Ratkaisu: Kaikki tehtävän laskutoimitukset on tehty Microsoft Excel -ohjelmalla; ks. taulukkoa tehtävän lopussa.

Koko: px
Aloita esitys sivulta:

Download "Ratkaisu: Kaikki tehtävän laskutoimitukset on tehty Microsoft Excel -ohjelmalla; ks. taulukkoa tehtävän lopussa."

Transkriptio

1 Mat-.09 Sovellettu todeäköyylaku. harjotuket Mat-.09 Sovellettu todeäköyylaku. harjotuket / Ratkaut Aheet: Avaaat: Regreoaalyy Etmot, Jääöelöumma, Jääöterm, Jääövara, Kekhajota, Kokoaelöumma, Korrelaato, Kovara, Krtte arvo, Luottamukerro, Luottamutao, Luottamuväl, Mallelöumma, Merktevyytao, Paopte, Parametr, p-arvo, Pemmä elöumma meetelmä, Regreokerro, Regreouora, Reduaal, Seltettävä muuttuja, Selttäjä, Selttävä muuttuja, Seltyate, Sovte, Tet, Vakoterm, Vapauateet, Varaaalyyhajotelma.. Muuttuje ja Y havatut arvot ovat: Y (a) (c) (d) Määrää yhde elttäjä leaare regreomall Y = α + β + ε, ε N(0, σ ) regreokertome α ja β pemmä elöumma (PNS-) etmaatt. Määrää etmodu mall ovtteet ja reduaalt. Määrää etmodu mall jääövara σ harhato etmaatt. Määrää etmodu mall eltyate. Ratkau: Kakk tehtävä lakutomtuket o tehty Mcrooft Ecel -ohjelmalla; k. taulukkoa tehtävä lopua. (a) Yhde elttäjä leaare regreomall Y = α + β + ε regreokertome α ja β PNS-etmaatt aadaa laketuk euraavaa etettävällä tavalla. Ilkka Mell (004) /

2 Mat-.09 Sovellettu todeäköyylaku. harjotuket Määrätää e muuttuje ja Y havattuje arvoje ummat, elöummat ja tuloumma: = = Y = = = = 56 Y = 40 = 54 = 56 Y = 364 Muuttuje ja Y havattuje arvoje artmeettet kekarvot Ka ja Ka Y, otovarat ja Y, otokekhajoat ja Y, otokovara Y ja otokorrelaato r Y aadaa muuttuje ja Y havattuje arvoje ummta, elöummta ja tuloummata: = = 56 = 7 8 = Y = Y = 40 = 5 8 = = = = = = 8 8 Y = Y Y = = 8 = = 8 8 Y = = = 4.34 = = 8 =.88 Y Y = Y Y = = = = = 8 8 Y ry = = = Y Etmodu PNS-uora yhtälö o muotoa Y = a + b joa a ja b ovat mall regreokertome α ja β PNS-etmaattort. Etmaattorede a ja b arvot aadaa yllä määrätytä ototuuluvuta: Y.88 b= ry = = a = Y b = = Etmodu PNS-uora yhtälö o te Y = Ilkka Mell (004) /

3 Mat-.09 Sovellettu todeäköyylaku. harjotuket Etmodu mall ovtteet Yhat ja reduaalt Re aadaa euraavlla kaavolla: Sovte: Y = a +b ˆ Reduaal: e ˆ = Y Y Sovtteet ja reduaalt o aettu alla olevaa Ecel-taulukoa. (c) Mall jääövara σ harhattoma etmaattor arvok aadaa = SSE = 8 = joa SSE = e =.545 = o etmodu mall reduaale vahtelua kuvaava jääöelöumma. (d) Etmodu mall eltyate R vodaa lakea uealla er tavalla. Olkoo etmodu mall ovte Y = a +b ˆ ja reduaal e ˆ = Y Y Seltettävä muuttuja Y havattuje arvoje vahtelua kuvaava kokoaelöumma o ( ) Y ( ) = = = 8 SST = = Y Y = Y Y = = Etmodu mall reduaale vahtelua kuvaava jääöelöumma o SSE = e =.545 = Etmodu mall elttämää ouutta eltettävä muuttuja Y havattuje arvoje vahteluta kuvaava mallelöumma o = ( ) SSM = Yˆ Y = SST SSE = = Seltyate R o (k. alla olevaa Ecel-taulukkoa) SSE SSM R = SST = SST = 56 = 56 = Ilkka Mell (004) 3/

4 Mat-.09 Sovellettu todeäköyylaku. harjotuket Yhde elttäjä leaare regreomall tapaukea pätee myö R = r Y = = Kakk tehtävä lakutomtuket o tehty Mcrooft Ecel -ohjelmalla; k. taulukkoa alla Summa Ka = 7 = = 4.34 Ka Y = 5 y = 8 Y =.88 Y = r Y = b = a = SST = 56 SSE =.545 SSM = R = := - SSE /SST R = := SSM /SST R = := r Y = 0.44 = 0.65 t b =.5 (/)*l-väl ptuu = 0.39 (l-taolla 0.95) Ilkka Mell (004) 4/

5 Mat-.09 Sovellettu todeäköyylaku. harjotuket.. Jatkoa tehtävälle. Prrä tehtävää etmotu regreouora havatoja (,Y ) ettävää ptedagramm. Merkte kuvoo ovtteta vataavat pteet (, Y). î Prrä amaa kuvoo myö reduaaleja kuvaavat jaat. Ratkau: 0 X v Y 7.5 Y X.3. Jatkoa tehtävälle. (a) Tetaa tehtävä regreomall kerrota β kokevaa ollahypoteea H 0 : β = 0 Käytä -uutata vahtoehtota hypoteea ja 5 %: merktevyytaoa. Muodota kertomelle β 95%: luottamuväl. Ratkau: Kakk tehtävä lakutomtuket o tehty Mcrooft Ecel -ohjelmalla; k. taulukkoa tehtävä lopua. (a) t-tetuure ollahypoteelle o muotoa H 0 : β = 0 b t = / joa b o regreokertome β PNS-etmaattor, o mall jääövara σ harhato etmaattor ja o muuttuja havattuje arvoje otovara. Ilkka Mell (004) 5/

6 Mat-.09 Sovellettu todeäköyylaku. harjotuket Jo ollahypotee H 0 pätee, tetuure t o jakautuut Studet t-jakauma mukaa vapauate ( ): t t( ) Tehtävä tapaukea: b t = = =.5 / 0.65/ ja vapauateet ovat df = = 6 5 %: merktevyytaoa vataava krttk arvok aadaa Studet t-jakauma taulukota -uutae vahtoehtoe hypotee tapaukea (df = = 6) Koka t 0.05 =.447 +t 0.05 = t =.5 > ollahypotee H 0 hylätää. Kulmakertome β luottamuväl luottamutaolla ( α) o muotoa b± t α / Luottamutaoa 0.95 vataavak luottamukertomk aadaa Studet t-jakauma taulukota (df = = 6) t 0.05 =.447 +t 0.05 = Ste luottamuvälk aadaa 0.65 b± tα / = ±.447 = ± 0.39 = (0.497,0.775) Ilkka Mell (004) 6/

7 Mat-.09 Sovellettu todeäköyylaku. harjotuket.4. Eräää 4: kua otokea uhteelle rkolluude (rkoka per 000 aukata) ja aukatheyde (aukata per km ) väle otokorrelaatokertome arvok aat r = Tetaa ollahypoteea, että ko. muuttujat ovat korrelomattoma. Käytä kakuutata vahtoehtota hypoteea ja 5 %: merktevyytaoa. Ratkau: t-tetuure ollahypoteelle o muotoa H 0 : ρ = 0 r t = r Jo ollahypotee H 0 pätee, tetuure t o jakautuut Studet t-jakauma mukaa vapauate ( ): t t( ) Tehtävä tapaukea: ja vapauateet ovat r 0.57 t = = 4 =.005 r 0.57 df = = 40 5 %: merktevyytaoa vataavak krttk arvok aadaa Studet t-jakauma taulukota -uutae vahtoehtoe hypotee tapaukea Koka t 0.05 =.0 +t 0.05 = < t =.0 < +.0. ollahypotee H 0 jää vomaa. Ilkka Mell (004) 7/

8 Mat-.09 Sovellettu todeäköyylaku. harjotuket.5. Meetyme opoa aattaa vakuttaa vatavalmtuee alkupalkkaa. Aaa tutktt eräää USA: yloptoa pommalla vatavalmtuede joukota ykkertae atuaoto, joka koko ol 5. Otokee pomtulta opkeljolta kyytt hedä arvoaaptedeä kekarvoa (muuttuja X) ja alkupalkkaa (muuttuja Y; 000 $). Otota kuvaavat perutuuluvut olvat: (a) Ka X = 3.04 Ka Y = 8.05 X = Y = 5.8 r = Määrää regreokertome etmaatt leaarea regreomalla Y = α + βx + ε joa alkupalkkaa Y eltetää arvoaaptede kekarvolla X. Määrää regreokertome etmaatt leaarea regreomalla X = γ + δy + ε joa arvoaaptede kekarvoa X eltetää alkupalkalla Y (kääteregreo). (c) Tetaa ollahypoteea H 0 : ρ = 0.8 (d) Määrää etmodu regreomall eltyate. (e) Tetaa ollahypoteea H 0 : β = 0 (f) Määrää kohda (a) ja etmotuje regreouore lekkaupte. Vertaa tulota X- ja Y-arvoje artmeett kekarvoh. Oko tulo attuma? Käytä teteä -uutaa vahtoehtoa hypoteeeja ja %: merktevyytaoa. Ratkau: (a) Mall Y = α + βx + ε regreokertome α ja β PNS-etmaattort ovat Y b= r a= Y bx X Tehtävä tapaukea b = 8.4 a = 6.7 Ilkka Mell (004) 8/

9 Mat-.09 Sovellettu todeäköyylaku. harjotuket Mall X = γ + δy + ε regreokertome γ ja δ PNS-etmaattort ovat X d = r c= X dy Y Tehtävä tapaukea d = c =.45 Huomaa, että b d = r = 0.79 (c) Tetuure ollahypoteelle o muotoa H 0 : ρ = ρ 0 z = + r + ρ 0 log log r ρ0 3 Jo ollahypotee H 0 pätee, z a N(0,) Tehtävä tapaukea jote + r log = 0.54 r + ρ = ρ0 0 log z = 0.6 %: merktevyytaoa vataava krttk rajok aadaa ormaaljakauma taulukota -uutae vahtoehtoe hypotee tapaukea Koka z 0.05 =.57 +z 0.05 = < z = 0.6 <.57 H 0 jää vomaa. Ilkka Mell (004) 9/

10 Mat-.09 Sovellettu todeäköyylaku. harjotuket (d) Koka kyeeä o yhde elttäjä leaare regreomall, R = r = 0.79 (e) Tetuure ollahypoteelle H 0 : β = 0 o muotoa b t = / X joa jääövara σ harhato etmaattor aadaa yhde elttäjä leaare regreomall tapaukea kaavalla = ( r ) Y Jo ollahypotee H 0 pätee, t t( ) Tehtävä tapaukea =.76 t = 5.77 %: merktevyytaoa vataava krttk arvok aadaa Studet t-jakauma taulukota -uutae vahtoehtoe hypotee tapaukea Koka t 0.05 = 3.0 +t 0.05 = +3.0 t = 5.77 > 3.0 ollahypotee H 0 hylätää. Huomaa, että ama tetuuree arvo aadaa, jo tetataa ollahypoteea H 0 : ρ = 0 Tällö tetuureea o r t = r Jo ollahypotee H 0 pätee, t t( ) Ilkka Mell (004) 0/

11 Mat-.09 Sovellettu todeäköyylaku. harjotuket (f) Ko. regreouorat lekkaavat aa (artmeettte kekarvoje määräämää) havatoptede paopteeä, jo uora o mukaa vakoterm. Ste uore lekkaupteek aadaa (Ka X, Ka Y ) = (3.04, 8.05) Ilkka Mell (004) /

ε i = jäännös- eli virhetermin ε satunnainen ja ei-havaittu arvo havaintoyksikössä i

ε i = jäännös- eli virhetermin ε satunnainen ja ei-havaittu arvo havaintoyksikössä i Mat-.60 Sovellettu todeäkölaketa B. harjotuket Mat-.60 Sovellettu todeäkölaketa B. harjotuket / Ratkaut Aheet: Yhde elttäjä leaare regreomall Avaaat: Ehdolle jakauma, Ehdolle odotuarvo, Ehdolle vara, Etmot,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 6

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 6 MS-A Todeäkölakea ja tlatotetee perukur Vkko Tlatolle rppuvuu ja korrelaato; Yhde elttäjä leaare regreomall Rppuvuu, korrelaato ja regreoaal Tlatoteteeä kahde muuttuja väle rppuvuu vo olla Ekakta: toe

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

12. laskuharjoituskierros, vko 16, ratkaisut

12. laskuharjoituskierros, vko 16, ratkaisut 1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007 Rak-54.116 Rakeneden mekankka, RM (4 ov) Ten.8.7 Krjoa jokaeen koepapern elvä - koko nme, puhuelunm allevvauna - oao, vuokur, enn pävämäärä ekä enävä opnojako koodeneen - opkeljanumero, mukaan luken arkukrjan

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,

Lisätiedot

Nimi: Ratkaise tehtävät sivun alalaitaan. (paperi nro 1) 1. Valitse oikea toisen asteen yhtälön ratkaisukaava: (a) b ± b 4ac 2a. (b) b ± b 2 4ac 2a

Nimi: Ratkaise tehtävät sivun alalaitaan. (paperi nro 1) 1. Valitse oikea toisen asteen yhtälön ratkaisukaava: (a) b ± b 4ac 2a. (b) b ± b 2 4ac 2a paperi nro 0 a b ± b 2 4ac b b ± b 2 + 4ac c b ± b 4ac d b ± b 2 4ac 2. Ratkaise toisen asteen yhtälö x 2 + 7x 12 = 0. 3. Ratkaise epäyhtälö 3x 2 30x > 0 4. Ratkaise epäyhtälö 5x 2 + 5 < 0 paperi nro 1

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14) Tilatotietee jatkokuri 8. lakuharjoitute ratkaiuehdotuket (viikot 13 ja 14) 1) Perujoukko o aluee A aukkaat ja tutkittavaa omiaiuutea ovat tulot, Tiedämme, että perujouko tulot oudattaa ormaalijakaumaa,

Lisätiedot

1. PARAMETRIEN ESTIMOINTI

1. PARAMETRIEN ESTIMOINTI Mat-.04 Tlastollse aalyys perusteet Mat-.04 Tlastollse aalyys perusteet / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Estmaatt, Estmaattor, Estmot, Jääöselösumma, Jääösterm, Jääösvarass,

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit

Mat Koesuunnittelu ja tilastolliset mallit Mat-.03 Koeuuittelu ja tilatolliet mallit Mat-.03 Koeuuittelu ja tilatolliet mallit / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Tetit uhdeateikolliille muuttujille Tetit laatueroateikolliille muuttujille

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Avainsanat:

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Avainsanat: MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 Aheet: Tlastollset testt Avasaat: Artmeette keskarvo Beroull-jakauma

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Väliestimointi TKK (c) Ilkka Mellin (2007) 1 Väliestimointi >> Todennäköisyysjakaumien parametrien estimointi Luottamusväli

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Tilastollinen riippuvuus ja korrelaatio

Tilastollinen riippuvuus ja korrelaatio Tlastollset meetelmät Osa 4: Leaare regressoaalyys Tlastolle rppuvuus ja korrelaato KE (204) Tlastolle rppuvuus ja korrelaato >> Tlastolle rppuvuus, korrelaato ja regresso Kahde muuttuja havatoaesto kuvaame

Lisätiedot

Hierarkkiset koeasetelmat. Heliövaara 1

Hierarkkiset koeasetelmat. Heliövaara 1 Hierarkkiset koeasetelmat Heliövaara 1 Hierarkkiset koeasetelmat Kaksiasteista hierarkkista koeasetelmaa käytetään tarkasteltaessa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tekijän

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/24

TKK @ Ilkka Mellin (2008) 1/24 Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,

Lisätiedot

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6

Lisätiedot

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

RATKAISUT: 3. Voimakuvio ja liikeyhtälö Phyica 9. paino (8) 3. Voiakuvio ja liikeyhtälö : 3. Voiakuvio ja liikeyhtälö 3. a) Newtonin I laki on nieltään jatkavuuden laki. Kappale jatkaa liikettään uoraviivaieti uuttuattoalla nopeudella tai pyyy

Lisätiedot

Väliestimointi. Väliestimointi. Väliestimointi: Mitä opimme? 2/3. Väliestimointi: Mitä opimme? 1/3. Väliestimointi: Mitä opimme?

Väliestimointi. Väliestimointi. Väliestimointi: Mitä opimme? 2/3. Väliestimointi: Mitä opimme? 1/3. Väliestimointi: Mitä opimme? TKK (c) Ilkka Melli (004) Välietimoiti Todeäköiyyjakaumie parametrie etimoiti Normaalijakauma variai luottamuväli Beroulli-jakauma odotuarvo luottamuväli Johdatu tilatotieteeee Välietimoiti TKK (c) Ilkka

Lisätiedot

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Turingin kone on kuin äärellinen automaatti, jolla on käytössään 4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa

Lisätiedot

Tilastolliset menetelmät: Lineaarinen regressioanalyysi

Tilastolliset menetelmät: Lineaarinen regressioanalyysi Tlastollset meetelmät Leaare regressoaalyys Tlastollset meetelmät: Leaare regressoaalyys 3. Tlastolle rppuvuus ja korrelaato 4. Johdatus regressoaalyys 5. Yhde selttäjä leaare regressomall 6. Ylee leaare

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.4 Tilatollie aali peruteet, kevät 7 6. lueto: Johdatu regreioaalii Regreioaali idea Tavoitteea elittää elitettävä tekiä/muuttua havaittue arvoe vaihtelu elittävie tekiöide/muuttuie havaittue arvoe

Lisätiedot

Johdatus tilastotieteeseen Kaksisuuntainen varianssianalyysi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Kaksisuuntainen varianssianalyysi. TKK (c) Ilkka Mellin (2005) 1 ohdatus tilastotieteeseen Kaksisuuntainen varianssianalyysi TKK (c) Ilkka Mellin (2005) Kaksisuuntainen varianssianalyysi Varianssianalyysi: ohdanto Kaksisuuntainen varianssianalyysi ja sen suorittaminen

Lisätiedot

Luonnolliset vs. muodolliset kielet

Luonnolliset vs. muodolliset kielet Luonnolliset vs. muodolliset kielet Luonnollisia kieliä ovat esim. 1. englanti, 2. suomi, 3. ranska. Muodollisia kieliä ovat esim. 1. lauselogiikan kieli (ilmaisut p, p q jne.), 2. C++, FORTRAN, 3. bittijonokokoelma

Lisätiedot

Tilastolliset menetelmät: Varianssianalyysi

Tilastolliset menetelmät: Varianssianalyysi Variassiaalsi Tilastolliset meetelmät: Variassiaalsi 0. Ysisuutaie variassiaalsi. asisuutaie variassiaalsi. olmi a useampisuutaie variassiaalsi T @ Ila Melli (006) 433 Variassiaalsi T @ Ila Melli (006)

Lisätiedot

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu Latinalaiset neliöt TKK (c) Ilkka Mellin (2005) 1 Latinalaiset neliöt Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman analysointi Laskutoimitusten suorittaminen

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli

Lisätiedot

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemaalyys laboratoro Mat-.090 Sovellettu todeäkösyyslasku A Nordlud Harotus (vko 49/003) (Ahe: Tlastollsa testeä, regressoaalyysä Lae luvut 5.5, 6) HUOM! Laskarede palautukse takaraa o pokkeuksellsest

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:

Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat: Mat-1.60 Sovellettu todeäkösyyslasketa Mat-1.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Otos ja otosjakaumat Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, χ -jakauma, Frekvess, Frekvessjakauma,

Lisätiedot

Tilastollinen päättely. 4. Hypoteesien testaus Johdanto Testien konstruointi Testien vertailu

Tilastollinen päättely. 4. Hypoteesien testaus Johdanto Testien konstruointi Testien vertailu Mat-1.361 Tlastolle päättely 4. Hypoteese testaus Tlastolle päättely 4. Hypoteese testaus 4.1. Johdato Hylkäysalue, Hypotees, Hyväksymsalue, Krtte alue, Nollahypotees, Otos, Parametr, Parametravaruus,

Lisätiedot

ARVIOINTIPERIAATTEET

ARVIOINTIPERIAATTEET PSYKOLOGIAN YHTEISVALINNAN VALINTAKOE 2012 ARVIOINTIPERIAATTEET Copyright Helsingin yliopisto, käyttäytymistieteiden laitos, Materiaalin luvaton kopiointi kielletty. TEHTÄVÄ 1. (max. 34.5 pistettä) 1 a.i)

Lisätiedot

4.3 Liikemäärän säilyminen

4.3 Liikemäärän säilyminen Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.

Lisätiedot

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit järjestysasteikollisille muuttujille Järjestysasteikollisten muuttujien testit Merkkitesti Wilcoxonin

Lisätiedot

Tilastollinen päättely. 4. Hypoteesien testaus Johdanto Testien konstruointi Testien vertailu

Tilastollinen päättely. 4. Hypoteesien testaus Johdanto Testien konstruointi Testien vertailu Mat.36 Tlastolle päättely 4. Hypoteese testaus Tlastolle päättely 4. Hypoteese testaus 4.. Johdato Hylkäysalue, Hypotees, Hyväksymsalue, Krtte alue, Nollahypotees, Otos, Parametr, Parametravaruus, Perusjoukko,

Lisätiedot

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma. Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007

Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 Mat-2.204 Tilastollisen analyysin perusteet, kevät 2007 3. luento: Pari sanaa vielä hypoteesien formuloinneista Kai Virtanen Hypoteesien muodoista Luennolla nro. 2 muotoiltiin nollahypoteesi - H 0 : θ

Lisätiedot

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

Hypoteesin testaus Alkeet

Hypoteesin testaus Alkeet Hypoteesin testaus Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Johdanto Kokeellinen tutkimus: Varmennetaan teoreettista olettamusta fysikaalisen systeemin käyttäytymisestä

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011

S-55.1220 Piirianalyysi 2 Tentti 1.9.2011 S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26

Lisätiedot

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k Aalto-yliopiton Perutieteiden korkeakoulu Matematiikan ja yteemianalyyin laito Mat-49 Syteemien Identifiointi 0 harjoituken ratkaiut äytetään enin iirtofunktiomalli Tehdään Laplace-muunno: ẋ k 0 k x +

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x, Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d

Lisätiedot

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin MAT-3440 LAAJA MATEMATIIKKA 4 Tampereen teknllnen ylopsto Rsto Slvennonen Kevät 00 4. Vektorfunkton dervaatta. Ketjusääntö.. Reaalarvosen funkton dervaatta Tässä luvussa estetään dervaattakäste ensn reaalarvoselle

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

Johdatus yliopistomatematiikkaan, 2. viikko (2 op)

Johdatus yliopistomatematiikkaan, 2. viikko (2 op) Johdatus yliopistomatematiikkaan, 2. viikko (2 op) Jukka Kemppainen Mathematics Division Yhtälöt ja epäyhtälöt Jokainen osaa ratkaista ensimmäisen asteen yhtälön ax + by + c = 0. Millä parametrien a, b

Lisätiedot

Mat Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:

Mat Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat: Mat-.04 Tilatollie aalyyi peruteet. harjoituket Mat-.04 Tilatollie aalyyi peruteet. harjoituket / Tehtävät Aiheet: Avaiaat: Tetit uhdeateikolliille muuttujille Hypoteei, Kahde riippumattoma otoke t-tetit,

Lisätiedot

Ilkka Mellin Aikasarja-analyysi ARMA-mallit

Ilkka Mellin Aikasarja-analyysi ARMA-mallit Ilkka Mellin Aikasarja-analyysi ARMA-mallit TKK (c) Ilkka Mellin (007) 1 ARMA-mallit >> ARMA-mallit ja niiden ominaisuudet ARMA-mallien auto- ja osittaisautokorrelaatiofunktiot ARMA-mallien spektri ARMA-mallien

Lisätiedot

Muodolliset kieliopit

Muodolliset kieliopit Muodolliset kieliopit Luonnollisen kielen lauseenmuodostuksessa esiintyy luonnollisia säännönmukaisuuksia. Esimerkiksi, on jokseenkin mielekästä väittää, että luonnollisen kielen lauseet koostuvat nk.

Lisätiedot

MATEMATIIKAN LATOMINEN LA T EXILLA, OSA 1

MATEMATIIKAN LATOMINEN LA T EXILLA, OSA 1 MATEMATIIKAN LATOMINEN LA T EXILLA, OSA 1 PEKKA SALMI Tämä dokumentti on johdatus matemaattisten termien kirjoittamiseen L A TEXilla. Tarkoituksena on esitellä yksinkertaisia matemaattisia konstruktioita

Lisätiedot

Johdatus regressioanalyysiin. Heliövaara 1

Johdatus regressioanalyysiin. Heliövaara 1 Johdatus regressioanalyysiin Heliövaara 1 Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 31.03.2012 klo. 9.00-12.00 saleissa L1,L3 Jukka Kemppainen Mathematics

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

2. Keskiarvojen vartailua

2. Keskiarvojen vartailua Havaintoaineiston perusteella näyttää ilmeiseltä, että alkuperäisen laastin sidoslujuus on suurempi. Ero sattumasta johtuvaa? Palataan tuonnempana. Tension bond strength data for Portland Cement formulation

Lisätiedot

Topologia Syksy 2010 Harjoitus 9

Topologia Syksy 2010 Harjoitus 9 Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä

Lisätiedot

2 2 -faktorikokeen määritelmä

2 2 -faktorikokeen määritelmä TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tai useamman tekijän vaikutusta

Lisätiedot

11. Vektorifunktion derivaatta. Ketjusääntö

11. Vektorifunktion derivaatta. Ketjusääntö 7 Vektorfunkton dervaatta Ketjusääntö Täydennämme ja kertaamme seuraavassa dfferentaallaskennan teoraa kursslta Laaja matematkka Palautetaan meln dervaatan määrtelmä reaalfunktolle: Funkton f : R R dervaatta

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

RATKAISUT: 8. Momentti ja tasapaino

RATKAISUT: 8. Momentti ja tasapaino Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn

Lisätiedot

Intensiteettitaso ja Doplerin ilmiö

Intensiteettitaso ja Doplerin ilmiö Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0

Lisätiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka

Lisätiedot

Tilastollinen päättely. 5. Väliestimointi. 5.1. Johdanto. 5.2. Luottamusvälien konstruointi. 5.3. Luottamusvälien vertailu

Tilastollinen päättely. 5. Väliestimointi. 5.1. Johdanto. 5.2. Luottamusvälien konstruointi. 5.3. Luottamusvälien vertailu ilastollinen päättely 5.. Johdanto Estimointi, Joukkoestimointi, Kriittinen alue, uottamusjoukko, uottamustaso, uottamusväli, Otos, Parametri, Peittotodennäköisyys, Piste estimointi, Väliestimaatti, Väliestimaattori,

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Yksisuuntainen varianssianalyysi. Yksisuuntainen varianssianalyysi. Yksisuuntainen varianssianalyysi. Yksisuuntainen varianssianalyysi: Mitä opimme?

Yksisuuntainen varianssianalyysi. Yksisuuntainen varianssianalyysi. Yksisuuntainen varianssianalyysi. Yksisuuntainen varianssianalyysi: Mitä opimme? TKK (c Ila Mell (005 Yssuutae varassaals Johdatus tlastoteteesee Yssuutae varassaals Varassaals: Johdato Yssuutae varassaals ja se suorttame Yssuutase varassaals mall ja se parametrot Yssuutase varassaals

Lisätiedot

MAA10 HARJOITUSTEHTÄVIÄ

MAA10 HARJOITUSTEHTÄVIÄ MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5

Lisätiedot

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55.

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55. RATKAISUT, Insinöörimatematiikan koe 1.5.201 1. Kahdessa astiassa on bensiinin ja etanolin seosta. Ensimmäisessä astiassa on 10 litraa seosta, jonka tilavuudesta 5 % on etanolia. Toisessa astiassa on 20

Lisätiedot

Tilastolliset menetelmät: Tilastolliset testit

Tilastolliset menetelmät: Tilastolliset testit Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A

TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintauulustelujen matematiian oe 30.5.006 sarja A Ohjeita. Sijoita joainen tehtävä omalle sivulleen. Laadi rataisut seleästi v älivaiheineen, tarvittaessa

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

HILBERTIN AVARUUDET 802652S MIKAEL LINDSTRÖM KEVÄÄN 2010 ANALYYSI 3 -LUENTOJEN PERUSTEELLA TOIMITTANEET TOMI ALASTE JA LAURI BERKOVITS

HILBERTIN AVARUUDET 802652S MIKAEL LINDSTRÖM KEVÄÄN 2010 ANALYYSI 3 -LUENTOJEN PERUSTEELLA TOIMITTANEET TOMI ALASTE JA LAURI BERKOVITS HILBRTIN AVARUUDT 802652S MIKAL LINDSTRÖM KVÄÄN 2010 ANALYYSI 3 -LUNTOJN PRUSTLLA TOIMITTANT TOMI ALAST JA LAURI BRKOVITS Sisältö 1 Hilbertin Avaruudet 3 1.1 Normi- ja L p -avaruudet........................

Lisätiedot

5 Osa 5: Ohjelmointikielen perusteita

5 Osa 5: Ohjelmointikielen perusteita 5 Osa 5: Ohjelmointikielen perusteita 5.1 Omat funktiot R on lausekekieli: Kaikki komennot kuten funktiokutsut ja sijoitusoperaatiot ovat lausekkeita. Lausekkeet palauttavat jonkin arvon. Lausekkeita voidaan

Lisätiedot

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat: Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Telecommunication engineering I A Exercise 3

Telecommunication engineering I A Exercise 3 Teleouao egeerg I 5359A xere 3 Proble elaodulaaor lohkokaavo o eey oppkrja kuvaa 3.63. Pulodulaaor ääuloa o aoagaal ja reeregaal erou d. Tää gaal kerroaa pulgeeraaor gaallla rajouke, el erouke erk elväe,

Lisätiedot

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto.

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto. Pyramidi Analyyttinen geometria tehtävien ratkaisut sivu 7 Päivitetty 9..6 7 a) + y = 7 + y = 7 keskipistemuoto + y 7 = normaalimuoto Vastaus a) + y = ( 7 ) + y 7= b) + y+ 5 = 6 y y + + = b) c) ( ) + y

Lisätiedot

Tilastollinen päättely. 3. Piste-estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet

Tilastollinen päättely. 3. Piste-estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet Mat-1.361 Tlastolle päättely 3. Pste-estmot Tlastolle päättely 3. Pste-estmot 3.1. Johdato Estmaattor, Estmaatt, Estmot, Havato, Havatopste, Otos, Otostuusluku, Parametr, Pste-estmot, Pstetodeäkösyysfukto,

Lisätiedot

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

7.5. Yleinen lineaarinen malli ja suurimman uskottavuuden menetelmä

7.5. Yleinen lineaarinen malli ja suurimman uskottavuuden menetelmä Mat.36 Tlastolle päättely 7. Suurmma uskottavuude meetelmä ja asymptootte teora Tlastolle päättely 7. Suurmma uskottavuude meetelmä ja asymptootte teora 7.. Suurmma uskottavuude estmotmeetelmä Akasarja,

Lisätiedot

Varianssianalyysi. Varianssianalyysi. Varianssianalyysi. Varianssianalyysi: Mitä opimme? Varianssianalyysi: Johdanto

Varianssianalyysi. Varianssianalyysi. Varianssianalyysi. Varianssianalyysi: Mitä opimme? Varianssianalyysi: Johdanto TKK (c Ila Mell (004 Varassaalyys Varassaalyys: Johdato Johdatus tlastoteteesee Varassaalyys TKK (c Ila Mell (004 Varassaalyys: Mtä opmme? Tarastelemme tässä luvussa seuraavaa ysymystä: Mte tavaomae ahde

Lisätiedot