tilavuudessa dr dk hetkellä t olevien elektronien

Koko: px
Aloita esitys sivulta:

Download "tilavuudessa dr dk hetkellä t olevien elektronien"

Transkriptio

1 Semiklassie johtavuusmalli Metalleissa vastus aiheutuu virrakuljettajie törmäyksistä, joita karakterisoi relaksaatioaika τ Oletetaa, että ifiitesimaalisella aikavälillä dt elektroi törmäystodeäköisyys o dt/τ kute Drude mallissaki relaksaatioaika τ riippuu elektroi vyöideksistä ja elektroi paikasta faasiavaruudessa, ts τ = τ r, k Määritellää jakaumafuktio g r, k, t site, että vyöllä hetkellä t faasiavaruude tilavuudessa dr pistee r, k ympäristössä olevie elektroie lukumäärä o g r, k, tdr /4π 3 ermisessä tasapaiossa jakaumafuktio redusoituu Fermi-distribuutiofuktioksi fe k, missä fe = e E µ/k B + Jakautumafuktio lasku Jakaumafuktiosta oletamme, että elektroi törmäykse jälkeie distribuutiofuktio o täysi riippumato törmäystä välittömästi edeltävästästä jakaumasta g r, k örmäyksessä elektroi siis uohtaa kaike se tiedo, joka sillä mahdollisesti oli termisestä epätasapaiosta 2 jos elektroi jakauma pistee r ympäristössä paikallisessa lämpötilassa r oudattaa tasapaiodistribuutiota g r, k, t = gr, 0 k = e Ek µr/k B r +, ii törmäykset eivät muuta jakaumafuktio muotoa örmäykset siis pitävät yllä paikallista termistä tasapaioa Jakautumafuktio differetiaali dg r, k, t esittää iitä elektroeja, jotka törmättyää hetkellä t ovat aikavälillä dt siroeet pistee r ympäristöö Huomataa, että dg ei riipu jakaumafuktio yksityiskohtaisesta muodosta oletus Se voidaa ii olle määrittää mitä tahasa jakaumaa käyttäe koska tasapaiojakauma muoto ei muutu törmäyksissä oletus 2, yksikertaisi tapa suuree dg määräämiseksi o käyttää jakaumaa g 0 r, k vyöllä paika r läheisyydessä olevista aaltovektori k omaavista elektroeista aikavälillä dt siroavie osuus o dt/τ r, k jotta tasapaiojakauma säilyisi törmäyksistä huolimatta muuttumattomaa, täytyy vyölle siroeide elektroie lukumäärä olla sama kui vyöltä siroeide elektroie lukumäärä Saamme siis relaatio dg r, k, t = dt τ r, k g0 r, k Vyöllä faasiavaruude pistee r, k lähistöllä tilavuudessa dr hetkellä t olevie elektroie lukumäärä o dr dn = g r, k, t 4π 3 2 Olkoo r t, k t se vyöhö liittyvie semiklassiste liikeyhtälöide ratkaisu, joka hetkellä t = t kulkee pistee r, k kautta: r t = r, k t = k Jaetaa hetkellä t pistee r, k ympäristössä tilavuudessa dr vyöllä olevat dn elektroia ryhmii se mukaa, milloi e viimeksi törmäsivät: Semiklassiste liikeyhtälöide perusteella elektroi, joka viimeie hetkeä t edeltävä törmäys sattui aikavälillä t, t +, o peräisi pistee r t, k t ympäristö tilavuuselemetistä dr Relaksaatioaika-aproksimaatio mukaa pistee r t, k t tilavuuselemetistä dr aikaa siroeide elektroie lukumäärä o dn = τ r t, k t g0 r t, k t dr 4π 3 Liouville teoreema mukaa semiklassiset liikeyhtälöt säilyttävät faasiavaruude tilavuude, jote dr = dr dr, ja siis dn = τ r t, k t g0 r t, k t dr 4π 3 Osa elektroeista dn siroaa ee hetkeä t Olkoo P r, k; t, t todeäköisyys sille, että elektroi ei siroa aikavälillä t, t Elektroeista dn päätyy siis τ r t, k t g 0 r t, k t P r, k; t, t kappaletta hetkellä t pistee r, k tilavuuselemettii dr dr 4π 3

2 Jokaie elektroeista dn o peräisi jostaki viimeisestä siroasta, ts dn = dr 4π 3 gr 0 t, k t P r, k; t, t τ r t, k t Vertaamalla tätä lausekkeesee 2 saadaa g r, k, t = gr 0 t, k t P r, k; t, t τ r t, k t Käytetää lyhyyde vuoksi merkitöjä gt = g r, k, t g 0 t = g 0 rt, kt τt = τ rt, kt P t, t = P r, k; t, t Distribuutiofuktio voidaa yt kirjoittaa muotoo gt = τt g0 t P t, t arkastellaa iitä vyö elektroeja, joide liikeradat hetkellä t kulkevat pistee r, k kautta Fuktio P t, t ilmoittaa, mikä o iide elektroie osuus, jotka eivät törmää aikavälillä t, t Koska aikavälillä t, t + törmäykse todeäköisyys o /τt, väheee P tällä samalla aikavälillä kute P t, t = P t, t + dt τt ästä saadaa todeäköisyydelle differetiaaliyhtälö Reuaehdo toteuttava ratkaisu o t P t, t = P t, t τt P t, t = P t, t = e t d t/τ t Sijoittamalla differetiaaliyhtälö distribuutiofuktio lausekkeesee saadaa gt = g 0 t t P t, t Ku itegroidaa osittai ja huomataa, että jokaie elektroi siroaa joskus, ts P t, = 0, saadaa distribuutiofuktiolle lauseke gt = g 0 t P t, t d g0 t Distribuutiofuktio gt o siis tasapaiojakauma fuktio g 0 t plus korjaustermi asapaiojakauma g 0 t oli g 0 r, k = e Ek µr/k B r + Se aikariippuvuus o siis termeissä E k t, r t ja µr t, jote dg 0 t = g0 k E + g0 r dr + g0 µ rµ dr Semiklassiste liikeyhtälöide mukaa o Nyt dr = v k = h ke h = e Er, t + c v k Hr, t k E = ev E + c v H = ev E, sillä opeus v o kohtisuorassa Loretz-voimaa v H vastaa Fermi-fuktio fe = e E µ/k B + avulla jakauma g voidaa yt kirjoittaa muotoo gt = g 0 t + f v P t, t ee µ E µ Yksikertaistuksia Piei sähkökettä ja lämpötilagradietti Oletetaa sähköketä oleva ii heiko ja lämpötilagradieti ii piee, että idusoituva virra laskemiseksi o tarpee ottaa huomioo vai äistä lieaarisesti riippuvat termit Koska ämä esiityvät jakaumafuktio gt lausekkeessa jo eksplisiittisesti lieaarisia, ei ketä E tai gradieti riippuvuutta ole tarpee eää ottaa mukaa todeäköisyytee P t, t ämä voidaa siis laskea ollaketässä ja vakiolämpötilassa 2 Paikasta riippumato kettä,lämpötilagradietti ja relaksaatioaika Distribuutio gt lausekkee itegradi o yt riippumato paikkavektorista r t Aioa ajasta t riippuva suure o k t mahdollisesti myös E ja, joka seki riippuu ajasta vai, jos systeemii vaikuttaa mageettikettä Fermifuktio f o seki ajasta riippumato, sillä se o aioastaa mageettiketässä säilyvä liikevakio E k fuktio Itegradi riippuvuus ajasta t o siis pelkästää termeissä P t, t ja vk t ja mahdollisesti ketässä E ja gradietissa 3 Eergiasta riippuva relaksaatioaika Jos elektroie sirota riippuu merkittävästi aaltovektorista k, ii koko relaksaatioaikamalli soveltuvuus o kyseealaista Siksi tässä mallissa usei oletetaa lisäksi, että τ riippuu aaltovektorista aioastaa eergia E k välityksellä Koska E k säilyy

3 magettiketässä, τt ei riipu ajasta t odeäköisyyde P t, t lauseke voidaa yt itegroida: P t, t d t = exp = e t t /τe k t τ t Sijoittamalla tämä jakauma g lausekkeesee saadaa gk, t = g 0 k + vkt e t t /τek eet µt Ek µ DC johtavuus Jos mageettikettä H o olla, ii kt ei riipu ajasta t Sähköketä ja lämpötilagradieti ollessa staattisia ja lämpötila lisäksi paikasta riippumato saadaa tällöi jakaumafuktioksi gk = g 0 k ee vkτek Määritelmä mukaa gkdr /4π 3 oli tietyllä vyöllä pistee r, k ympäristössä tilavuudessa dr olevie elektroie lukumäärä Paikassa r kyseise vyö kotribuutio virtatiheytee o siis j = e 4π 3 vkgk Virtatiheys riippuu siis lieaarisesti ketästä E g 0 k o isotrooppie, jote g 0 v = 0, ja voidaa kirjoittaa muotoo j = σ E Kokoaisvirtatiheys saadaa summaamalla yli kaikkie osittai täytettyje vöide Kirjoittamalla kokoaisvirtatiheys edellee yo muotoo johtavuustesori σ o summa Huom 3 Lämpötila ollessa olla Fermifuktio redusoituu askelfuktioksi ja se derivaatta deltafuktioksi: f = δe E F Koska semiklassiste liikeyhtälöide mukaa o vk = h kfek, voidaa johtavuustesori lausekkeessa itegroida osittai: σ = e 2 τe F 4π 3 h fek kvk Koska f o askelfuktio θe F E, itegroiti ulottuu vai miehitettyje tiloje yli Efektiivie massatesori määriteltii kute M k = h kvk Johtavuus voidaa siis kirjoittaa muotoo σ = e 2 τe F 4π 3 M k miehitetyt Koska M o periodise fuktio gradietti, se alkeiskopi yli laskettu itegraali häviää Voimme siis kirjoittaa myös σ = e 2 τe F miehittämättömät 4π 3 M k Voidaa siis ajatella, että virtaa kuljettavatki aukot, kuha vaihdetaa efektiivise massatesori merkki Huom 4 Jos M o diagoaalie, ts σ = σ M µν = m δ µν eri vöitä vastaavista johtavuustesoreista σ = = e 2 4π 3 τ E kv kv k E=E k Huom esori σ ei yleesä ole diagoaalie, ts virta ja sähkökettä eivät ole yhdesuutaisia O kuiteki helppo ähdä, että kuutiosymmetrisissä kiteissä virta ja idusoiva sähkökettä ovat yhdesuutaisia Huom 2 Fermifuktio derivaatta o huomattavasti ollasta poikkeava aioastaa Fermipia Ek = E F läheisyydessä ämä o yhteesopiva se aikaisemma havaio kassa, että täydet vyöt eivät kuljeta virtaa ja riippumato aaltovektorista k, redusoituu johtavuus Drude malli mukaiseksi lausekkeeksi σ µν = e2 τ m δ µν AC johtavuus Oletetaa, että sähköketä aikariippuvuus o muotoa Distribuutiofuktio o yt gk, t = g 0 k + vkt Et = Eωe iωt e t t /τek eeωe iωt µt Ek µ

4 Jos mageettikettä o olla ja ajasta ja paikasta riippumato, saadaa jakaumaksi gk = g 0 eeω vk k /τek iω Johtavuus lasketaa aiva samoi kui DC tapauksessaki Vyö kotribuutio johtavuutee riippuu yt frekvessistä kute σ ω = e 2 τ E kv kv k 4π 3 iωτ E k E=E k ämä o sama kui DC johtavuus jaettua termillä iωτ Semiklassise malli paikkasapitävyys voidaa tarkistaa rajalla ωτ Malli atama johtavuustesori o tällöi σ ω = e2 iω 4π 3 v kv k f E=E k Kirjoittamalla jällee hvk f/ = k fek ja itegroimalla osittai saadaa johtavuude kompoeteiksi σ µν ω = e2 iω 4π 3 fe k 2 E k h 2 k µ k ν Ehto ωτ voidaa tulkita ehdoksi τ, ts elektroit eivät törmäile oisaalta törmäyksettömässä tilateessa o suhteellise suoraviivaista laskea kvattimekaaisesti ulkoise sähköketä aiheuttamat lieaariset korjaukset Blochi tiloihi Ku korjatuissa Blochi tiloissa lasketaa virtaoperaattori odotusarvot pitäytye vai sähköketä lieaarisii termeihi, päädytää johtavuustesori kvattimekaaisee lausekkeesee Osoittautuu, että tämä o ekvivaletti semiklassise tulokse kassa edellyttäe, että hω o piei verrattua kaikkie miehitettyje vöide eergiarakoihi ermie johtavuus arkastellaa ii pietä kiiteä aiee aluetta, että lämpötila voidaa ajatella oleva siellä vakio ällä alueella lämpömäärä muutos o suoraa verraollie etropia muutoksee: dq = ds ermie virtatiheys j q o site lämpötila ja etropiavirtatiheyde j s tulo: j q = j s ermodyamiika esimmäise pääsääö mukaa o ds = du µ dn Etropia-, eergia- ja hiukkasvirtatiheyksille o siis vastaavasti voimassa j s = j E µj Aalogisesti varausvirtatiheyde j = 4π 3 ev kg k, ku elektroit kuljettavat varaukse e asemasta eergiaa E k tai lukumäärääsä, voidaa kirjoittaa j E = 4π 3 E kv kg k j = 4π 3 v kg k Sijoittamalla ämä termise virtatiheyde lausekkeesee saadaa j q = 4π 3 E k µv kg k Ku merkitää E = E + e µ, saadaa mageettiketässä H = 0 ja tasaisessa sähköketässä jakaumafuktiolle lauseke gk = g 0 k + τek vk ee + Ek µ Määritellää tesorit L α site, että L α = = e 2 4π 3 ja matriisit L ij site, että τekvkvkek µ α, L = L 0 L 2 = L 2 = e L L 22 = e 2 L2 Sekä varaus- että termie virtatiheys voidaa kirjoittaa äide matriisie avulla kute j = L E + L 2 j q = L 2 E + L 22 Määrittelemällä apusuure σe = e 2 τe δe Ekvkvk 4π3 voidaa L α kirjoittaa hiema yksikertaisempaa muotoo L α = de { E µ α σe Huom Metalleilla o f/ = δe E F tarkkuudella k B /E F 2 Metalli DC johtavuus o siis samalla tarkkuudella σe F

5 esori L α voidaa laskea soveltamalla Sommerfeldi kehitelmää HEfEdE µ lausekkeesee L α = = HEdE + π2 6 k B 2 H µ kb 6 + 7π4 360 k B 4 H µ + O µ Edellee huomioidaa, että defe d de E µα σe kemiallie potetiaali toteuttaa ehdo µ E F suure f/ poikkeaa merkittävästi ollasta vai alueella Ok B eergia E = µ ympäristössä tesoreissa L ja L 2 esiityvä tekijä saa iide itegradit häviämää pisteessä E = µ ällöi kertalukuu k B /E F 2 saakka saadaa matriiseille L lausekkeet missä L = σe F = σ L 2 = L 2 = π2 3e k B 2 σ L 22 = π2 3 k 2 B e 2 σ, σ = σe E=EF Nämä lausekkeet ovat voimassa myös useamma osittai miehitety vyö tapauksessa ällöi matriisielemetit σ ij E o laskettava summaa yli kaikkie osittai miehitettyje vöide Oletetaa koejärjestely oleva sellaise, että varausvirtaa j = L E + L 2 ei kulje, ts j = 0 Kettä E voidaa silloi kirjoittaa muotoo E = L L 2 Sijoitetaa tämä termise virra lausekkeesee Ku merkitää j q = L 2 E + L 22 j q = K, ähdää, että termie johtavuustesori K o K = L 22 L 2 L L 2 Metalleilla termi σ o tyypillisesti kertalukua σ/e F, jote tesori K jälkimmäie termi o kertalukua k B /E F 2 L 22 verrattua esimmäisee termii Useimmissa tapauksissa ei puolijohteissa pitää ii olle paikkasa 2 K = π2 kb σ 3 e ämä o Wiedema-Frazi laki

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla. Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä

Lisätiedot

sillä hilassa vaikuttava periodinen potentiaali vaihtelee väleillä, jotka ovat pieniä verrattuna aaltopaketin

sillä hilassa vaikuttava periodinen potentiaali vaihtelee väleillä, jotka ovat pieniä verrattuna aaltopaketin Semiklassinen elektronidynamiikka Blochin teoria osoittaa, että metallikiteissä elektronit eivät siroa ioneista (kuten Druden malli olettaa). Metallit eivät kuitenkaan ole täydellisiä johteita, sillä mikään

Lisätiedot

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa.

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa. S-114.46 Fysiikka V (Sf) Tetti 16.5.00 välikokee alue 1. Oletetaa, että protoi ja elektroi välie vetovoia o verraollie suureesee r ( F =- kr) eikä etäisyyde eliö kääteisarvoo ( F =-k / r ). Käytä kulaliikeäärä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa

Lisätiedot

Tehtäviä neliöiden ei-negatiivisuudesta

Tehtäviä neliöiden ei-negatiivisuudesta Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Differentiaali- ja integraalilaskennan jatkokurssi

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Differentiaali- ja integraalilaskennan jatkokurssi Calculus Lukio 8 MAA Differetiaali- ja itegraalilaskea jatkokurssi Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Differetiaali- ja itegraalilaskea jatkokurssi

Lisätiedot

xe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x)

xe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x) BM20A580 Differetiaalilasketa ja sovellukset Harjoitus 3, Syksy 206. Laske seuraavat itegraalit si(4t + )dt (b) x(x 2 + 00) 000 dx (c) x exp(ix )dx 2. Mitä o y, ku (x ) 2 + y 2 = 2 2, etäpä y? Vastaukset

Lisätiedot

TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET. Kokooma 23.1.2008. Viimeisin perustemuutos on vahvistettu 3.2.1998.

TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET. Kokooma 23.1.2008. Viimeisin perustemuutos on vahvistettu 3.2.1998. TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET Kokooma 23.1.2008. Viimeisi perustemuutos o vahvistettu 3.2.1998. TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET Sisällysluettelo

Lisätiedot

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1 Epäyhtälötehtävie ratkaisuja. osa, ks. Solmu 2/200. Kahde positiivise luvu harmoie, geometrie, aritmeettie ja kotraharmoie keskiarvo määritellää yhtälöillä H = 2 +, G = uv, A = u + v 2 u v ja C = u2 +

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

8. laskuharjoituskierros, vko 11, ratkaisut

8. laskuharjoituskierros, vko 11, ratkaisut Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua) Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu 83A Tietoraketeet ja algoritmit 06-07, Harjoitus ratkaisu Harjoitukse aiheea o algoritmie oikeellisuus. Tehtävä. Kahvipurkkiogelma. Kahvipurkissa P o valkoisia ja mustia kahvipapuja, yhteesä vähitää kaksi

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on

4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on 4 4 KORKEAAN KERTAUVUN INEAARISET DIFFERENTIAAIYHTÄÖT Kertalukua olevassa differetiaalihtälössä F(x,,,, () ) = 0 esiit :e kertaluvu derivaatta () = d /dx ja mahdollisesti alempia derivaattoja, :tä ja x:ää.

Lisätiedot

Ehdollinen todennäköisyys

Ehdollinen todennäköisyys Ehdollie todeäköisyys Kerrataa muutama todeäköisyyslaskea laskusäätö. Tapahtuma E komplemettitapahtuma E o "E ei tapahdu". Koska todeäköisyyksie summa o 1, P ( E = 1 P (E. Joskus o helpompi laskea komplemettitapahtuma

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot Calculus Lukio MAA9 Trigoometriset fuktiot ja lukujoot Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Trigoometriset fuktiot ja lukujoot (MAA9) Pikatesti

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

4.3 Signaalin autokorrelaatio

4.3 Signaalin autokorrelaatio 5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi SMG-400 Sähkömageettiste järjestelmie lämmösiirto Ehdotukset harjoitukse 6 ratkaisuiksi Tarkastellaa suljetu järjestelmä tehotasaaioa joka o P + P P = P i g out st Oletetaa että verkotetussa alueessa jossa

Lisätiedot

Markov-ketjun hetkittäinen käyttäytyminen

Markov-ketjun hetkittäinen käyttäytyminen Matematiika ja systeemiaalyysi laitos B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava

Lisätiedot

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi Valo-oia Haarto & Karhue Valo sähkömageettisia aaltoia Sähkömageettiste aaltoje teoria erustuu Maxwelli yhtälöihi S S E da 0 B da Q (Gaussi laki) 0 (Gaussi laki magetismissa) dφb E ds dt (Faraday laki)

Lisätiedot

Luku Ohmin laki

Luku Ohmin laki Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja

Lisätiedot

Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet

Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet Ilkka Melli Todeäköisyyslasketa Osa 2: Satuaismuuttujat ja todeäköisyysjakaumat Kovergessikäsitteet ja raja arvolauseet TKK (c) Ilkka Melli (2006) 1 Kovergessikäsitteet ja raja arvolauseet >> Kovergessikäsitteitä

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat: Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,

Lisätiedot

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa. Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen. 10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kertauslueto. välikokeesee Algebraa Tämäkertaie kurssimoiste sisältää rusaasti harjoitustehtäviä. Syyä tähä o se, että matematiikkaa oppii parhaite itse tekemällä ja laskemalla.

Lisätiedot

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

Tunnuslukuja 27 III TUNNUSLUKUJA

Tunnuslukuja 27 III TUNNUSLUKUJA Tuuslukuja 27 III TUNNUSLUKUJA Tuuslukuja 28 Tuuslukuja käytetää, ku tilastoaieistoa havaiollistetaa tiivistetysti yksittäisillä luvuilla. Tuusluvut lasketaa muuttujie arvoje perusteella ja e kuvaavat

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Työ 55, Säteilysuojelu

Työ 55, Säteilysuojelu Työ 55, Säteilysuojelu Ryhmä: 18 Pari: 1 Joas Alam Atti Tehiälä Selostukse laati: Joas Alam Mittaukset tehty: 7.4.000 Selostus jätetty: 1.5.000 1. Johdato Tutkimme työssämme kolmea eri säteilylajia:, ja

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria

Lisätiedot

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015 Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Homogeeniset puolijohteet Olemme jakaneet kiteet kahteen ryhmään:

Homogeeniset puolijohteet Olemme jakaneet kiteet kahteen ryhmään: Homogeeniset puolijohteet Olemme jakaneet kiteet kahteen ryhmään: metallit ainakin yksi energiavyö on osittain täytetty eristeet energiavyöt ovat joko tyhjiä tai täysiä. Eristeitä karakterisoi nollasta

Lisätiedot

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät Matematiika tukikurssi Kertausta. välikokeesee Tehtävät Algebraa Tämä kappale sisältää rusaasti harjoitustehtäviä. Suurimpaa osaa tehtävistä löytyy ratkaisut lopusta. Syyä rusaasee tehtävämäärää o, että

Lisätiedot

0 C lämpötilaan antaa 836 kj. Lopputuloksena on siis vettä lämpötilassa, joka on suurempi kuin 0 0 C.

0 C lämpötilaan antaa 836 kj. Lopputuloksena on siis vettä lämpötilassa, joka on suurempi kuin 0 0 C. LH12-1 1 kg 2 C asteista vettä sekoitetaa yhde baari paieessa 2kg jäätä, joka lämpötila o -5 C Laske etropia muutos ja lämpötila, ku tasapaio o saavutettu 3 3 Vedelle c p 4,18 1 J/(kgK) jäälle c p 2, 9

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 1

Mat Dynaaminen optimointi, mallivastaukset, kierros 1 Mat-214 Dynaaminen optimointi, mallivastaukset, kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A, säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB ja säiliöstä

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Mite opit parhaite? Valmistaudu pitkä- tai lyhye matematiika kirjoituksii ilmaiseksi Mafyetti-ohjelmalla! Harjoittelu tehdää aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa tarvittavat

Lisätiedot

1.4. VIRIAALITEOREEMA

1.4. VIRIAALITEOREEMA 1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen

Lisätiedot

Esimerkki 2 (Kaupparatsuongelma eli TSP)

Esimerkki 2 (Kaupparatsuongelma eli TSP) 10 Esimerkki 2 (Kaupparatsuogelma eli TSP) Kauppamatkustaja o kierrettävä kaupukia site, että hä lähtee kaupugista 1 ja palaa sie sekä käy jokaisessa muussa kaupugissa täsmällee kerra. Matka kaupugista

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet.

1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet. a) ristid, puolijohtid ja talli tyypillist rgiakaistaraktt. i) NRGIAKAISTAT: (lktroi sallitut rgiatilat) Kaksiatoi systi: pottiaalirgia atoi väliatka fuktioa pot rpulsiivi kopotti -lktroit hylkivät toisiaa

Lisätiedot

HEIJASTUMINEN JA TAITTUMINEN

HEIJASTUMINEN JA TAITTUMINEN S-08-0 OPTIIKKA /6 HEIJASTUMINEN JA TAITTUMINEN Laboratoriotyö S-08-0 OPTIIKKA /6 Sisällysluettelo Teoria... 3 Työ suoritus... 4. Kokoaisheijastus... 4. Brewsteri kulma... 5 3 Mittauspöytäkirja... 6 S-08-0

Lisätiedot

Todennäköisyyslaskenta I. Heikki Ruskeepää

Todennäköisyyslaskenta I. Heikki Ruskeepää Todeäköisyyslasketa I Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 4 1.3 Aksiomaattie todeäköisyys 8 1.4 Ehdollie todeäköisyys 13 1.5 Riippumattomuus

Lisätiedot

Laajennetaan lukualuetta lisäämällä murtoluvut

Laajennetaan lukualuetta lisäämällä murtoluvut 91 5 KOMPLEKSILUVUT 5.1 LUKUALUEEN LAAJENNUS Luoolliset luvut N : 1,, 3,... Määritelty - yhteelasku ab N, ku a, b N - kertolasku ab N, ku a, b N Kysymys: Löytyykö aia sellaie x N, että ax b, ku a, b N

Lisätiedot

Alkuräjähdysteoria. Kutistetaan vähän...tuodaan maailmankaikkeus torille. September 30, fy1203.notebook. syys 27 16:46.

Alkuräjähdysteoria. Kutistetaan vähän...tuodaan maailmankaikkeus torille. September 30, fy1203.notebook. syys 27 16:46. Alkuräjähdysteoria Maailmakaikkeude umerot Ikä: 14. 10 9 a Läpimitta: 10 26 m = 10 000 000 000 valovuotta Tähtiä: Aiaki 10 24 kpl Massaa: 10 60 kg Atomeja: 10 90 kpl (valtaosa vetyä ja heliumia) syys 27

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

2.5. Eksponenttifunktio ja eksponenttiyhtälöt

2.5. Eksponenttifunktio ja eksponenttiyhtälöt Eksoettifuktio ja -htälöt Eksoettifuktio ja eksoettihtälöt Ku otessi käsitettä laajeetaa sallimalla eksoetille muitaki arvoja kui kokoaislukuja, tämä taahtuu ii, että ii saotut otessikaavat ovat voimassa,

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Määräys. sähköverkkotoiminnan tunnuslukujen julkaisemisesta. Annettu Helsingissä 2 päivänä joulukuuta 2005

Määräys. sähköverkkotoiminnan tunnuslukujen julkaisemisesta. Annettu Helsingissä 2 päivänä joulukuuta 2005 Dro 1345/01/2005 Määräys sähköverkkotoimia tuuslukuje julkaisemisesta Aettu Helsigissä 2 päivää joulukuuta 2005 Eergiamarkkiavirasto o määräyt 17 päivää maaliskuuta 1995 aetu sähkömarkkialai (386/1995)

Lisätiedot

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Oppimistavoite tälle luennolle

Oppimistavoite tälle luennolle Oppiistavoite tälle lueolle Yksikköoperaatiot ja teolliset prosessit CHEM-A00 (5 op) Tislaus ja uutto Yärtää erotusprosessie suuittelu perusteet Tutea tislaukse ja uuto toiitaperiaatteet Tutea tpillisipiä

Lisätiedot

Kompleksiluvut. Johdanto

Kompleksiluvut. Johdanto Kompleksiluvut Johdato Tuomo Pirie tuomo.pirie@tut.fi Aikoje kuluessa o matematiikassa kohdattu tilateita, jolloi käytetyt määrittelyt ja rajoitukset (esimerkiksi käytetyt lukujoukot) eivät ole olleet

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Käydään läpi vastusten keskinäisten kytkentöjen erilaiset

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

Liike-elämän matematiikka Opettajan aineisto

Liike-elämän matematiikka Opettajan aineisto Liike-elämä matematiikka Opettaja aieisto Pirjo Saarae, Eliisa Kolttola, Jarmo Pösö ISBN 978-951-37-5741-0 Päivitetty 13.8.2014 Tehtävie ratkaisut - Luku 1 Verotus - Luku 2 Katelaskut ja talousfuktiot

Lisätiedot

Kohinan ominaisuuksia

Kohinan ominaisuuksia Kohia omiaisuuksia Kohiamekaismit Termie kohia Raekohia 1/f kohia (Kvatisoitikohia) Kohia käsittely Kohialähteide yhteisvaikutus Kohiakaistaleveys Sigaali-kohia suhde Kohialuku Kohialämpötila 1 Kohia omiaisuuksia

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Puolijohteet. luku 7(-7.3)

Puolijohteet. luku 7(-7.3) Puolijohteet luku 7(-7.3) Metallit vs. eristeet/puolijohteet Energia-aukko ja johtavuus gap size (ev) InSb 0.18 InAs 0.36 Ge 0.67 Si 1.11 GaAs 1.43 SiC 2.3 diamond 5.5 MgF2 11 Valenssivyö Johtavuusvyö

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

Kompleksilukujen alkeet

Kompleksilukujen alkeet Kompleksilukuje alkeet Samuli Reuae Soja Kouva Kuva 1: Abraham De Moivre (1667-175) Sisältö 1 Kompleksiluvut ja kompleksitaso 1.1 Yhtee- ja väheyslasku...................... 1. Kertolasku ja z = x + yi

Lisätiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille

Lisätiedot

LASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000

LASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000 LASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000 Laskuharjoitus Detaljibalassi Osoita, että siirtymätodeäköisyydet π m α m ; ρ, m ρ α m ----- ; ρ < ρ, m m π m, m m ja π m ρ α m ------------------ ρ +, m π

Lisätiedot

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14) Tilatotietee jatkokuri 8. lakuharjoitute ratkaiuehdotuket (viikot 13 ja 14) 1) Perujoukko o aluee A aukkaat ja tutkittavaa omiaiuutea ovat tulot, Tiedämme, että perujouko tulot oudattaa ormaalijakaumaa,

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

lnx x 1 = = lim x = = lim lim 10 = x x0

lnx x 1 = = lim x = = lim lim 10 = x x0 BM0A580 - Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 05. (a) (b) ln = sin(t π ) t π t π = = 0 = = cos(t π = ) = 0 t π (c) e [ = ] = = e e 3 = e = 0 = 0 (d) (e) 3 3 + 6 + 8 + 6 5 + 4 4 + 4

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.

Lisätiedot

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY Lyhyt yhteenvetokertaus nodaalimallista SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY Ei enää tarkastella neutronien kulkua, vaan työn alla on simppeli tuntemattoman differentiaaliyhtälöryhmä

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

Joensuun yliopisto Kemian valintakoe/3.6.2009

Joensuun yliopisto Kemian valintakoe/3.6.2009 Joesuu yliopisto Kemia valitakoe/.6.009 Mallivastaukset 1. Selitä lyhyesti (korkeitaa kolme riviä), a) elektroegatiivisuus b) elektroiaffiiteetti c) amfolyytti d) diffuusio e) Le Chatelieri periaate. a)

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön

Lisätiedot

Johdatus todennäköisyyslaskentaan Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2004) 1 Johdatus todeäköisyyslasketaa Kovergessikäsitteet ja raja-arvolauseet TKK (c) Ilkka Melli (2004) 1 Kovergessikäsitteet ja raja-arvolauseet Kovergessikäsitteitä Suurte lukuje lait Keskeie raja-arvolause

Lisätiedot

Harjoitustehtävien ratkaisuja

Harjoitustehtävien ratkaisuja 3. Mallitamie lukujooje avulla Lukujoo määritelmä harjoituksia Harjoitustehtävie ratkaisuja 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3 a) 6,, 8, 4, 30. b) 8,, 6, 0,

Lisätiedot

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2.

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2. Luu 7: Oiosulusuojaus 7. OIKOLKOJA 7.. Yleistä Vero laitteide mitoittamisessa, oiosulusuojause suuittelussa ja turvallise äytö suuittelussa o tuettava oiosuluvirrat eri tilateissa ja eri osissa veroa.

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa 2: Otokset, otosjakaumat ja estimoiti Estimoitimeetelmät TKK (c) Ilkka Melli (2007) Estimoitimeetelmät >> Todeäköisyysjakaumie parametrie estimoiti Suurimma uskottavuude

Lisätiedot

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia?

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia? Kuluttajahitaideksi (KHI) Kysymys Mite mitata raha arvo muutoksia? Kuluttajahitaideksi (KHI) o sovittu kulutustavaroide ja palveluide hitakehitykse mittari. KHI muodostetaa paiotettua keskiarvoa eri pääryhmie

Lisätiedot

Mat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit

Mat Sovellettu todennäköisyyslasku 9. harjoitukset/ratkaisut. Luottamusvälit Mat-.09 Sovellettu todeäköisyyslasku Mat-.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Estimoiti Luottamusvälit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Estimaattori, Estimoiti, Frekvessi,

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

Sormenjälkimenetelmät

Sormenjälkimenetelmät Sormejälkimeetelmät Matti Risteli mristeli@iksula.hut.fi Semiaariesitelmä 23.4.2008 T-106.5800 Satuaisalgoritmit Tietotekiika laitos Tekillie korkeakoulu Tiivistelmä Sormejälkimeetelmät ovat satuaisuutta

Lisätiedot

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p MAA9 Koe.5.0 Jussi Tyi Tee koseptii pisteytysruudukko! Muista kirjata imesi ja ryhmäsi. Valitse kuusi tehtävää!. a) Ratkaise yhtälö si x. Ilmoita vastaus radiaaeia! b) Määritä paljoko o cos. Ilmoita tarkka

Lisätiedot