeistä, että puhtaasti imagiaarise luvu ic (c R) vaihekulma o joko π tai π, π-moikerrat huomioide. Täsmällisemmi: arg (ic) = sg (c) π + kπ, k Z (3) missä sg (c) o sigum-fuktio, joka määritellää 1 (c > 0) sg (c) = 0 (c = 0) 1 (c < 0) Toisi saoe yhtälössä (3) π : etumerkki o sama kui c: etumerkki. Huomaa, että yhtälö (3) mukaa argumetti o moikäsitteie π-moikerroi. Sama pätee laskettaessa muideki kui puhtaasti imagiaariste lukuje argumetteja arkustageti avulla. Suorakulmaise esitykse perusteella ei siis voida yksikäsitteisesti määrittää kompleksiluvu vaihekulmaa, vaa πmoikerrat ovat läsä. Site suorakulmaie esitys z = x + iy vastaaki äärettämä motaa eri kompleksilukua, joide vaihekulmat ovat toistesa π-moikertoja. Mikäli vaihekulma θ arvo valitaa site, että π < θ π ii kulmaa θ kutsutaa pääargumetiksi jota merkitää Arg (z) Yleisesti kompleksiluvu z = x + iy vaihekulma o siis θ = Arg (z) + kπ, k Z Saattaa vaikuttaa yhdetekevältä, valitaako luvu z = x+iy vaihekulmaksi se pääargumetti, vai joki π-moikerta. Näi ei kuitekaa ole, sillä o olemassa fuktioita (esimerkiksi kompleksie logaritmifuktio), joide arvo riippuu käytety vaihekulma moikerrasta k. 7

8 Polaariesitys Käytettyä kompleksiluvu esitystä z = x + iy = (x, y) kutsutaa karteesiseksi tai suorakulmaiseksi esitykseksi (reaalilukupari esitys karteesisessa koordiaatistossa). Itseisarvo ja vaihekulma avulla voidaa kompleksiluku z esittää apakoordiaatteia (polaariesitys). Napakoordiaattiesitystä käyttäe voidaa kaikki kompleksiluvut esittää ja sijoittaa kompleksitasoo yksikäsitteisesti. z = re iθ (4) missä r = z ja θ = arg (z). Toisiaa, esimerkiksi sähköopissa, käytetää esitystapaa z = r θ missä r ja θ o määritelty kute edellä. Merkitä luetaa r kulmassa θ. Merkitä θ vastaa ekspoettifuktiota e iθ ja site r θ = re iθ Tällä kurssilla käytämme, kute matemaattisissa asiayhteyksissä yleesäki, apakoordiaattiesityksestä vai ekspoettimuotoa. Kompleksiluvu esitysmuodo muutamie Koska kompleksiluvulle z o käytettävissä kaksi ekvivalettia (vaihekulma moikäsitteisyyttä lukuuottamatta) esitysmuotoa z = x + iy ja z = re iθ o ilmeistä, että toisiaa joudutaa siirtymää esitysmuodosta toisee. Esimerkiksi kompleksilukuje laskusäätöje yhteydessä havaitaa, että tietyt laskutoimitukset (kute yhteelasku) o helpoita suorittaa karteesise esitykse z = x + iy avulla. Vastaavasti o laskutoimituksia (mm. kertolasku), jotka ovat huomattavasti yksikertaisempia polaariesitykse z = re iθ kautta. Kompleksiluvu z muuos polaariesityksestä suorakulmaisee suoritetaa käyttäe apua Euleri kaavaa 3 e iθ = cos θ + i si θ 3 Euleri kaava todistamie edellyttää kompleksise ekspoettifuktio ja kompleksise sarjateoria käyttöä. Koska äitä ei käsitellä perusteellisesti tässä esityksessä, jätetää todistus suorittamatta. Todistus löytyy esimerkiksi lähteestä [4]. 8

9 josta välittömästi seuraa, että z = re iθ = r (cos θ + i si θ) Suorakulmaise esitykse z = x + iy avulla voidaa kirjoittaa yhtälö x + iy = r (cos θ + i si θ) (5) Ku huomioidaa kompleksilukuje yhtäsuuruude määritelmä seuraa yhtälöstä (5), että z 1 = z Re (z 1 ) = Re (z ) Im (z 1 ) = Im (z ) { x = r cos θ y = r si θ Muuos suorakulmaisesta esityksestä apakoordiaatteihi tehdää itseisarvo ja vaihekulma avulla, kute luvuissa ja. Kompleksilukuje erilaiset esitysmuodot ovat vai sama koliko kaksi puolta. Esitysmuoto ei vaikuta itse luvu arvoo mitekää, pysyyhä marka kolikkoki samaa, vaikka sitä katsotaaki vuorotelle kruua- ja klaavapuolelta. Korostetaa vielä, että e iθ = 1, sillä e iθ = cos θ + i si θ,josta itseisarvot e iθ = cos θ + i si θ = cos θ + si θ = 1 = 1 Kompleksilukuje summa ja tulo Kompleksilukuje z 1 = x 1 + iy 1 ja z = x + iy yhteelasku määritellää seuraavasti: ( ) z 1 + z = Re (z 1 ) + Re (z ) + i Im (z 1 ) + Im (z ) = x 1 + x + i(y 1 + y ) Toisi saoe reaali- ja imagiaariosat lasketaa eriksee yhtee. Yhteelasku muistuttaa läheisesti vektorie yhteelaskua, jossa summa muodostetaa laskemalla vektorie kompoetit yhtee. Selvästi tämä yhteys äkyy ku esitämme yhteelasku graafisesti. 9

10 Im(z) Im(z) y 1 x 1 z = x + iy y x z = x + iy Re(z) y +y 1 z 1 z z +z 1 x +x 1 Re(z) Kuva 5: Kompleksilukuje yhteelasku Lukuje 5 ja + i7 summa: 5 + ( + i7) = (5 + ) + i7 = 7 + i7 Lukuje 4 i3 ja 8 + i summa: (4 i3) + (8 + i) = (4 + 8) + i( 3 + ) = 1 i Polaarimuodossa olevat kompleksiluvut muuetaa suorakulmaisee esityksee ee yhteelasku suorittamista. Tarvittaessa summa muuetaa takaisi polaarimuotoo. Lukuje e i 3 4 π ja 3e i π summa. Muuetaa luvut esi suorakulmaisee esityksee e i 3 4 π = (cos 3 4 π + i si 3 1 π) = ( + i 1 ) 4 = + i = + i 3e i π = 3(cos π + i si π ) = 3(0 i) = i3 10

11 Nyt yhteelasku o helppo suorittaa e i 3 4 π + 3e i π = + i i3 = + i( 3) Mikäli vaihekulma arvot ovat sellaiset, että suorakulmaise esitykse siija kosiifuktiot eivät sievee, voidaa yhteelasku suorittaa käyttäe apua trigoometrisia summa- ja tulokaavoja. Kompleksilukuje kertolasku suoritetaa kute kahde polyomi kertolasku: z 1 z = (x 1 + iy 1 )(x + iy ) = x 1 x + ix 1 y + iy 1 x + i y 1 y ku muistetaa imagiaariyksikö määritelmä (1), joka mukaa i = 1, sieveee tulo muotoo z 1 z = x 1 x + ix 1 y + iy 1 x y 1 y = x 1 x y 1 y + ix 1 y + iy 1 x = x 1 x y 1 y + i(x 1 y + y 1 x ) Käyttämällä polaariesitystä z 1 = r 1 e iθ 1 ja z = r e iθ, o kertolasku suorittamie huomattavasti yksikertaisempaa. Käyttämällä ekspoettifuktio laskusäätöjä 4, saadaa z 1 z = r 1 e iθ 1 r e iθ = r 1 r e i(θ 1+θ ) (6) Yhtälöstä (6) havaitaa, että kompleksilukuje tulo z 1 z itseisarvo o itseisarvoje tulo r 1 r ja vaihekulma o vaihekulmie summa θ 1 + θ. Yleisemmi: z 1 z = z 1 z arg (z 1 z ) = arg (z 1 ) + arg (z ) 4 Todistamatta oletamme, että kompleksiselle ekspoettifuktiolle pätevät samat omiaisuudet kui reaaliselleki: e iθ 1 e iθ = (e i ) θ 1 (e i ) θ = (e i ) (θ 1+θ ) = e i(θ 1+θ ) (e iθ1 ) = ((e i ) θ1 ) = ((e i ) θ1 = e iθ1 Nämä omiaisuudet seuraavat suoraa kompleksise ekspoettifuktio määrittelystä e z = e x+iy = e x e iy = e x (cos y + i si y) Omiaisuuksie todistus löytyy esimerkiksi lähteestä [] 11

12 Yleesä (lukuuottamatta aiva yksikertaisimpia tapauksia) kertolaskut o helpoita tehdä polaarimuodo kautta. Mikäli toie tulo tekijöistä o reaalie, o kertolasku helppo. Olkoo z 1 R ja z = x + iy = re iθ C. Suorakulmaise esitykse avulla ja polaariesitykse kautta z 1 z = z 1 x + iz 1 y z }{{} 1 z = z 1 re i(θ+arg(z 1)) R z 1 re i(θ+(k+1)π) (z 1 < 0) = 0 (z 1 = 0) z 1 re i(θ+kπ) (z 1 > 0) missä k R. Mikäli käytetää vai z : pääargumettia, ii z 1 re i(θ+π) (z 1 < 0) z 1 z = 0 (z 1 = 0) z 1 re i(θ) (z 1 > 0) Liittoluvut Kompleksiluvu z liittoluku (kompleksikojugaatti) z määritellää seuraavasti: z = Re (z) i Im (z) (7) Jos z = x + iy = re iθ, ii määritelmästä (7) seuraa, että z = x iy = re i( θ) Liittoluvulle käytetää myös merkitää z. Tässä esityksessä pitäydymme ylleviivatussa merkiässä z. Liittoluvu omiaisuuksia z = (Re (z)) + ( Im (z)) = (Re (z)) + (Im (z)) = z z + z = Re (z) + i Im (z) + Re (z) i Im (z) = Re (z) zz = z e iarg(z) z e i( arg(z)) = z e (iarg(z) iarg(z)) = z e 0 = z z 1 + z = x 1 iy 1 + x iy = x 1 + x i(y 1 + y ) = z 1 + z 1

13 Kompleksilukuje erotus Väheyslasku määritellää yhteelasku ja reaaliluvulla kertomise avulla. Olkoo kompleksiluvut z 1 = x 1 + iy 1 ja z = x + iy. Tällöi iide erotus Luvu ja se liittoluvu erotus: z 1 z = z 1 + ( z ) = x 1 + iy 1 + ( x iy ) = x 1 x + i(y 1 y ) z z = Re (z) + Im (z) (Re (z) Im (z)) = Im (z) Kompleksiluvu kääteisluku Kompleksiluvu z = x + iy = re iθ kääteisluku z 1 määritellää: z z 1 = 1 (8) Voidaa osoittaa, että kääteisluku o yksikäsitteie. O helppo osoittaa, että luvu z = re iθ kääteisluku o 1 r e iθ, sillä kute määritelmä (8) edellyttää. Kompleksilukuje osamäärä re iθ 1 r e iθ = r 1 e iθ e iθ }{{} r =1 = e iθ iθ = e 0 = 1 Jakolasku määritellää kertolasku ja kääteisluvu avulla: z 1 z = z 1 z 1 (9) Jakolasku määrittelyä hyväksikäyttäe voidaa kääteisluku ataa muodossa z 1 = 1 z 13

14 joka o määritelmä (9), ku z 1 = 1 ja z = z. Jakolasku suorittamie o helpoita polaarimuodossa, olkoo z 1 = r 1 e iθ 1 ja z = r e iθ. z 1 = z 1 z 1 z = r 1 e iθ 1 1 r e iθ = r 1 r e i(θ 1 θ ) Havaitaa siis, että kompleksilukuja jaettaessa ovat osamäärä itseisarvo ja vaihekulma (tulo kassa yhteevästi): z 1 z = z 1 z ( ) z1 arg = arg (z 1 ) arg (z ) z Jakolasku voi tieteki suorittaa karteesise esitykse kautta. Tällöi kaattaa lavetaa lauseketta jakaja liittoluvulla, jotta jakaja imagiaariset osat saadaa poistettua, ja jakolasku muuttuu kertolaskuksi. Olkoo z 1 = x 1 + iy 1 ja z 1 = x + iy Luvu ja se liittoluvu osamäärä: Omiaisuuksia z ) z 1 = z 1z = z 1z z z z z = 1 z z }{{} 1 z R z z = reiθ re iθ = eiθ e iθ = e iθ Todistamatta kootaa muutamia omiaisuuksia, joista o hyötyä komplek- 14

15 silausekkeide käsittelyssä. i = 1 ja i = i i = 1 i = 1 i e ±iπ = 1 e i π = i ja e i π = i 1 ( e iθ + e iθ) = cos θ Kompleksiluvu kokoaislukupotessi Kompleksiluvu kokoaislukupotessi z, Z voidaa laskea tulo määritelmää ojautue sekä suorakulmaisessa että polaarisessa esityksessä. z = (x + iy) = ( re iθ) Suorakulmaise esitykse kautta laskemie o suoraviivaista kertolaskua, joka o työlästä ku o suuri. Polaarie esitys o yksikertaisempi: ( re iθ ) = r ( e iθ) = r ( e iθ) (10) Yhtälöstä 10 havaitaa, että korotettaessa kompleksilukua kokoaislukupotessii, z: itseisarvo korotetaa potesii ja vaihekulma -kertaistuu. Lasketaa ( 39 i 13 ) i = ( ) ( ) 39 = = 4 = 13 ja ( ) ( ( )) arg i = arg i1 = 3 π + kπ 15

16 jote ( ) ( ) 4 i = 13e i( 3 π+kπ) = 13 e i4( 3 π+kπ) = 169e i( 8 3 π+k8π) = 169e i( 3 π+k8π) Euleri kaava avulla saadaa (10) muotoo r ( e iθ) = r (cos θ + i si θ) Mikäli r = z = 1, päädytää De Moivre kaavaa (cos θ + i si θ) = (cos θ + i si θ) Edellie esimerkki uudestaa, yt karteesisessa muodossa De Moivre kaava avulla : ( ( i )4 = (cos( 3 )) 4 π + kπ) + i si(3 π + kπ) = ( ( 13) 4 cos( ) 4 3 π) + i si( 3 π) ( = 169 cos(4 ) π) + i si(4 3 3 π) = 169 (cos( 83 ) π) + i si(83 π) = 169 (cos( 3 ) π + π) + i si(3 π + π) ( = 169 (cos( 3 ) π) + i si(3 π) = i 3 ) 16

17 Kompleksiluvu juuret Kompleksiluvu : s juuri z 1 lasketaa seuraavasti w k = z ( 1 = r cos θ + kπ + i si θ + kπ ) missä θ = Arg(z), Z ja o vakio, k Z ja 0 k < eli k = 0, 1,,,, 1. Täte juurella z 1 o arvoa. Todistetaa aettu kaava. Etsittäessä kompleksiluvu z :ttä juurta z 1, Z pyritää ratkaisemaa yhtälö w = z 1 w = z (11) Olkoo z = re i(θ+mπ) ja w = ue iφ, missä θ = Arg(z) ja m Z. Tällöi yhtälö (11) saadaa muotoo w = z sijoitetaa lukuje määrittelyt u e iφ = re i(θ+mπ) De Moivre u cos φ + iu si φ = r cos (θ + mπ) + ir si (θ + mπ) Kompleksilukuje yhtäsuuruude määritelmä perusteella saadaa yhtälöpari: { u cos φ = r cos (θ + mπ) u si φ = r si (θ + mπ) Yhtälöpari tulee olla idettisesti tosi, jote päädytää yhtälöryhmää u = r cos φ = cos (θ + mπ) si φ = si (θ + mπ) Näi olle etsitty :s juuri o { u = r φ = θ + kπ, k Z { u = r φ = θ+kπ, k Z z 1 = w = ue iφ = re i θ+kπ, k Z (1) ja polaarimuodossa z 1 = r ( cos θ + kπ + i si θ + kπ ), k Z (13) Yhtälöissä (1) ja (13) o vakio (etsittävä juure kertaluku) ja k saa kaikki kokoaislukuarvot. Site juurella z 1 olisi äärettömä mota arvoa, mikä 17

18 vaikuttaa omituiselta. Tutkitaa tilaetta hiema lisää. Juure vaihekulma o yhtälöide (1) ja (13) mukaisesti θ + kπ (14) missä o kokoaislukuvakio ja k Z. Tulkitaa lauseke (14) kokoaisluvu k fuktioksi f(k) f(k) = θ + kπ = θ + kπ Olkoo p Z. Tutkitaa fuktio arvoa f(k + p) θ + (k + p)π f(k + p) = = θ + kπ + pπ = θ + kπ + pπ = f(k) + pπ (15) Tuloksesta (15) voidaa päätellä seuraavaa. Olkoo 0 u <. Mikäli 0 k <, f(k) = f(u) = θ + uπ (0 k < ) (16) Jos taas k o rajoittamato, ii se voidaa ataa muodossa u + p ja tulokse (15) mukaisesti: f(k) = f(u + p) = f(u) + pπ (k < 0 k ) (17) Palataa yt juurelle saatuu yhtälöö (13): z ( 1 = r cos θ + kπ + i si θ + kπ ) (18) Sijoittamalla juure lausekkeesee (18) vaihekulma k: fuktioa f(k) saadaa z 1 = r (cos f(k) + i si f(k)) (19) Sijoitetaa vielä f(k) muodossa (17) z 1 = r (cos(f(u) + π) + i si(f(u) + π)) (0 u < ) (0) Kosii ja sii ovat π-jaksollisia fuktioita, jote tulos (0) sieveee muotoo z 1 = r (cos f(u) + i si f(u)) (0 u < ) 18

19 Näi voidaa ataa lopullie tulos kompleksiluvu juurelle: w k = z ( 1 = r cos θ + kπ + i si θ + kπ ) (1) missä θ = Arg(z), Z ja o vakio, k Z ja 0 k < eli k = 0, 1,,,, 1. Saadu tulokse mukaa kompleksiluvu juurella z 1 o arvoa (k = 0, 1,, 1). Kaikkie juurte itseisarvo o sama r, mutta vaihekulma muuttuu k: mukaisesti. k: arvo rajoittamie välille [0, 1] tuottaa juurelle kpl erisuuria arvoja. Mikäli k:ta ei rajoiteta, toistuvat jo rajoitetulla k:lla saadut juure vaihekulmat. Lasketaa luvu (1 + i) eljäet juuret: (1 + i) i = ja Arg(z) = π 4, jote ( (1 + i) = cos = 8 ( cos ( π 16 + kπ π + kπ 4 4 ) π 4 + i si + kπ ) 4 ( π + i si 16 + kπ )) Lasketaa juure vaihekulma φ k = π + kπ 16 k = 0, 1,, 3. arvot. = 4, jote k = 0 k = 1 k = k = 3 φ 0 = π π φ 1 = π π φ = π 16 + π φ 3 = π π = π 16 = 9 16 π = π = 5 16 π jos k = 4, ii φ 4 = π + 4 π = 33π = π + π ja jo kerra esiityeet arvot alkavat toistua π-moikerroi k: kasvaessa. Vastaavasti käy, mikäli k o egatiivie. Siis erilliset juure arvot 19

20 w k : w 0 = 8 ( cos π 16 + i si π ) 16 w 1 = 8 ( cos 9 16 π + i si 9 ) 16 π w = 8 ( cos 17 ) 17 π + i si π w 3 = 8 ( cos 5 ) 5 π + i si π Toisiaa saatuja juuria w k o mahdollista sievetää edellee trigoometriste summa- ja tulokaavoje avulla. Viitteet [1] J. D. Barrow (suom. R. Vilkko), Lukuje taivas, s.-5, Art House Oy 1999 [] S. Pohjolaie, Kompleksimuuttuja fuktiot, luetomoiste s.1-6, TTKK 000, Luku.pdf ( ) [3] J. W. Nilsso, S. A. Riedel, Electric Circuits 5th ed., Appedix B s , Addiso-Wesley 1996 [4] S. I. Grossma, Multivariable Calculus, Liear Algebra, ad Differetial Equatios, 3rd ed. Appedix 3 s.a-14-a-0, Sauders College Publishig

Kompleksilukujen alkeet

Kompleksilukujen alkeet Kompleksilukuje alkeet Samuli Reuae Soja Kouva Kuva 1: Abraham De Moivre (1667-175) Sisältö 1 Kompleksiluvut ja kompleksitaso 1.1 Yhtee- ja väheyslasku...................... 1. Kertolasku ja z = x + yi

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.

Lisätiedot

Laajennetaan lukualuetta lisäämällä murtoluvut

Laajennetaan lukualuetta lisäämällä murtoluvut 91 5 KOMPLEKSILUVUT 5.1 LUKUALUEEN LAAJENNUS Luoolliset luvut N : 1,, 3,... Määritelty - yhteelasku ab N, ku a, b N - kertolasku ab N, ku a, b N Kysymys: Löytyykö aia sellaie x N, että ax b, ku a, b N

Lisätiedot

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R }

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R } 7 Kompleksiluvut Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. 7.1 Kompleksilukujen määritelmä Määritelmä 7.1.1. Kompleksilukujen joukko

Lisätiedot

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa 1 ja perusominaisuuksia 2 Laskutoimitukset kompleksiluvuilla 3 Reaaliluvut ja kompleksiluvut Matematiikan peruskurssi KP3 I OSA 1: Johdatus kompleksilukuihin 4 Kompleksilukujen algebraa 5 Kompleksitaso

Lisätiedot

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1) Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )

Lisätiedot

Tehtäviä neliöiden ei-negatiivisuudesta

Tehtäviä neliöiden ei-negatiivisuudesta Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

Analyysi I. Visa Latvala. 3. joulukuuta 2004

Analyysi I. Visa Latvala. 3. joulukuuta 2004 Analyysi I Visa Latvala 3. joulukuuta 004 95 Sisältö 6 Kompleksiluvut 96 6.1 Yhteen- ja kertolasku.............................. 96 6. Napakoordinaattiesitys............................. 10 96 6 Kompleksiluvut

Lisätiedot

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla. Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa

Lisätiedot

Kompleksiluvut Kompleksitaso

Kompleksiluvut Kompleksitaso . Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen

Lisätiedot

Kompleksiluvut. JYM, Syksy /99

Kompleksiluvut. JYM, Syksy /99 Kompleksiluvut JYM, Syksy 2014 1/99 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1)

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1) . Osoita geometrisesti, että jos = ja niin pätee Im +) = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän htälön? Kirjoitetaan +) = 0 ) ), ) 0 jossa, ja 0 vastaavat kolmion pisteitä kompleksitasossa.

Lisätiedot

Kolmannen asteen yhtälön ratkaisukaava

Kolmannen asteen yhtälön ratkaisukaava TAMPEREEN YLIOPISTO Pro gradu -tutkielma Johanna Harju Kolmannen asteen yhtälön ratkaisukaava Matematiikan tilastotieteen laitos Matematiikka Heinäkuu 008 Tampereen yliopisto Matematiikan tilastotieteen

Lisätiedot

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1 Epäyhtälötehtävie ratkaisuja. osa, ks. Solmu 2/200. Kahde positiivise luvu harmoie, geometrie, aritmeettie ja kotraharmoie keskiarvo määritellää yhtälöillä H = 2 +, G = uv, A = u + v 2 u v ja C = u2 +

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua) Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain

Lisätiedot

3 x < < 3 x < < x < < x < 9 2.

3 x < < 3 x < < x < < x < 9 2. Matematiika johdatokurssi Kertaustehtävie ratkaisuja 1. Ratkaise epäyhtälöt: a) 3 x < 3, b) 5x + 1. Ratkaisu. a) Ratkaistaa epäyhtälö poistamalla esi itseisarvot: 3 x < 3 3 < 3 x < 3 9 < x < 3 3 < x

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

4.3 Signaalin autokorrelaatio

4.3 Signaalin autokorrelaatio 5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät Matematiika tukikurssi Kertausta. välikokeesee Tehtävät Algebraa Tämä kappale sisältää rusaasti harjoitustehtäviä. Suurimpaa osaa tehtävistä löytyy ratkaisut lopusta. Syyä rusaasee tehtävämäärää o, että

Lisätiedot

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko? HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin

Lisätiedot

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1. Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kertauslueto. välikokeesee Algebraa Tämäkertaie kurssimoiste sisältää rusaasti harjoitustehtäviä. Syyä tähä o se, että matematiikkaa oppii parhaite itse tekemällä ja laskemalla.

Lisätiedot

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

Sisältö MONISTEESTA...2 KOMPLEKSILUVUT...4 JOHDANNOKSI...4 KERTAUSTA LUKUJOUKOISTA...4 HUOMAUTUS...8 KOMPLEKSILUKUJEN MÄÄRITTELY...5 ARGUMENTTI...

Sisältö MONISTEESTA...2 KOMPLEKSILUVUT...4 JOHDANNOKSI...4 KERTAUSTA LUKUJOUKOISTA...4 HUOMAUTUS...8 KOMPLEKSILUKUJEN MÄÄRITTELY...5 ARGUMENTTI... Sisältö MONISTEESTA KOMPLEKSILUVUT4 JOHDANNOKSI4 KERTAUSTA LUKUJOUKOISTA 4 HUOMAUTUS5 KOMPLEKSILUKUJEN MÄÄRITTELY 5 HUOMAUTUS8 ARGUMENTTI 9 KOMPLEKSILUVUN ITSEISARVO9 LIITTOLUKU 0 VASTALUKU KOMPLEKSILUKUJEN

Lisätiedot

Kompleksianalyysi. Jukka Kemppainen. Mathematics Division

Kompleksianalyysi. Jukka Kemppainen. Mathematics Division Kompleksianalyysi Jukka Kemppainen Mathematics Division Sisältö 1. Kompleksiluvut 2. Funktiot 3. Differentiaalilaskentaa 4. Integrointi 5. Sarjat 6. Residylaskentaa 7. Diskreetti systeemi 2 / 43 Kompleksiluvut

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on

4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on 4 4 KORKEAAN KERTAUVUN INEAARISET DIFFERENTIAAIYHTÄÖT Kertalukua olevassa differetiaalihtälössä F(x,,,, () ) = 0 esiit :e kertaluvu derivaatta () = d /dx ja mahdollisesti alempia derivaattoja, :tä ja x:ää.

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

3 10 ei ole rationaaliluku.

3 10 ei ole rationaaliluku. Harjoitukset / 011 RATKAISUT Lukuteoria 1. Etsi Eratostheee seulalla samatie kaikki lukua 400 pieemmät alkuluvut. (Tai ohjelmoi tietokoeesi etsimää paljo lisää.) Kirjoita rivii kaikki luvut 1-00. Poista

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA. Kompleksilukujen hyödyntäminen vaihtosähköpiirien

SMG-2100: SÄHKÖTEKNIIKKA. Kompleksilukujen hyödyntäminen vaihtosähköpiirien SMG-100: SÄHKÖTEKNIIKKA Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Osoitin Trigonometrinen muoto Polaarimuoto Kompleksilukujen peruslaskutoimitukset Viime luennolla esitettiin, että

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

NELIÖJUURI. Neliöjuuren laskusääntöjä

NELIÖJUURI. Neliöjuuren laskusääntöjä NELIÖJUURI POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA2 Tarkoittaa positiivista tai nollaa Määritelmä, neliöjuuri: Luvun a R neliöjuuri, merkitään a, on se ei-negatiivinen luku, jonka neliö (eli toiseen potenssiin

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p MAA9 Koe.5.0 Jussi Tyi Tee koseptii pisteytysruudukko! Muista kirjata imesi ja ryhmäsi. Valitse kuusi tehtävää!. a) Ratkaise yhtälö si x. Ilmoita vastaus radiaaeia! b) Määritä paljoko o cos. Ilmoita tarkka

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja

Lisätiedot

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun 13. elokuuta 2015 Miksi matikkaa Erityisen tärkeää teknillisillä ja luonnontieteellisillä aloilla Ohjelmointi ja tietojenkäsittelytiede Lääketieteellinen

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Yksinkertaisin (jollain tavalla mielenkiintoinen) yhtälö lienee muotoa. x + a = b,

Yksinkertaisin (jollain tavalla mielenkiintoinen) yhtälö lienee muotoa. x + a = b, Kompleksiluvut c Pekka Alestalo 013 Tämä moniste sisältää perusasiat kompleksiluvuista. Tähdellä merkityt kohdat ovat lähinnä oheislukemistoksi tarkoitettua materiaalia. 1 Lukujoukot Uuden tyyppisten lukujen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Differentiaali- ja integraalilaskennan jatkokurssi

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Differentiaali- ja integraalilaskennan jatkokurssi Calculus Lukio 8 MAA Differetiaali- ja itegraalilaskea jatkokurssi Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Differetiaali- ja itegraalilaskea jatkokurssi

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

Noora Nieminen. Hölderin epäyhtälö

Noora Nieminen. Hölderin epäyhtälö Noora Niemie Hölderi epäyhtälö Matematiika aie Turu yliopisto 4. huhtikuuta 2008 Sisältö 1 Johdato 1 2 Cauchy-Schwarzi epäyhtälö 2 2.1 Cauchy-Schwarzi epäyhtälö todistus............. 2 2.2 Aritmeettis-geometrise

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

Kompleksianalyysi Funktiot

Kompleksianalyysi Funktiot Kompleksianalyysi Funktiot Jukka Kemppainen Mathematics Division Kompleksimuuttujan funktio Aloitetaan funktion määritelmällä. Määr. 1 Kompleksimuuttujan funktio f : C C on sääntö, joka liittää joukkoon

Lisätiedot

Kaikki tarpeellinen kompleksiluvuista

Kaikki tarpeellinen kompleksiluvuista Solmu 1 Kaikki tarpeellinen kompleksiluvuista Matti Lehtinen Maanpuolustuskorkeakoulu Kompleksiluvut ovat poistumassa lukion matematiikan opetussunnitelmista Ne ovat kuitenkin keskeinen osa matematiikan

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia

Lisätiedot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot Lukujonon raja-arvo 1/7 Sisältö Esimerkki lukujonon raja-arvosta Lukujonossa a 1,a 2,a 3,... (jossa on äärettömän monta termiä) voivat luvut lähestyä jotakin arvoa, kun jonossa edetään yhä pidemmälle.

Lisätiedot

Sormenjälkimenetelmät

Sormenjälkimenetelmät Sormejälkimeetelmät Matti Risteli mristeli@iksula.hut.fi Semiaariesitelmä 23.4.2008 T-106.5800 Satuaisalgoritmit Tietotekiika laitos Tekillie korkeakoulu Tiivistelmä Sormejälkimeetelmät ovat satuaisuutta

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 1. joulukuuta 2015 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujono Lukujono on diskreetti funktio

Lisätiedot

Lasketaan esimerkkinä seuraava tehtävä. Monisteen sivulla 14 on vastaavanlainen. x 1

Lasketaan esimerkkinä seuraava tehtävä. Monisteen sivulla 14 on vastaavanlainen. x 1 Kertausta Luku o viimeistä pkälää (iduktio) lukuu ottamatta kertausta koulukurssi asioista (tai asioista joide pitäisi kuulua koulukurssii) Tämä luku kädää siksi lueoilla läpi opeasti Jos asiat eivät ole

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

Simo K. Kivelä. Kompleksiluvut. 30.8.2009 Versio 1.01, 23.10.2012

Simo K. Kivelä. Kompleksiluvut. 30.8.2009 Versio 1.01, 23.10.2012 Simo K. Kivelä Kompleksiluvut 30.8.2009 Versio 1.01, 23.10.2012 c Simo K. Kivelä Tämän teoksen käyttöoikeutta koskee Creative Commons Nimeä-JaaSamoin 3.0 Muokkaamaton -lisenssi (http://creativecommons.org/licenses/by-sa/3.0/deed.fi)

Lisätiedot

4 Matemaattinen induktio

4 Matemaattinen induktio 4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt

Lisätiedot

(a, 0) + (c, 0) = (a + c, 0)

(a, 0) + (c, 0) = (a + c, 0) . Kompleksiluvut Kompleksiluvut C saadaan varustamalla taso R komponenteittaisella yhteenlaskulla (Esimerkki.3 (b)) ja kertolaskulla, joka määritellään asettamalla Huomaa, että ja (a, b)(c, d) =(ac bd,

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

(a) avoin, yhtenäinen, rajoitettu, alue.

(a) avoin, yhtenäinen, rajoitettu, alue. 1. Hahmottele seuraavat tasojoukot. Mitkä niistä ovat avoimia, suljettuja, kompakteja, rajoitettuja, yhtenäisiä, alueita? (a) {z C 1 < 2z + 1 < 2} (b) {z C z i + z + i = 4} (c) {z C z + Im z < 1} (d) {z

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty

( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 15 Päivitetty 19..6 31 Tapa 1 Ratkaistaan yhtälöryhmä käyttämällä sijoituskeinoa. x y+ z = x y + 3z = 3x 4y+ z = Ratkaistaan yhtälöstä (1) muuttuja

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu 83A Tietoraketeet ja algoritmit 06-07, Harjoitus ratkaisu Harjoitukse aiheea o algoritmie oikeellisuus. Tehtävä. Kahvipurkkiogelma. Kahvipurkissa P o valkoisia ja mustia kahvipapuja, yhteesä vähitää kaksi

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut

Lisätiedot

1 Kompleksitason geometriaa ja topologiaa

1 Kompleksitason geometriaa ja topologiaa 1 Kompleksitason geometriaa ja topologiaa Tavallisessa analyyttisessä geometriassa käyrien yhtälöt esitetään x-koordinaattien ja y-koordinaattien avulla, esimerkiksi y = 1 x esittää tasasivuista hyperbeliä,

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Eräs matematiikassa paljon hyödynnetty summa on ns. luonnollisten lukujen neliöiden summa n.

Eräs matematiikassa paljon hyödynnetty summa on ns. luonnollisten lukujen neliöiden summa n. POHDIN projekti Neliöide summa Lukujoo : esimmäise jäsee summa kirjoitetaa tavallisesti muotoo S ai i 1. Aritmeettisesta lukujoosta ja geometrisesta lukujoosta muodostetut summat voidaa johtaa varsi helposti.

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

a b c d

a b c d 1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen.

1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen. Joukko-oppia Matematiikan mestariluokka, syksy 2010 Harjoitus 1, vastaukset 20.2.2010 1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi asettele

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua) Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot