Luento 5 Yhteisvikojen analyysi PSA:n sovelluksia
|
|
- Jukka-Pekka Kahma
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 alto-yliopiston perustieteiden korkeakoulu Luento 5 Yhteisvikojen analyysi S:n sovelluksia hti Salo Systeemianalyysin laboratorio alto-yliopiston perustieteiden korkeakoulu L 11100, alto ahti.salo@aalto.fi 1
2 alto-yliopiston perustieteiden korkeakoulu Leikkausjoukkojen lukumäärä 1/3 Lähtökohtia soissa järjestelmissä perustapahtumia voi olla satoja Näistä muodostuvia katkosjoukkoja voi olla miljoonia tai peräti miljardeja tuloksena laskennallisia haasteita äähuomio kohdistuu yleensä tn:ltään suurimpiin leikkausjoukkoihin esim. tn > 10-7 Miten tarkasteltavien leikkausjoukkojen määrää voidaan rajoittaa siten, että tn:ltään kynnysarvon alittavia leikkausjoukkoja ei välttämättä generoida? Lähestymistapa Järjestetään perustapahtumat tn:nsä mukaan alenevaan järjestykseen Rakennetaan puu, jossa» kullakin tasolla lisätään yksi vikaantuva perustapahtuma aiempien tasojen tapahtumiin» kullakin rivillä perustapahtumat esitetään em. tnjärjestyksen mukaisesti so. tn:ltään suurin ensin, sitten toiseksi suurin jne. MS-E117 Riskianalyysi / hti Salo
3 alto-yliopiston perustieteiden korkeakoulu Leikkausjoukkojen lukumäärä /3 Huomioita Olkoon i i:nnen perustapahtuman tn ikajoukko FS failure set on joukko toteutuvia perustapahtumia Jos perustapahtumat ovat riippumattomia, niin vikajoukon tn on ifs FS i 1 ifs i MS-E117 Riskianalyysi / hti Salo 3
4 alto-yliopiston perustieteiden korkeakoulu Leikkausjoukkojen lukumäärä 3/3 Tapahtuman lisääminen vikajoukkoon Jos FS on vikajoukko, joka saadaan lisäämällä vikajoukkoon FS perustapahtuma j, niin FS' ifs ' i ifs ' 1 j j i 1 i FS 1 j ifs ifs 1 Kerrointermi j /1- j pienempi kuin 1 joss j < 0.5 Ts. jos FS:n tn on alle kynnysarvon, sama pätee tn-ehdon mukaisesti laajennetulle vikajoukolle vikajoukkojen määrää voidaan rajata Tapahtuman vaihtaminen toiseksi Jos FS saadaan vaihtamalla vikajoukossa FS perustapahtuma j tapahtumaksi k, niin FS" 1 k 1 j j j Kerrointermi pienempi kuin 1 joss k < j Ts. jos FS:n tn on alle kynnysarvon, sama pätee näin tehdyn vaihdon kautta saadulle vikajoukolle vikajoukkojen määrää voidaan rajata i k 1 FS 1 i ifs FS " ifs FS " k i Huom! Modarres 3.4 väärin! j MS-E117 Riskianalyysi / hti Salo 4
5 alto-yliopiston perustieteiden korkeakoulu Toisistaan riippuvat vikaantumiset Riippuvuuksien huomiointi erustapahtumien taustalla voi olla yhteisiä syitä Nämä on pyrittävä huomioimaan muutoin saadut riskiarviot ovat alakanttiin, koska yhteisten syiden vaikutukset eivät näy tuloksissa Edellyttää tilastojen rakentamista ja käyttöä siten, että yhteiset vikaantumissyyt tunnistetaan» Tämä voi olla käytännössä haasteellista Esimerkki Järjestelmässä kolme komponenttia, ja Järjestelmä toimii, jos komponenteista vähintään kaksi toimii so. /3 portti Komponentit voivat vikaantua toisistaan riippumatta Lisäksi komponentit, ja voivat vikaantua yhteisistä syistä joko pareittain tai kaikki kolme Merkitään tapahtumia» = komponentti vikaantuu vast.,» = vikaantuu mistään muista syistä riippumatta vast.,» = komponentit ja vikaantuvat yhteisestä syystä, joka ei vikaannuta :tä vast.,» = kaikki kolme komponenttia vikaantuvat yhteisestä syystä MS-E117 Riskianalyysi / hti Salo 5
6 alto-yliopiston perustieteiden korkeakoulu ikapuuesitys ikapuuesitys T / komponentin vikaantuminen ikaantumissyyt toisensa poissulkevia MS-E117 Riskianalyysi / hti Salo 6
7 alto-yliopiston perustieteiden korkeakoulu 7 MS-E117 Riskianalyysi / hti Salo ikaantumisen minimikatkosjoukot ikaantuminen tapahtuu, kun Edellisen kalvon tulosten perusteella muiden parien leikkaukset tyhjiä Minimikatkosjoukoiksi saadaan siis Saadaan siis riippumattomille tapahtumille =, leikkauksen tn paljon pienempi kuin parien T T T
8 alto-yliopiston perustieteiden korkeakoulu ikaantumistodennäköisyys Oletettakoon, että Kukin komponenteista vikaantuu muista syystä riippumatta samalla todennäköisyydellä Q 1 areittaiset samasta syystä aiheutuvat vikaantumiset tapahtuvat kukin tn:llä Q Kaikki kolme vikaantuvat yhteisestä syystä tn:llä Q 3 Tällöin järjestelmä vikaantuu siis tn:llä T 3 Q Q Q 1 3 Jos esimerkiksi Q 1 =0.05, Q =0.0, Q 3 =0.01, niin T Yhteisten riskitekijöiden osuus kokonaisriskistä siis Riippumattomien vikojen vaikutus on siis verraten vähäinen, koska näiden lausekkeissa tulotermejä % 3 MS-E117 Riskianalyysi / hti Salo 8
9 alto-yliopiston perustieteiden korkeakoulu Riippuvuudet ja ehdolliset tn:t Lähtökohtia iime luennolla perustapahtumat oletettiin riippumattomiksi ks. pumppujärjestelmä Jos perustapahtumilla yhteisiä vikaantumissyitä, niin yhden perustapahtuman tn kasvaa, jos toisen perustapahtuman tiedetään tapahtuneen Esim. jos perustapahtumia, on kaksi kuten edellä siten, että nämä voivat toteutua joko riippumatta, tai yhteisestä syystä, niin Merkitään p =, p =, x= f x p p x x 1 p x p p f ' x 0 p x p x p x Minimi saavutetaan kohdassa x= =0, mikä vastaa riippumattomuutta MS-E117 Riskianalyysi / hti Salo 9
10 alto-yliopiston perustieteiden korkeakoulu -faktorimalli Lähtökohtia Järjestelmän komponentit tuplataan m-kertaiseksi Yhteisen common vikaantumissyyn tapahtuessa kaikki komponentit vikaantuvat -parametri ilmaisee, miten suuressa osassa vikaantuminen aiheutuu yhteisestä syystä, ts. missä c c c on yhteisen syyn aiheuttama vikaantumistaajuus ja on riippumaton vikaantumistaajuus Jos Q t on järjestelmän kokonaisvikaantumistn, niin järjestelmä vikaantuu siis» riippumattomien komponenttivikaantumisten tuloksena tn:llä Q 1 = 1 - Q t» yhteisestä syystä kaikkien komponenttien vikaantuessa tn:llä Q m = Q t Tarkalleen k komponenttia 1 < k < m ei voi vikaantua yhteisestä syystä, koska yhteinen syy vikaannuttaa kaikki komponentit k valitua komponenttia 1 < k < m vikaantuu todennäköisyydellä Q k = 0, k =,...,m-1 MS-E117 Riskianalyysi / hti Salo 10
11 alto-yliopiston perustieteiden korkeakoulu Esimerkki Jäähdytysjärjestelmä Jäähdytys edellyttää sekä pumpun että venttiilin toimivan umppu- ja venttiiliosasysteemikokonaisuudet tuplataan luotettavuuden parantamiseksi umppu saattaa olla käynnistymättä S, pump failure to start tai käydä liian vähän aikaa R, pump failure to run enttiili saattaa olla avaumatta O, valve failure to open q R Käynnissä olevan pumpun vikaantumistaajuus R» Jos pumppu käy ajan T, niin se vikaantuu tänä aikana todennäköisyydellä T 0 R e R t dt R T 0 R e t R 1 e R T MS-E117 Riskianalyysi / hti Salo 11
12 alto-yliopiston perustieteiden korkeakoulu 1 MS-E117 Riskianalyysi / hti Salo Jäähdytysjärjestelmän vikapuu Rakennetaan vikapuu Minimikatkosjoukoiksi saadaan ,,,,
13 alto-yliopiston perustieteiden korkeakoulu ikaantumistn:n laskenta 1/3 rvioidaan yhteisistä syistä aiheutuvat vikaantumistaajuudet -faktorimallilla S = miten suuressa osassa tapauksista pumppu jää käynnistymättä yhteisestä syystä? R = miten suuressa osassa pumppu ei käy tavoiteaikaa T yhteisestä syystä? O = miten suuressa osassa venttiili ei avaudu yhteisestä syystä? Minimikatkosjoukkojen tn:t S O 1 q q S 1 O 1 S S O R q q q S S q R O O R R q q q O R R MS-E117 Riskianalyysi / hti Salo 13
14 alto-yliopiston perustieteiden korkeakoulu ikaantumistn:n laskenta /3 Järjestelmän System vikaantumistn:n approksimoida ylhäältä summalla S 6 i1 i Huom! osa katkosjoukoista esim., osin päällekkäisiä, kyse siis approksimaatiosta ylhäältä Tarkastellaan parametrien arvoja q S =0.0, q O =0.01 R = 0.05/h, T = 1 h q R =1-exp-0.05= S = R = O = 0.1 Katkosjoukkojen todennäköisyydet MS-E117 Riskianalyysi / hti Salo 14
15 alto-yliopiston perustieteiden korkeakoulu ikaantumistn:n laskenta 3/3 ikaantumistodennäköisyys siis 6 S i1 i Yhteisten syiden, osuus kokonaisriskistä S S Yhteisten syiden merkitys siis iso, vaikka -parametrit verraten pieniä tasolla 0.1 Huomioita Yhden pumppu-venttiililinjan luotettavuus ,8 % 7,7 % Jos voitaisiin tuplata ilman yhteisiä vikaantumisia so. - parametrit nollia, niin vikaantumistn olisi Ts. yhteiset vikasyyt alentavat luotettavuutta paljon! S 1 q q q S R S O MS-E117 Riskianalyysi / hti Salo 15
16 alto-yliopiston perustieteiden korkeakoulu Yhteisvikaantumisen estimointi -faktorimallin kritiikki Oletus siitä, että yhteinen vika aiheuttaa aina kaikkien komponenttien vikaantumisen on kovin vahva» Esim. kolmen komponentin /N-järjestelmässä ks. luennon alku yhteiset syyt voisivat vikaannuttaa joko kaksi esim. tai kolme komponenttia Yhteistodennäköisyydet estimoitavissa eri tavoin» -faktorimallissa kysytään, miten suurella tn:llä joku muu komponentti myös vikaantunut yhteisestä syystä, jos yhden komponentin tiedetään vikaantuneen» Jos komponentteja kaksi ja s.e. yhteisen vikaantuminen on tapahtuma, niin Multiple Greek Letter MGL-malli Yleistää -faktorimallin siten, että yhteinen syy ei vikaannuta välttämättä kaikkia komponentteja Kysymykset» - faktori: millä tn:llä ainakin yksi toinen komponentti vikaantuu yhteisestä syystä, jos ko. komponentti vikaantunut?» -faktori: millä tn:llä ainakin kaksi muuta komponenttia vikaantuu yhteisestä syystä, jos ko. komponentti on vikaantunut yhteisestä syystä vähintään yhden toisen komponentin kanssa? MS-E117 Riskianalyysi / hti Salo 16
17 alto-yliopiston perustieteiden korkeakoulu MGL-mallin estimointi 1/ lun esimerkin - ja -parametrit Komponenttien riippumattomat Q 1 ja pareittaiset Q vikaantumistn:t oletettiin samoiksi Q Q Q Q Q % Q3 0% Q Q3 Tarkasteluissa ei kuitenkaan edetä näin päin, vaan niissä - ja - parametreista johdetaan pareittaisten, kolmittaisten jne. yhteisten syiden aiheuttamien vikaantumisten Q,Q 3,Q 4,... tn:t m:n komponentin järjestelmässä yhden komponentin kokonaisvikaantumistn Q t total muodostuu siitä, että komponentti vikaantuu joko riippumatta tai kahden, kolmen jne. komponentin vikaantumisen aiheuttamasta yhteisestä syystä Yhdelle komponentille saadaan siis summa Q t m m 1 Q k 1 k 1 k MS-E117 Riskianalyysi / hti Salo 17
18 alto-yliopiston perustieteiden korkeakoulu MGL-mallin estimointi / Saadaan Q k -parametrien yhtälöt Q Q3 Q1 Q Q3 Q1 1 Qt Q3 1 Q 1 Q t Q Q3 Q3 Qt Qt Q1 Q Q3 Ts. Q k -parametrit esitettävissä - ja -parametrien algebrallisina lausekkeina arametrit estimoidaan tarkastelemalla, miten usein useammat komponentin vikaantuvat yhteissyistä» Esim. -parametri saadaan jakamalla vähintään kolmen komponentin yhteisvikaantumisten lkm vähintään kahden komponentin yhteisvikaantumisten lkm:llä Yleinen tapaus Merkitään 1 =1, =, =,..., m+1 =0 Tällöin pätee Q k m 1 k k 1 i Qt k i1 Huom! Modarres s. 78 virhe MS-E117 Riskianalyysi / hti Salo 18
Luento 6 Yhteisvikojen analyysi PSA:n sovelluksia
Luento 6 Yhteisvikojen analyysi PSA:n sovelluksia Jan-Erik Holmberg Systeemianalyysin laboratorio Aalto-yliopiston perustieteiden korkeakoulu PL 11100, 00076 Aalto jan-erik.holmberg@riskpilot.fi 1 Katkosjoukkojen
Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta
Luento 5 Riippuvuudet vikapuissa Esimerkkejä S:sta hti Salo L 1100, 0015 TKK 1 Toisistaan riippuvat vikaantumiset Riippuvuuksien huomiointi erustapahtumien taustalla voi olla yhteisiä syitä Nämä on pyrittävä
Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta
Luento 5 Riippuvuudet vikapuissa Esimerkkejä S:sta hti Salo Teknillinen korkeakoulu L 1100, 0015 TKK 1 Toisistaan riippuvat vikaantumiset Riippuvuuksien huomiointi erustapahtumien taustalla voi olla yhteisiä
Luento 4 Vikapuuanalyysit
Luento 4 Vikapuuanalyysit Ahti Salo Teknillinen korkeakoulu PL 1100, 02015 TKK 1 Vikapuuanalyysin vaiheet ❶ Ongelman ja reunaehtojen määrittely ❷ Vikapuun rakentaminen ❸ Minimikatkosjoukkojen tunnistaminen
Luento 10 Riskitekijöiden priorisointi
Luento 10 Riskitekijöiden priorisointi Ahti Salo Teknillinen korkeakoulu PL 1100, 02015 TKK 1 Riskien priorisointi Lähtökohtia Riskienhallintatoimenpiteet pyritään kohdistamaan siten, että kokonaisriskiä
Kohdassa on käytetty eksponentiaalijakauman kertymäfunktiota (P(t > T τ ) = 1 P(t T τ ). λe λτ e λ(t τ) e 3λT dτ.
25.2.215 1. Autossa on 4 rengasta ja 1 vararengas (T i Exp(λ), [λ] = 1/km, i=1,...,5). Kulkeakseen auto tarvitsee 4 ehjää rengasta. Aluksi auto käyttää neljää alkuperäistä rengasta. Kun yksi näistä vikaantuu,
Luento 4 Vikapuuanalyysit
Luento 4 Vikapuuanalyysit Ahti Salo Teknillinen korkeakoulu PL 1100, 02015 TKK 1 Vikapuuanalyysin vaiheet Ongelman ja reunaehtojen määrittely Vikapuun rakentaminen Minimikatkosjoukkojen tunnistaminen Kvalitatiivinen
Luento 5 Vikapuuanalyysit
Luento 5 Vikapuuanalyysit Jan-Erik Holmberg Systeemianalyysin laboratorio Aalto-yliopiston perustieteiden korkeakoulu PL 11100, 00076 Aalto jan-erik.holmberg@riskpilot.fi 1 Influenssarokotus (1/3) Rokotuskampanja
Yhteisviat ja intervallitodennäköisyydet vikapuuanalyysissä
Aalto-yliopisto Perustieteiden korkeakoulu Teknillisen fysiikan ja matematiikan tutkinto-ohjelma Yhteisviat ja intervallitodennäköisyydet vikapuuanalyysissä Kandidaatintyö 17.01.2013 Tomi Jussila Työn
Luento 6 Luotettavuus Koherentit järjestelmät
Lueto 6 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi ja-erik.holmberg@aalto.fi Määritelmä Tarkasteltava yksikö luotettavuus
Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
Luento 7 Luotettavuus Koherentit järjestelmät
Lueto 7 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio Aalto-yliopisto perustieteide korkeakoulu PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi Määritelmä Tarkasteltava
Luento 8 Vikaantumisprosessit ja käytettävyys
Luento 8 Vikaantumisprosessit ja käytettävyys Jan-Erik Holmberg Systeemianalyysin laboratorio Aalto-yliopiston perustieteiden korkeakoulu PL 11100, 00076 Aalto jan-erik.holmberg@riskpilot.fi 1 Komponenttien
MS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
Dynaaminen SLA-riski. Goodnet-projektin loppuseminaari pe Pirkko Kuusela, Ilkka Norros VTT
Dynaaminen SLA-riski Goodnet-projektin loppuseminaari pe 19.10.2012 Pirkko Kuusela, Ilkka Norros VTT 2 Motivaatio Suunniteltu verkko: No-single-point-of-failure Arki: vähänkin isommassa verkossa on yleensä
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
3. laskuharjoituskierros, vko 6, ratkaisut
Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa
Vikasietoisuus ja luotettavuus
Vikasietoisuus ja luotettavuus Luotettavuussuureet Keskuksen vikasietoisuus Mallinnusmenetelmät Rka/ML -k98 Tiedonvälitystekniikka I 3-1 Vikasietoisuuden peruskäsitteitä ovat Vikaantuminen (failure, malfunction)
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4
Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
Miten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3
Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
7.4 Normaalijakauma (kertausta ja täydennystä) Taulukosta P(Z 1,6449) = 0,05, P(Z -1,6449) = 0,05 P(Z 1,96) = 0,025, P(Z -1,96) = 0,025
26.3.2019/1 MTTTP1, luento 26.3.2019 7.4 Normaalijakauma (kertausta ja täydennystä) Z ~ N(0, 1), tiheysfunktion kuvaaja 0,5 0,4 0,3 0,2 0,1 Taulukosta P(Z 1,6449) = 0,05, P(Z -1,6449) = 0,05 P(Z 1,96)
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Simulation model to compare opportunistic maintenance policies
Simulation model to compare opportunistic maintenance policies Noora Torpo 31.08.18 Ohjaaja/Valvoja: Antti Punkka Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
/1. MTTTP1, luento Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:
2.10.2018/1 MTTTP1, luento 2.10.2018 7.4 Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 2.10.2018/2
Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen
Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä
Huoltosuunnitelman optimointi teknisten järjestelmien vikaantumisten ennaltaehkäisemiseksi
Aalto-yliopisto Perustieteiden korkeakoulu Teknillisen fysiikan ja matematiikan koulutusohjelma Huoltosuunnitelman optimointi teknisten järjestelmien vikaantumisten ennaltaehkäisemiseksi Mat-2.4108 Sovelletun
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku Harjoitus 2 (vko 39/2003) (ihe: tapahtumien todennäköisyys, Laininen luvut 1.6 2.4) 1. Tarkastellaan rinnan- ja sarjaankytketyistä
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely)
Optimaaliset riskinalentamisportfoliot vikapuuanalyysissä (valmiin työn esittely) Markus Losoi 30.9.2013 Ohjaaja: DI Antti Toppila Valvoja: prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston
/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:
4.10.2016/1 MTTTP1, luento 4.10.2016 7.4 Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 4.10.2016/2
Luento 6 Luotettavuus Koherentit järjestelmät
Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu
12. Korkojohdannaiset
2. Korkojohdannaiset. Lähtökohtia Korkojohdannaiset ovat arvopapereita, joiden tuotto riippuu korkojen kehityksestä. korot liittyvät lähes kaikkiin liiketoimiin korkojohdannaiset ovat tärkeitä. korkojohdannaisilla
Luento 4 Vikapuuanalyysit
Luento 4 Vikapuuanalyysit Ahti Salo Systeemianalyysin laboratorio Aalto-yliopiston perustieteiden korkeakoulu PL 11100, 00076 Aalto ahti.salo@aalto.fi 1 Influenssarokotus (1/3) Rokotuskampanja Influenssaepidemian
Rinnakkaistietokoneet luento S
Rinnakkaistietokoneet luento 5 521475S Silmukalliset ohjelmat Silmukat joissa ei ole riippuvuussyklejä voidaan vektoroida eli suorittaa silmukan vektorointi Jokainen yksittäinen käsky silmukan rungossa
x 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden
Harjoitus 5 -- Ratkaisut
Harjoitus -- Ratkaisut 1 Ei kommenttia. Tutkittava funktio oskilloi äärettömän tiheään nollan lähellä. PlotPoints-asetus määrää, kuinka tiheästi Plot-funktio ottaa piirrettävästä funktiosta "näytteitä"
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että
LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3
LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi
Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1
Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että
f (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2
BMA581 - Differentiaalilaskenta ja sovellukset Harjoitus 4, Syksy 15 1. (a) Olisiko virhe likimain.5, ja arvio antaa siis liian suuren arvon. (b) Esim (1,1.5) tai (,.5). Funktion toinen derivaatta saa
Turvallisuus prosessien suunnittelussa ja käyttöönotossa
Turvallisuus prosessien suunnittelussa ja käyttöönotossa Moduuli 2 Turvallisuus prosessilaitoksen suunnittelussa 1. Yleistä 2. Vikapuuanalyysi 3. Tapahtumapuuanalyysi 4. Onnettomuuksien esiintymistaajuuden
Sovellettu todennäköisyslasku
Sovellettu todennäköisyslasku Työpäiväkirja 16.12.2001 Espoo Teknillinen korkeakoulu Systeemianalyysin laboratorio Jussi Matti Aleksi Jokelainen jussi.jokelainen@hut.fi Opiskelijanumero 123456A Sovellettu
Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora
Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen
y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A23 Differentiaali- ja integraalilaskenta 2, kevät 216 Laskuharjoitus 2A (Vastaukset) Alkuviikolla
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät
Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
1. TILASTOLLINEN HAHMONTUNNISTUS
1. TILASTOLLINEN HAHMONTUNNISTUS Tilastollisissa hahmontunnistusmenetelmissä piirteitä tarkastellaan tilastollisina muuttujina Luokittelussa käytetään hyväksi seuraavia tietoja: luokkien a priori tn:iä,
Generoivat funktiot, Poisson- ja eksponenttijakaumat
4A Generoivat funktiot, Poisson- ja eksponenttijakaumat Tämän harjoituksen tavoitteena on edelleen tutustua generoivien funktioiden sovelluksiin ja lisäksi harjoitella ratkaisemaan Poisson- ja eksponenttijakaumiin
Joukot. Georg Cantor ( )
Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista
4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =
BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot
5 Lineaariset yhtälöryhmät
5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä
k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu
LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja
Luento 8 Riskitekijöiden priorisointi
Luento 8 Riskitekijöiden priorisointi Ahti alo ysteemianalyysin laboratorio Aalto-yliopiston perustieteiden korkeakoulu PL 11100, 00076 Aalto ahti.salo@aalto.fi 1 Riskien priorisointi Lähtökohtia Riskienhallintatoimenpiteet
Turvallisuus prosessien suunnittelussa ja käyttöönotossa. Moduuli 2 Turvallisuus prosessilaitoksen suunnittelussa
Turvallisuus prosessien suunnittelussa ja käyttöönotossa Moduuli 2 Turvallisuus prosessilaitoksen suunnittelussa Moduuli 2: Turvallisuus prosessilaitoksen suunnittelussa Ryhmätyö 8 Kvantitatiivisten turvallisuus-
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden
1 KERTAUSTA JA TÄYDENNYSTÄ Luento 30.9.2014 Olkoon satunnaisotos X 1, X 2,, X n normaalijakaumasta N(µ, σ 2 ), tällöin ~ N(µ, σ 2 /n), kaava (6). Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma
Algoritmit 1. Luento 12 Ti Timo Männikkö
Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit
Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2005) 1 Todennäköisyyslaskenta ja puudiagrammit Puutodennäköisyydet Todennäköisyyslaskennan laskusääntöjen
Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,
Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot
TKK (c) Ilkka Mellin (2004) 1 Todennäköisyyslaskenta ja puudiagrammit iite: Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2004) 2 Todennäköisyyslaskenta ja puudiagrammit: Mitä opimme? Verkkoteoria
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 7.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 7.2.2011 1 / 39 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti
Luento 9: Yhtälörajoitukset optimoinnissa
Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon
Testejä suhdeasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman
Luento 3 Riskien kvalitatiivinen arviointi PSA:n pääpiirteet Vikapuuanalyysi
Luento 3 Riskien kvalitatiivinen arviointi PSA:n pääpiirteet Vikapuuanalyysi Ahti Salo Systeemianalyysin laboratorio Aalto-yliopiston perustieteiden korkeakoulu PL 11100, 00076 Aalto ahti.salo@aalto.fi
766334A Ydin- ja hiukkasfysiikka
1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen