MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
|
|
- Aleksi Pakarinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016, periodi I
2 Sisältö Satuaisotata Parametriset tilastolliset jakaumat Suurimma uskottavuude estimaattorit Estimaattorie omiaisuuksia
3 Tilastokokee stokastie malli Satuaisotata Tutkittava suuree arvo havaitaa satuaisesti valitussa alkio osajoukossa. Halutaa päätellä (=arvata) tutkittava suuree (tutemato) jakauma f (x) koko populaatiossa. Stokastie malli Tilastokokee tulosta (ee mittauste tekemistä) mallietaa satuaisvektorilla (X 1,..., X ), joka alkiot ovat riippumattomat ja oudattavat (tutematota tai oletettua) jakaumaa f (x). Stokastie malli o tarkka, ku: Havaitut alkiot o valittu tasaise satuaisesti ja riippumattomasti. Havaittuje alkioide lukumäärä o piei suhteessa populaatio kokoo.
4 Tilastokokee stokastise malli soveltamie Ogelma Otatatutkimuksessa o havaittu arvot (x 1,..., x ). Mite voidaa havaioista päätellä tutkittava suuree (tutemato) jakauma koko populaatiossa? Ratkaisu Tehdää arvaus, että jakauma o f (x). Jos arvaus o (likimai) oikea, ii otaa tulosta voidaa mallitaa satuaisvektorilla (X 1,..., X ), joka alkiot ovat riippumattomat ja oudattavat (likimai) jakaumaa f (x). Stokastiika meetelmillä johdetaa t, että (X 1,..., X ) saa (likimai) arvo (x 1,..., x ). Jos saatu t 0, hylätää arvaus todeäköisi syi.
5 Datajouko ja stokastise malli tuusluvut Stokastiika meetelmillä johdetaa t, että (X 1,..., X ) saa (likimai) arvo (x 1,..., x ). Lasketaa tuusluku g(x 1,..., x ) datasta Tutkitaa, millä t:llä satuaisluku g(x 1,..., X ) o likimai g(x 1,..., x ) Tuusluku o fuktio g : R R. (Idea: säätö, jolla havaio aieistosta lasketaa yksi luku ) Esim Keskiarvo m(x) = 1 x i Otosvariassi s 2 (x) = 1 1 (x i m(x)) 2
6 Stokastise malli keskiarvo Hypoteettista jakaumaa f (x) odotusarvoa µ ja keskihajotaa σ vastaava tilastokokee stokastise malli X = (X 1,..., X ) keskiarvo m(x ) = 1 X i o satuaisluku, joka odotusarvo o [ ] 1 E[m(X )] = E X i = 1 E[X i ] = 1 µ = µ ja keskihajota o SD[m(X )] = SD [ 1 ] X i = 1 SD [ X i ] = 1 σ = σ.
7 Stokastise malli variassi Hypoteettista jakaumaa f (x) odotusarvoa µ ja keskihajotaa σ vastaava tilastokokee stokastise malli X = (X 1,..., X ) variassi σ 2 (X ) = 1 (X i m(x )) 2 o satuaisluku, joka odotusarvoksi saadaa yleiskaavoje 1 (X i m(x )) 2 = 1 X 2 i m(x ) 2 Var[Y ] = E[Y 2 ] (E[Y ]) 2 ja keskiarvo omiaisuuksie E[m(X )] = µ, Var[m(X )] = σ 2 / avulla [ ] E[σ 2 1 (X )] = E Xi 2 m(x ) 2 = E[X1 2 ] E[m(X ) 2 ] = Var[X 1 ] + (E[X 1 ]) 2 Var[m(X )] (E[m(X )]) 2 = σ 2 + µ 2 σ 2 / µ 2 = (1 1/)σ 2. Suurille : arvoilla siis stokastise malli tuottamasta satuaisvektorista X = (X 1,..., X ) laskettu variassi σ 2 (X ) o siis odotusarvoltaa lähellä hypoteettise jakauma f (x) variassiparametria: E[σ 2 (X )] = (1 1/)σ 2 σ 2.
8 Stokastise malli otosvariassi Puoltamato hypoteettise jakauma variassi estimaattori saadaa kertomalla variassi s 2 (X ) vakiolla /( 1): s 2 (X ) = 1 σ2 (X ) = 1 1 (X i m(x )) 2 Ylläoleva satuaisluku o stokastise malli otosvariassi. Hypoteettise jakauma f (x) pohjalta muodostetu stokastise malli X = (X 1,..., X ) otosvariassi o siis odotusarvoltaa E[s 2 (X )] = E [ ] 1 σ2 (X ) = 1 (1 1/)σ2 = σ 2 Tulkita: Jos otokse satuaisotata toistettaisii riippumattomasti suuri määrä kertoja ja havaituista otosvariasseista laskettaisii keskiarvo, olisi kyseie keskiarvo suurte lukuje lai mukaa hyvi lähellä koko populaatio variassia σ 2.
9 Datajouko ja stokastise malli keskiarvot Havaiot (x 1,..., x ) Stokastie malli (X 1,..., X ) m(x) = 1 x i m(x ) = 1 X i E(m(x)) = m(x) SD(m(x)) = 0 E(m(X )) = x f (x)dx = µ SD(m(X )) = 1 σ = 1 Yllä µ ja σ ovat hypoteettise jakauma f (x) odotusarvo ja keskihajota (jotka lasketaa matemaattisesti, datasta riippumatta). Stokastise malli keskiarvo m(x ) o satuaisluku, joka odotusarvo o µ ja keskihajota σ/. (x µ) 2 f (x)dx
10 Datajouko ja stokastise malli otosvariassit Havaittu data (x 1,..., x ) s 2 (x) = 1 1 (x i m(x)) 2 E(s 2 (x)) = s 2 (x) SD(s 2 (x)) = 0 Stokastie malli (X 1,..., X ) s 2 (X ) = 1 1 E(s 2 (X )) = σ 2 = (X i m(x )) 2 SD(s 2 (X )) = (x µ) 2 f (x)dx. Huom Stokastise malli otosvariassi s 2 (X ) o satuaisluku, joka odotusarvo o hypoteettise jakauma variassi σ 2.
11 Sisältö Satuaisotata Parametriset tilastolliset jakaumat Suurimma uskottavuude estimaattorit Estimaattorie omiaisuuksia
12 Tutemattoma jakauma parametrit Tarkastellaa tutematota datalähdettä, joka tutkittava suuree jakauma o f (x). Oletetaa, että jakauma f (x) = f θ (x) muoto tuetaa mutta se parametreja θ = (θ 1, θ 2,... ) ei. Beroullijakauma: f p (0) = 1 p, f p (1) = p; θ = p. Ekspoettijakauma: f λ (x) = λe λx ; θ = λ. Väli [a, b] tasajakauma: f (a,b) (x) = 1 b a ; θ = (a, b). Normaalijakauma: f (µ,σ 2 )(x) = 1 (x µ)2 e 2σ 2 ; θ = (µ, σ 2 ). 2πσ 2 Ku datalähteestä o saatu havaitoa x 1,..., x, voidaako äide pohjalta päätellä parametrie θ oikeat arvot? Ku yritetää arvata parametri θ i arvo; mikä o paras arvaus?
13 Parametrie estimoiti Tarkastellaa tutematota datalähdettä, joka tutkittava suuree jakauma o f θ (x) o parametreja θ = (θ 1, θ 2,... ) vaille. Datalähteestä o saatu havaiot x 1,..., x. Ku yritetää arvata parametri θ i arvo; mikä o paras arvaus? Parametri θ i : estimaatti o data x = (x 1,..., x ) pohjalta laskettu arvaus ˆθ i = g(x) estimaattori o fuktio (x 1,..., x ) g(x 1,..., x ), joka kuvaa data estimaatiksi Tiety parametri estimaattoriksi ei yleesä ole yksikäsitteistä parasta valitaa. Huom. Estimaattoriksi kutsutaa usei myös satuaislukua g(x ) = g(x 1,..., X ), joka o laskettu tilastokokee stokastise malli X = (X 1,..., X ) pohjalta.
14 Esimerkki: Biaarise suuree jakauma Ku biaarise suuree (tutemattomat) arvot N alkio populaatiossa ovat y 1,..., y N {0, 1}, ii suuree (tutemato) jakauma populaatiossa oudattaa Ber(p)-jakaumaa { 1 p, k = 0, f p (k) = p, k = 1. Kyseie jakauma o parametria p = #{i N:y i =1} N vaille tuettu. Esim Trumpi kaatus (0 = ei, 1 = kyllä) yhdysvaltalaiste ääioikeutettuje populaatiossa oudattaa Ber(p)-jakaumaa parametria p = Trumpi kaattajie osuus.
15 Ber(p)-jakauma parametri estimoiti Biaarise suuree jakauma o parametria p vaille tuettu: { 1 p, k = 0, f p (k) = p, k = 1, Mite estimoida p havaitu data x = (x 1,..., x ) pohjalta? Esim Jos Trumpi kaatuskyselyssä saadaa tulokseksi x = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0), tutuisi luotevalta estimoida kaatukseksi ˆp(x) = 10%. Ituitio pohjalta määritellää estimaattori ˆp(x) = {i : x i = 1}.
16 Esimerkki: Diskreeti tasajakauma parametri Vieraa valla sotilaskoeissa o sarjaumerot 1, 2, 3,..., N. Tiedustelijat ovat havaieet kolme sotilaskoee sarjaumerot x 1 = 63, x 2 = 17, x 3 = 203. Määritä havaitoje x = (x 1, x 2, x 3 ) pohjalta estimaatti sotilaskoeide lukumäärälle N. Tiedustelutietoa tuottava datalähde oudattaa tasajakaumaa f 1,N (k) = { 1 N, k = 1,..., N, 0, muute. Mikä o luoteva estimaattori ˆN(x) parametrille N?
17 Sisältö Satuaisotata Parametriset tilastolliset jakaumat Suurimma uskottavuude estimaattorit Estimaattorie omiaisuuksia
18 Uskottavuusfuktio [egl. likelihood fuctio] Datalähtee stokastie malli: X = (X 1,..., X ), joka kompoetit f θ -jakautueet ja toisistaa riippumattomat. Malli eustama todeäköisyys havaita (likimai) arvot x = (x 1,..., x ) o diskreetille jakaumalle P(X 1 = x 1,..., X = x ) = f θ (x 1 ) f θ (x ) ja jatkuvalle jakaumalle P(X 1 = x 1 ± ɛ/2,..., X = x ± ɛ/2) = ɛ f θ (x 1 ) f θ (x ). Uskottavuusfuktio θ f θ (x 1 ) f θ (x ) kertoo f θ -malli eustama todeäköisyyde havaita (likimai) sama data, mitä oikeasti havaittii.
19 Suurimma uskottavuude estimaatti [egl. maximum likelihood estimate] Uskottavuusfuktio θ f θ (x 1 ) f θ (x ) kertoo f θ -malli eustama todeäköisyyde havaita (likimai) sama data, mitä oikeasti havaittii. Mitä suurempi uskottavuusfuktio arvo o pisteessä θ, se uskottavampaa voidaa pitää oletusta, että havaittu data o peräisi f θ -jakautueesta datalähteestä. Parametri θ suurimma uskottavuude estimaatti ˆθ = ˆθ(x) o parametri arvo, joka maksimoi uskottavuusfuktio.
20 Ber(p)-jakauma SU-estimoiti Biaarise suuree jakauma o parametria p vaille tuettu: { 1 p, k = 0, f p (k) = p, k = 1, Mite estimoida p havaitu data x = (x 1,..., x ) pohjalta? Fakta Ber(p)-jakauma parametri p suurimma uskottavuude estimaatti datajoukolle x o ykköste osuus havaitussa datassa ˆp(x) = #{i : x i = 1}.
21 Todistus Malli uskottavuusfuktio datajoukolle x o f p (x 1 ) f p (x ) = (1 p) 1 x i p x i = (1 p) c p c, missä c = x i. Uskottavuude logaritmi ja se derivaatta ovat l(p) = ( c) log(1 p) + c log p, l (p) = ( c) ( 1) 1 p + c 1 p. Logaritmise uskottavuusfuktio derivaatta o olla, ku c 1 p = c p eli p = c. Uskottavuusfuktio maksimoituu pisteessä p = c = #{i :x i =1}.
22 Normaalijakauma parametrie SU-estimaatit Normaalijakauma tiheysfuktio f (µ,σ 2 )(t) = 1 (t µ)2 e 2σ 2 2πσ 2 o parametreja µ ja σ 2 vaille tuettu. Fakta Normaalijakauma parametrie (µ, σ 2 ) suurimma uskottavuude estimaatit datajoukolle x = (x 1,..., x ) ovat m(x) = 1 x i ja σ 2 (x) = 1 (x i m(x)) 2 eli datajouko x keskiarvo ja variassi.
23 Sisältö Satuaisotata Parametriset tilastolliset jakaumat Suurimma uskottavuude estimaattorit Estimaattorie omiaisuuksia
24 Harhato estimaattori [egl. ubiased estimator] Jakauma f θ parametri θ i estimaattori ˆθ i (x) o harhato, jos f θ -jakaumaa vastaavalle stokastiselle mallille X = (X 1,..., X ) pätee E ˆθ i (X ) = θ i. Tulkita: Jos tutemato datalähde todella oudattaa f θ -jakaumaa, ja datalähteestä tehdää riippumatota havaitoa ja lasketaa estimaatti harhattomalla estimaattorilla, ja jos sama toistettaisii mota kertaa, ii toistoje keskiarvo o lähellä oikeaa parametria.
25 Esimerkki: Ber(p)-jakauma SU-estimaattori Beroullijakauma parametri p suurimma uskottavuude estimaattori o ykköste suhteellie osuus ykköste osuus havaitussa datassa ˆp(x) = #{i : x i = 1}. Ber(p)-jakauma mukaiselle stokastiselle mallille X = (X 1,..., X ) ( ) ( ) #{i : Xi = 1} 1 E[ˆp(X )] = E = E X i = p, jote ˆp(x) o harhato.
26 Esim: Normaalijakauma odotusarvo SU-estimaattori Normaalijakauma odotusarvoparametri µ suurimma uskottavuude estimaattori o m(x) = 1 x i. Stokastiselle mallille X = (X 1,..., X ) ( ) 1 E[m(X )] = E X i = µ, jote m(x) o harhato.
27 Esim: Normaalijakauma variassi SU-estimaattori Normaalijakauma variassiparametri σ 2 suurimma uskottavuude estimaattori o σ 2 (x) = 1 (x i m(x)) 2. Stokastiselle mallille X = (X 1,..., X ) ( ) E[σ 2 1 (X )] = E (X i m(x ) 2 = = 1 σ2, jote σ 2 (x) o harhaie. Variassiparametri harhato estimaattori o otosvariassi s 2 (x) = 1 1 (x i m(x)) 2. Suurilla arvoilla äissä ei ole merkitsevää eroa.
28 Seuraavalla kerralla puhutaa Bayesläisestä tilastollisesta päättelystä...
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
1. Valitaan tilanteeseen sopiva stokastinen malli. 2. Sovitetaan malli havaittuun dataan (estimoidaan mallin parametrit).
Luku 7 Parametrie estimoiti Lasse Leskelä Aalto-yliopisto 2. lokakuuta 2017 7.1 Tilastollie päättely Tähä meessä o opittu eustamaa tapahtumie todeäköisyyksiä aetu stokastise malli pohjalta. Eusteide laskemiseksi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Tilastolliset luottamusvälit
Luku 8 Tilastolliset luottamusvälit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 8.1 Piste-estimaatti ja väliestimaatti Edellisessä luvussa opittii määrittämää parametreille estimaatteja suurimma uskottavuude
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa 2: Otokset, otosjakaumat ja estimoiti Estimoitimeetelmät TKK (c) Ilkka Melli (2007) Estimoitimeetelmät >> Todeäköisyysjakaumie parametrie estimoiti Suurimma uskottavuude
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma
Luku 7. Parametrien estimointi. 7.1 Parametriset jakaumat. Lasse Leskelä Aalto-yliopisto 29. marraskuuta 2017
Luku 7 Parametrie estimoiti Lasse Leskelä Aalto-yliopisto 29. marraskuuta 2017 7.1 Parametriset jakaumat Tarkastellaa tutematota datalähdettä, joka tuottaa toisistaa stokastisesti riippumattomia ja tiheysfuktio
Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Estimoitimeetelmät TKK (c) Ilkka Melli (2005) 1 Estimoitimeetelmät Todeäköisyysjakaumie parametrie estimoiti Momettimeetelmä Normaalijakauma parametrie estimoiti Ekspoettijakauma
8. laskuharjoituskierros, vko 11, ratkaisut
Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat
6.1 Riippumattomat satunnaismuuttujat
Luku 6 Otatajakaumie teoria 6.1 Riippumattomat satuaismuuttujat Muistamme edellisistä luvuista, että satuaismuuttujat X 1 ja X 2 ovat riippumattomat (määritelmät 4.6 ja 5.5), jos f(x 1, x 2 ) f 1 (x 1
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:
Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,
Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:
Mat-.60 Sovellettu todeäköisyyslasketa B Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Estimoiti Estimoitimeetelmät Väliestimoiti Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Beroulli-koe,
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4 Tilastollisen aineiston kuvaileminen, mallintaminen ja estimointi Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin
Mat Tilastollisen analyysin perusteet, kevät 2007
Mitä tilastotiede o? Mat-.04 Tilastollise aalyysi perusteet, kevät 007. lueto: Johdato Tilastotiede kehittää ja soveltaa meetelmiä: reaalimaailma ilmiöistä johtopäätökset ilmiöitä kuvaavie tietoje perusteella
Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot
TKK (c) Ilkka Melli (4) Testit suhdeasteikollisille muuttujille Johdatus tilastotieteesee Testit suhdeasteikollisille muuttujille Testit ormaalikauma parametreille Yhde otokse t-testi Kahde otokse t-testi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4 Tilastollisen datan kuvaileminen, mallintaminen ja estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden
Tilastollinen päättely II, kevät 2017 Harjoitus 3B
Tilastollie päättely II, kevät 7 Harjoitus 3B Heikki Korpela 3. maaliskuuta 7 Tehtävä. Jatkoa harjoitukse B tehtävii -3. Oletetaa, että x i c kaikilla i, ku c > o vakio. Näytä, että ˆβ, T ja T ovat tarketuvia.
Mat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit
Mat-.09 Sovellettu todeäköisyyslasku Mat-.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Estimoiti Luottamusvälit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Estimaattori, Estimoiti, Frekvessi,
Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet
= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1
35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,
Tilastollinen päättömyys, kevät 2017 Harjoitus 5b
Tilastollie päättömyys, kevät 07 Harjoitus b Heikki Korpela 3. helmikuuta 07 Tehtävä. a Olkoot Y,..., Y Bθ. Johda uskottavuusosamäärä testisuuree ry, Waldi testisuuree wy ja Rao pistemäärätestisuuree uy
2-suuntainen vaihtoehtoinen hypoteesi
Mat-.6 Sovellettu todeäköisyyslasketa. harjoitukset Mat-.6 Sovellettu todeäköisyyslasketa B. harjoitukset / Ratkaisut Aiheet: Tilastolliset testit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, F-jakauma,
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
S Laskennallinen systeemibiologia
S-4250 Laskeallie systeemibiologia Harjoitus Mittaustuloksea o saatu havaitoparia (x, y ),, (x, y ) Muuttuja y käyttäytymistä voidaa selittää muuttuja x avulla esimerkiksi yksikertaise lieaarise riippuvuude
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
2-suuntainen vaihtoehtoinen hypoteesi
MS-A53 Todeäköisyyslaskea ja tilastotietee peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Yhde otokse t-testi Testausasetelma yhde otokse t-testissä odotusarvolle Olkoo X i, i =,,, riippumato
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 2
Todeäköisyyslaskea ja tilastotietee peruskurssi Esimerkkikokoelma 2 Aiheet: Satuaismuuttujat ja todeäköisyysjakaumat Kertymäfuktio, pistetodeäköisyysfuktio ja tiheysfuktio Jakaumie tuusluvut Tärkeimmät
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
((12345A, 5, 1, 5), (98759K, 1, 5, 2), (33312K, 4, 4, 3), (23453B, 4, 4, 3), (21453U, 3, 3, 3)),
Luku 6 Datajoukkoje jakaumat, tuusluvut ja kuvaajat Lasse Leskelä Aalto-yliopisto 28. marraskuuta 207 6. Datajoukko ja datakehikko Tässä moisteessa datajoukko tarkoittaa järjestettyä listaa keskeää samatyyppisiä
Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?
TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II
Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6
Tilastollinen päättömyys, kevät 2017 Harjoitus 6A
Tilastollie päättömyys, kevät 07 Harjoitus 6A Heikki Korpela 8. helmikuuta 07 Tehtävä. Moistee teht. 5.. Olkoo Y,..., Y riippumato otos ekspoettiperhee jakaumasta, joka ptf/tf o muotoa fy i ; θ cθhye φθtyi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.104 Tilastollise aalyysi perusteet, kevät 007 6. lueto: Johdatus regressioaalyysii S ysteemiaalyysi Tekillie korkeakoulu Kai Virtae 1 Regressioaalyysi idea Tavoitteea selittää selitettävä tekiä/muuttua
Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017
Luku 1 Bayesläiset estimaattorit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 217 1.1 Bayesläiset piste-estimaatit Tarkastellaan datalähdettä, joka tuottaa tiheysfunktion f(x θ) mukaan jakautuneita riippumattomia
Johdatus todennäköisyyslaskentaan Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2004) 1
Johdatus todeäköisyyslasketaa Kovergessikäsitteet ja raja-arvolauseet TKK (c) Ilkka Melli (2004) 1 Kovergessikäsitteet ja raja-arvolauseet Kovergessikäsitteitä Suurte lukuje lait Keskeie raja-arvolause
l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 018 Harjoitus B Ratkaisuehdotuksia Tehtäväsarja I 1 (Monisteen tehtävä 14) Olkoon f Y (y; θ) tilastollinen malli, jonka
Todennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet
Ilkka Melli Todeäköisyyslasketa Osa 2: Satuaismuuttujat ja todeäköisyysjakaumat Kovergessikäsitteet ja raja arvolauseet TKK (c) Ilkka Melli (2006) 1 Kovergessikäsitteet ja raja arvolauseet >> Kovergessikäsitteitä
Tilastolliset menetelmät
Tilastolliset meetelmät tilastolliste meetelmie tarkoitus o: estimoida eliaika- (vikaatumisaika, korjausaika- jakaumie ja -mallie parametreja eliaikakokeide, laitteide käyttökokemustiedo yms. perusteella
EX1 EX 2 EX =
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var X,
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
tilastotieteen kertaus
tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla
Mat Sovellettu todennäköisyyslaskenta B 5. harjoitukset / Ratkaisut Aiheet: Jatkuvia jakaumia Avainsanat: Jatkuvia jakaumia
Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Jatkuvia jakaumia Avaisaat: Biomijakauma, Ekspoettijakauma, Jatkuva tasaie jakauma, Kertymäfuktio, Keskeie raja-arvolause, Mediaai, Normaaliapproksimaatio,
Tilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
Parametrien oppiminen
38 Parametrie oppimie Tilastollise malli (Bayes-verkko rakee o kiiitetty, se umeeriste parametrie (ehdolliste todeäköisyyksie arvot pyritää määräämää Oletamme havaitoe oleva täydellisiä; s.o., okaise datapistee
4. Todennäköisyyslaskennan kertausta
Sisältö Peruskäsitteet Diskreetit satuaismuuttujat Diskreetit jakaumat (lkm-jakaumat) Jatkuvat satuaismuuttujat Jatkuvat jakaumat (aikajakaumat) Muut satuaismuuttujat lueto04.ppt S-38.45 - Liikeeteoria
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Tilastollisen merkitsevyyden testaus (+ jatkuvan parametrin Bayes-päättely) Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden
5. Väliestimoi tehtävän 3 tilanteessa tulppien keskimääräinen kestoa.
MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuiee luetomoistee lukuu 5 liittye 1. Olkoo puoluee A kaatusosuus populaatiossa 30 %. Tarkastellaa tästä populaatiosta tehtyä satuaisotosta, joka koko
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Kalle Kytölä, Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015
Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI
1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI Edellä esitelty Bayesiläinen luokittelusääntö ( Bayes Decision Theory ) on optimaalinen tapa suorittaa luokittelu, kun luokkien tnjakaumat tunnetaan Käytännössä tnjakaumia
MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)
21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.
Harjoitukset 1 : Tilastokertaus
31C99904, Capstoe: Ekoometria ja data-aalyysi TA : markku.siikae(a)aalto.fi & tuuli.vahapelto(a)aalto.fi Harjoitukset 1 : Tilastokertaus (Palautus 10.1.2017) Palautellaa mielii hiema tilasto-oppia ja todeäköisyyslasketaa.
9. laskuharjoituskierros, vko 12-13, ratkaisut
9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t
Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä
Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Väliestimointi TKK (c) Ilkka Mellin (2005) 1 Väliestimointi Todennäköisyysjakaumien parametrien estimointi Luottamusväli Normaalijakauman odotusarvon luottamusväli Normaalijakauman
Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää
1. Tilastollinen malli??
1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2
HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske
1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI
1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI Edellä esitelty Bayesiläinen luokittelusääntö ( Bayes Decision Theory ) on optimaalinen tapa suorittaa luokittelu, kun luokkien tnjakaumat tunnetaan Käytännössä tnjakaumia
Sisältö. Kvantitatiivinen metodologia verkossa. Monitasomallintaminen. Monitasomallit. Regressiomalli dummy-muuttujilla.
Kvatitatiivie metodologia verkossa Moitasomallius Pekka Ratae Helsigi yliopisto isältö Moitasomallit Matemaattisia peruskäsitteitä Esimerkki kovariassista Otatavirhe Esimerkki elittävie muuttujie lisäämie
Otantajakauman käyttö päättelyssä
Keskiarvo otatajakauma Toisistaa tietämättä kaksi tutkijaa tutkii samaa ilmiötä, jossa perusjoukko koostuu kuudesta tutkittavasta ja tarkoituksea o laskea keskiarvo A: Kokoaistutkimus B: Otatatutkimus
Yhden selittäjän lineaarinen regressiomalli
Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Tilastolliset menetelmät: Tilastolliset testit
Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille 0. Testejä järjestysasteikollisille muuttujille. Testejä laatueroasteikollisille
Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.
Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
11 Raja-arvolauseita ja approksimaatioita
11 Raja-arvolauseita ja approksimaatioita Tässä luvussa esitellään sellaisia kuuluisia todennäköisyysteorian raja-arvolauseita, joita sovelletaan usein tilastollisessa päättelyssä. Näiden raja-arvolauseiden
Tilastolliset menetelmät: Tilastolliset testit
Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.
Maximum likelihood-estimointi Alkeet
Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)
Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastollisen merkitsevyyden testaus Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
2.1. Parametrien estimointi 2.2. Regressiokertoimien estimointi kovariansseista ja korrelaatioista
Moimuuttujameetelmät: Ilkka Melli. Yleise lieaarise malli määrittelemie.. ja malli oletukset.. Yleise lieaarise malli matriisiesitys. Yleise lieaarise malli parametrie estimoiti.. Parametrie estimoiti..