Kohdassa on käytetty eksponentiaalijakauman kertymäfunktiota (P(t > T τ ) = 1 P(t T τ ). λe λτ e λ(t τ) e 3λT dτ.
|
|
- Eija Pakarinen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 Autossa on 4 rengasta ja 1 vararengas (T i Exp(λ), [λ] = 1/km, i=1,...,5). Kulkeakseen auto tarvitsee 4 ehjää rengasta. Aluksi auto käyttää neljää alkuperäistä rengasta. Kun yksi näistä vikaantuu, vaihdetaan sen paikalle vararengas. Seuraavan renkaan vikaantuessa auto vikaantuu. Oletetaan, että rengas ei voi vikaantua ollessaan varalla ja että vaihto onnnistuu varmasti. Tapa 1: infinitesmaalinen todennäköisyys Autolla voidaan ajaa matka T viidellä eri tavalla: 1-4 : Rengas x {1,..,4} vikaantuu hetkellä τ [km]. Vaihtorengas ei vikaannu matkalla [τ,t]. Muut renkaat (3 kpl) eivät vikaannu matkalla [,T]. 5 : Yksikään neljästä renkaasta ei vikaannu matkalla [,T]. Nämä tavat ovat toisensa poissulkevia R(T) = R(1 )+R(2 )+R(3 )+R(4 )+R(5 ). Määritetään tapahtumien todennäköisyydet: 1. P(Rengas x vikaantuu hetkellä τ)= f(τ)dτ= λe λτ dτ (eksponentiaalijakauman tiheysfunktio) 2. P(Vararengas ei vikaannu matkan [τ,t] aikana)=e λ(t τ) (T τ) 3. P(Kolme muuta rengasta eivät vikaannu matkalla [,T])= 3 i=1 R i(t)=e 3λT Kohdassa on käytetty eksponentiaalijakauman kertymäfunktiota (P(t > T τ ) = 1 P(t T τ ). R(1 ) = R(2 ) = R(3 ) = R(4 ) = = = R(5 ) = λe λτ e λ(t τ) e 3λT dτ λe λt e 3λT dτ = λe 4λT dτ = λte 4λT 4 R i (T) = e 4λT i=1 R(T) = 4 λte 4λT +e 4λT = (1+4λT)e 4λT (yksittäisen renkaan odotettu elinikä on 1 km) tuottaa seuraavanlaisen kuvaa- Esim. λ = 1 jan: 1
2 R(t) Ajettuja km x 1 4 Tapa 2: Perinteinen todennäköisyyslasku Luotettavuuden laskeminen ilman infinitesmaalista todennäköisyyttä voidaan tehdä seuraavasti. Määritellään toisensa poissulkevat tapahtumat S = (T 1 > T)(T 2 > T)(T 3 > T)(T 4 > T) (yksikään rengas ei vikaannu T:hen mennessä) S 1 = (T 1 T)(T 1 +T 5 > T)(T 2 > T)(T 3 > T)(T 4 > T) (vain rengas 1 vikaantuu ennen T:tä, mutta vararengas kestää siitä hetkestä eteenpäin yli T:hen) S 2 = (T 2 T)(T 2 +T 5 > T)(T 1 > T)(T 3 > T)(T 4 > T) (kuten yllä renkaalle 2) S 3 = (T 3 T)(T 3 +T 5 > T)(T 1 > T)(T 2 > T)(T 4 > T) (kuten yllä renkaalle 3) S 4 = (T 4 T)(T 4 +T 5 > T)(T 1 > T)(T 2 > T)(T 3 > T) (kuten yllä renkaalle 4) Selvästi S = S + S 1 + S 2 + S 3 + S 4 + S 5 kuvaa kaikki tavat, jolla onnistutaan kulkea matka T. Koska tapahtumat ovat toisensa poissulkevat, pätee P(S) = P(S )+P(S 1 )+P(S 2 )+P(S 3 )+P(S 4 )+P(S 5 ). Koska vikaantumisajat ovat riippumattomat on P(S ) = e 4λT. Tapahtuman S 1 todennäköisyys on P(S 1 ) =P ( (T 1 T)(T 1 +T 5 > T)(T 2 > T)(T 3 > T)(T 4 > T) ) =P ( (T 1 T)(T 1 +T 5 > T) ) P(T 2 > T)P(T 3 > T)P(T 4 > T) =P ( (T 1 T)(T 1 +T 5 > T) ) e 3λT. Todennäköisyys P ( (T 1 T)(T 1 + T 5 > T) saadaan integroimalla satunnaismuuttujien T 1 ja T 5 yhteisjakauman tiheysfunktiota (koska toisistaan riippumattomat, on yhteisjakauman tiheysfunktio
3 tiheysfunktioiden tulo) niiden pisteiden yli, jotka toteuttavat tapahtuman edellyttämät ehdot: P ( (T 1 T)(T 1 +T 5 > T) ) = f(τ 1 )f(τ 5 )dτ 1 dτ 5 τ 1 = τ 5 =T τ 1 =λ 2 =λ 2 = λ τ 1 = / τ 1 = τ 1 = =λe λt =λte λt τ 5 =T τ 1 e λ(τ 1+τ 5 ) dτ 1 dτ 5 τ 5 =T τ 1 1 λ e λ(τ 1+τ 5 ) dτ 1 ( e λ(τ 1+T τ 1 ) dτ 1 Näin ollen P(S 1 ) = λte λt e 3λT = λte 4λT, ja koska komponentit identtiset, pätee P(S 1 ) = P(S 2 ) = P(S 3 ) = P(S 4 ). Luotettavuudeksi saadaan siis τ 1 = R(T) = P(S) = P(S )+4P(S 1 ) = e 4λT +4λTe 4λT = e 4λT (1+4λT). 2. (a) Kuvataan komponenttien vikaantumisaikoja eksponentiaalijakautuneilla satunnaismuuttujilla T A,...,T E ja järjestelmän vikaantumisaikaa satunnasmuuttujalla T S. Eksponentiaalijakautuneen satunnusamuuttujan tiheysfunktio on f(t) = λe λt,t >,f(t) =,t, missä λ > on vikaantumisintensiteetti. Osajärjestelmät 1 ja 2 ovat kumpikin kahden komponentin ns. stand-by rinnakkaisjärjestelmiä, jolloin ensimmäinen komponentti on käytössä vikaantumiseensa asti ja sen jälkeen toinen komponetti otetaan käyttöön ja se alkaa kulua. Kuvataan satunnaismuuttujilla T S1 ja T S2 osajärjestelmien S 1 ja S 2 vikaantumisaikoja. Selvästi T S1 = T A + T B, eli kahden toisistaan riippumattoman eksponentiaalijakautuneen muuttujan summa. Tällöin T S1 noudattaa Erlangin jakaumaa (luento 7), jolle: dτ 1 f S1 (t) = R S1 (t) = λ (n 1)! (λt)n 1 e λt n 1 k= (λt) k k! e λt, jossa n on parametrilla λ eksponentiaalijakautuneiden toisistaan riippumattomien satunnaismuuttujien lukumäärä.
4 Lasketaan osajärjestelmän 1 luotettavuus R S1 (t) 1 tunnin ajanjaksona: R S1 (1) = (.1 1)! = 2 e e (.1 1)1 e.1 1 1! Koska λ A = λ B = λ C = λ D, niin R S1 (t) = R S2 (t) (b) Olkoon komponentin E luotettavuus R E (t) = Pr(T E > t) ja koko järjestelmän luotettavuus ( R S (t) =1 (1 R S1 (t)) = S 1 vikaantumistn (1 R S2 (t)) = S 2 vikaantumistn } {{ } tn, että S 1 ja S 2 vikaantuvat (1 R S1 (t)) (1 R S2 (t)) (1 R E (t)) = tn, että S 1, S 2 ja E vikaantuvat + (1 R E (t)) E:n vikaantumistn Tällöin vaatimus, että komponentin E vikaantumistodennäköisyyden osuus koko järjestelmän vikaantumistodennäköisyydestä 1 h ajanjaksolla on oltava vähemmän kuin 1% voidaan ilmaista epäyhtälönä (luotettavuuksista jätetty argumentti t = 1 pois): 1 R E 1 R S <.1. Sijoittamalla R S :n lauseke voidaan ratkaista, että 1 R E <.1(1 R S1 ) (1 R S2 )+.1(1 R E ).1(1 R S1 ) (1 R S2 ) (1 R E ) R E > 1 (1 R S 1 ) (1 R S2 ) 9+(1 R S1 ) (1 R S2 ) = 9 R S1 R S2 R S1 R S2 +1 ja edelleen sijoittamalla R E :n lauseke saadaan, että 1 (1 e 1λ E ) > ) 9 R S1 R S2 R S1 R S2 +1 λ E < 1 ( ) 1 ln 9 R S1 R S2 R S1 R S2 +1 = 1 ( ) 1 ln 9 (2/e) 2 2 2/e Vikaantumistaajuuden on siis oltava alle λ E = /h..
5 Mean time to failure saadaan vikaantumisajan odotusarvosta. Koska vikaantumisajan ja luotettavuuden välillä on yhteys, voidaan MTTF laskea suoraan luotettavuusfunktion avulla: Jos F(t) on vikaantumisajan kertymäfuntio, saadaan vikaantumisajan tiheysfunktio kaavalla f(t) = df(t) = d dt dt (1 R(t)) = R (t), josta edelleen osittaisintegroimalla: MTTF = tf(t)dt = t ( R (t))dt = t ( R(t)) R(t)dt = R(t)dt, Määritetään ensin järjestelmän luotettavuusfunktio ja MTTF ilman linkkiä ja linkin kanssa: Ilman linkkiä Ylempi haara: R(t) u = R u = R 1 (R 2 +R 3 R 2 R 3 ). Alempi haara: R l = R 4 R 5. Systeemi: R s = R u +R l R u R l = R 4 R 5 +R 1 (R 2 +R 3 R 2 R 3 )(1 R 4 R 5 ) Kaikki komponentit ovat eksponentiaalijakautuneita, joten R i = e λt. R s = 3e 2λt e 3λt 2e 4λt +e 5λt. MTTF:n laskemista varten tarvitaan integrointikaavaa: Tällä saadaan koko järjestelmälle MTTF: Ce Dλt dt = Ce Dλt Dλ = C Dλ MTTF = 3 2λ 1 3λ 2 4λ + 1 5λ = 13 15λ Linkin kanssa Jaetaan luotettavuus kahteen toisensa poissulkevaan skenaarioon: komponentti 4 toimii ja komponentti 4 ei toimi. Tällöin luotettavuus voidaan laskea kaavalla R s = R 4 R s 4 +R 4R s 4. Laskettaessa Luotettavuutta R s 4 huomataan, että komponentti 1 on tarpeeton ja luotettavuusfunktio muodostuu komponentin 4 sarjaankytkennästä komponenttien 2,3 ja 5 muodostamaan rinnankytkentään. Termi R s 4 on yhtä kuin aiemmin laskettu R u, sillä tällöin vain ylempi haara on käytössä. Yhteensä saadaan: R s = R 4 (1 (1 R 2 )(1 R 3 )(1 R 5 ))+(1 R 4 )(R 1 (R 2 +R 3 R 2 R 3 )). Merkitään R i = R ja sievennetään: R s = R(1 (1 R) 3 )+(1 R)(R(R+R R 2 )) = R(1 (1 3R+3R 2 R 3 ))+(1 R)(2R 2 R 3 )) = 3R 2 3R 3 +R 4 +2R 2 R 3 2R 3 +R 4 = 5R 2 6R 3 +2R 4. R s = 5e 2λt 6e 3λt +2e 4λt MTTF = 5 2λ 6 3λ + 2 4λ = 1 λ.
6 Järjestelmän, jossa linkki toimii, keskimääräinen vikaantumisaika on 1/λ 13/15λ % suurempi. 4. MTTF = Mean time to failure MTTR = Mean time to repair MTTF Keskimääräinen käytettävyys, R = MTTF+MTTR (7. luento) Järjestelmä keskimäärin ei-käytettävissä: q = 1-R. Vikaantumistaajuuden ja MTTF:n yhteys: λ = 1 MTTF q = 1 1 λ = λ +MTTR 1 = Minimikatkosjoukot: C 1 = {A,C} C 3 = {A,E,D} C 2 = {B,D} C 4 = {B,E,C} q s P(C 1 )+P(C 2 )+P(C 3 )+P(C 4 ) = 2q 2 +2q 3 = 2 ( ) 2 +2 ( ) 3 =
Luento 8 Vikaantumisprosessit ja käytettävyys
Luento 8 Vikaantumisprosessit ja käytettävyys Jan-Erik Holmberg Systeemianalyysin laboratorio Aalto-yliopiston perustieteiden korkeakoulu PL 11100, 00076 Aalto jan-erik.holmberg@riskpilot.fi 1 Komponenttien
5. laskuharjoituskierros, vko 8, ratkaisut
Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa
Luento 6 Yhteisvikojen analyysi PSA:n sovelluksia
Luento 6 Yhteisvikojen analyysi PSA:n sovelluksia Jan-Erik Holmberg Systeemianalyysin laboratorio Aalto-yliopiston perustieteiden korkeakoulu PL 11100, 00076 Aalto jan-erik.holmberg@riskpilot.fi 1 Katkosjoukkojen
Poisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
Vikasietoisuus ja luotettavuus
Vikasietoisuus ja luotettavuus Luotettavuussuureet Keskuksen vikasietoisuus Mallinnusmenetelmät Rka/ML -k98 Tiedonvälitystekniikka I 3-1 Vikasietoisuuden peruskäsitteitä ovat Vikaantuminen (failure, malfunction)
3. laskuharjoituskierros, vko 6, ratkaisut
Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa
5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3
Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,
Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
Vikasietoisuus ja luotettavuus
Vikasietoisuus ja luotettavuus Luotettavuussuureet Keskuksen vikasietoisuus Mallinnusmenetelmät Rka/ML -k2000 Tiedonvälitystekniikka I 14-1 Vikasietoisuuden peruskäsitteitä ovat Vikaantuminen (failure,
Todennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?
6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.
Luento 5 Yhteisvikojen analyysi PSA:n sovelluksia
alto-yliopiston perustieteiden korkeakoulu Luento 5 Yhteisvikojen analyysi S:n sovelluksia hti Salo Systeemianalyysin laboratorio alto-yliopiston perustieteiden korkeakoulu L 11100, 00076 alto ahti.salo@aalto.fi
Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta
Luento 5 Riippuvuudet vikapuissa Esimerkkejä S:sta hti Salo Teknillinen korkeakoulu L 1100, 0015 TKK 1 Toisistaan riippuvat vikaantumiset Riippuvuuksien huomiointi erustapahtumien taustalla voi olla yhteisiä
Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta
Luento 5 Riippuvuudet vikapuissa Esimerkkejä S:sta hti Salo L 1100, 0015 TKK 1 Toisistaan riippuvat vikaantumiset Riippuvuuksien huomiointi erustapahtumien taustalla voi olla yhteisiä syitä Nämä on pyrittävä
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi
Projektin arvon aleneminen
Projektin arvon aleneminen sivut 99-07 Optimointiopin seminaari - Syksy 000 / Arvon aleneminen Jatketaan projektin arvon tutkimista. Nyt huomioidaan arvon aleneminen. Syitä esimerkiksi: kaluston vanheneminen
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
x 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet
Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden
1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella
Normaalijakaumasta johdettuja jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan
hallinta ja laskenta Juha Korhonen, ÅF-Consult Oy
Satunnaisvikaantumisten ik t i t hallinta ja laskenta Juha Korhonen, ÅF-Consult Oy 8.11.2010 Vikaantumisen i mekaniikkaa Mitä vikaantuminen on? Järjestelmä/yksikkö/moduuli/komponentti ei toteuta oikein
Estojärjestelmä (loss system, menetysjärjestelmä)
J. Virtamo 38.3143 Jonoteoria / Estojärjestelmä 1 Estojärjestelmä (loss system, menetysjärjestelmä) Tarkastellaan perinteistä puhdasta estojärjestelmää, jossa on annettu n = johtojen (varattavien elementtien)
Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa
Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1
J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 Poisson-prosessi Yleistä Poisson-prosessi on eräs keskeisimmistä jonoteoriassa käytetyistä malleista. Hyvin usein asiakkaiden saapumisprosessia jonoon
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.9 Sovellettu todennäköisyyslasku A Harjoitus 3 (vko 4/3) (Aihe: tasainen todennäköisyysmalli, pistetodennäköisyysfunktio, tiheysfunktio, kertymäfunktio,
Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:
Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen
Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä
Todennäköisyys 1 Klassinen todennäköisyys: p = Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä Esimerkkejä: Nopan heitto, kolikon heitto Satunnaismuuttuja Tilastollisesti vaihtelevaa
TKK @ Ilkka Mellin (2008) 1/5
Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku A Harjoitus 4 (vko 41/2003) (Aihe: diskreettejä satunnaismuuttujia ja jakaumia, Laininen luvut 4.1 4.7) 1. Kone tekee
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
6. laskuharjoitusten vastaukset (viikot 10 11)
6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287
Tilastollinen päättely II, kevät 2017 Harjoitus 1A
Tilastollinen päättely II, kevät 207 Harjoitus A Heikki Korpela 23. tammikuuta 207 Tehtävä. Kertausta todennäköisyyslaskennasta. Ilmoita satunnaismuuttujan Y jakauman nimi ja pistetodennäköisyys- tai tiheysfunktio
JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos)
J. Virtamo 38.3143 Jonoteoria / Jatkuvat jakaumat 1 JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos) Määritelmä Ei-negatiivisen satunnaismuuttujan X 0, jonka tiheysfunktio on f(x), Laplace-muunnos
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.
24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ
2. laskuharjoituskierros, vko 5, ratkaisut
2. laskuharjoituskierros, vko, ratkaisut Aiheet: Klassinen todennäköisyys, kombinatoriikka, kokonaistodennäköisyys ja Bayesin kaava D1. Eräässä maassa autojen rekisterikilpien tunnukset ovat muotoa XXXXNN,
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
Sovellettu todennäköisyslasku
Sovellettu todennäköisyslasku Työpäiväkirja 16.12.2001 Espoo Teknillinen korkeakoulu Systeemianalyysin laboratorio Jussi Matti Aleksi Jokelainen jussi.jokelainen@hut.fi Opiskelijanumero 123456A Sovellettu
Luento 4 Vikapuuanalyysit
Luento 4 Vikapuuanalyysit Ahti Salo Teknillinen korkeakoulu PL 1100, 02015 TKK 1 Vikapuuanalyysin vaiheet Ongelman ja reunaehtojen määrittely Vikapuun rakentaminen Minimikatkosjoukkojen tunnistaminen Kvalitatiivinen
Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
Generoivat funktiot, Poisson- ja eksponenttijakaumat
4A Generoivat funktiot, Poisson- ja eksponenttijakaumat Tämän harjoituksen tavoitteena on edelleen tutustua generoivien funktioiden sovelluksiin ja lisäksi harjoitella ratkaisemaan Poisson- ja eksponenttijakaumiin
1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden
Kopulafunktiot. Joonas Ollila 12. lokakuuta 2011
Kopulafunktiot Joonas Ollila 12. lokakuuta 2011 Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään. Kopula-sanan alkuperä Kopula tarkoittaa
Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
Tilastomatematiikka Kevät 2008
Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo
Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet
Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)
1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise
Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto
Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 14. syyskuuta 2007 Antti Rasila () TodB 14. syyskuuta 2007 1 / 21 1 Kokonaistodennäköisyys ja Bayesin kaava Otosavaruuden ositus Kokonaistodennäköisyyden
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu
Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä
Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 5 (vko 4/003) (Aihe: jatkuvia satunnaismuuttujia ja jakaumia, sekamalli, Laininen luvut 5.1 5.7, 6.1 6.3)
4. laskuharjoituskierros, vko 7, ratkaisut
4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.
3. Teoriaharjoitukset
3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x
Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta
MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
y + 4y = 0 (1) λ = 0
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen
D ( ) E( ) E( ) 2.917
Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,
Todennäköisyyslaskun kertaus. Heliövaara 1
Todennäköisyyslaskun kertaus Heliövaara 1 Satunnaismuuttujat ja todennäköisyysjakaumat Heliövaara 2 Stunnaismuuttujat ja todennäköisyysjakaumat Jos satunnaisilmiötä halutaan mallintaa matemaattisesti,
Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin
Tilastollinen päättömyys, kevät 2017 Harjoitus 6B
Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia
Wiener-prosessi: Tarkastellaan seuraavanlaista stokastista prosessia { z(t k+1 ) = z(t k ) + ɛ(t k ) t t k+1 = t k + t, k = 0,..., N, missä ɛ(t i ), ɛ(t j ), i j ovat toisistaan riippumattomia siten, että
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen
a) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 1.10.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat
Demonstraatiot Luento 7 D7/1 D7/2 D7/3
TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-8.45 Liikenneteorian perusteet, Kevät 2008 Demonstraatiot Luento 7 7.2.2008 D7/ Tarkastellaan piirikytkentäisen järjestelmän n-kanavaista
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x
Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta
Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2005) 1 Verkot ja todennäköisyyslaskenta >> Puudiagrammit todennäköisyyslaskennassa:
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)