MATEMATIIKAN LATOMINEN LA T EXILLA, OSA 1

Koko: px
Aloita esitys sivulta:

Download "MATEMATIIKAN LATOMINEN LA T EXILLA, OSA 1"

Transkriptio

1 MATEMATIIKAN LATOMINEN LA T EXILLA, OSA 1 PEKKA SALMI Tämä dokumentti on johdatus matemaattisten termien kirjoittamiseen L A TEXilla. Tarkoituksena on esitellä yksinkertaisia matemaattisia konstruktioita ja joitain tavallisimpi symboleja. Symboliluettelo, joka pitäisi löytyä samasta paikasta kuin tämäkin dokumentti, sisältää suhteellisen kattavan kokoelman hyödyllisimmistä symboleista. Tekstimatematiikkatila alkaa ja päättyy merkillä $. Jokainen tekstin seassa oleva kaava, laskun pätkä ja jopa yksittäinen matemaattinen symboli kirjoitetaan omaan matematiikkatilaan. Jos siis haluaa puhua muuttujasta x, on se kirjoitettava muodossa $x$. L A TEX (tai oikeastaan TEX) toimii matematiikkatilassa aivan eri tavalla kuin normaalissa tekstitilassa. Jokainen merkki tulkitaan matematiikkatilassa matemaattiseksi symboliksi ja siitä syystä kursivoidaan. Numerot tulostuvat tavallisella pystyfontilla (antiikva). Näppäimistössä esiintyvät merkit (kuten (, [, + ja <) tulostuvat normaalisti, erikoismerkkejä (erityisesti {, } ja \) lukuunottamatta. Esimerkiksi lause Jos 0 < x < 1/(n + 1), niin 1/x > n + 1. saadaan kirjoittamalla lähdetiedostoon Jos $0 < x < 1/(n+1)$, niin $1/x > n+1$. Ne matemaattiset symbolit, joita ei löydy suoraan näppäimistöltä tai jotka ovat L A TEX:in erikoismerkkejä, tulostetaan käskyjen avulla. Esimerkiksi epäyhtälömerkki tulostetaan käskyllä \ne. Jos siis haluaa latoa epäyhtälön , kirjoitetaan lähdekoodiin $1+1 \ne 1$. Matematiikkatila on tarkoitettu vain matemaattisten symboleiden ei tekstin kirjoittamiseen. Tyhjillä merkeillä ei ole vaikutusta matematiikkatilassa. Tekstitilassa käytettävät aksentitkaan eivät toimi, mukaan lukien ääkköset. Esimerkiksi lähdekoodi $Kirjoitetaan tekstiä$ tulostuu muodossa Kirjoitetaanteksti Päiväys: 29. maaliskuuta Varoitus: Dokumentti on keskeneräinen! 1

2 ja saa lisäksi aikaan virheilmoituksen koodia käännettäessä. Huomaa myös, että kirjainten välit edellisessä esimerkissä ovat hieman kummalliset; tämä johtuu siitä että matematiikkatilan merkit on suunniteltu toimimaan hyvin muiden matemaattisten symbolien kanssa. Matemaattista tekstiä kirjoitettaessa kaavat (ja vastaavat) muodostavat luonnollisen osan lausetta. Helpoin tapa testata tekstin toimivuutta on lukea lauseet ääneen, tai ainakin artikuloida lauseet mielessään. Vaikka tässä luvussa keskitytään nimenomaan erilaisten matemaattisten termien latomiseen, niin kannattaa muistaa että oikeissa kirjoitelmissa matematiikan kuuluu nivoutua muuhun tekstiin. Muutenkin on suositeltavaa mieluummin selittää päättelyitä sanallisesti kuin kirjoittaa pitkää laskua yhdeksi pötköksi. Koska tämä dokumentti käsittelee matemaattisten termien latomista, kaikki jatkossa tehtävät väitteet koskevat matematiikkatilaa. Jos siis sanotaan, että käskyllä \alpha saadaan kreikkalainen kirjan alfa, niin se tarkoittaa sitä että näin tapahtuu kun käskyä käytetään matematiikkatilan sisällä. 1 Indeksit Yläindeksi saadaan käyttämällä merkkejä ^ ja _. Jos samalle termille antaa sekä ylä- että alaindeksin (järjestyksellä ei ole väliä), niin L A TEX sovittaa indeksit auttomaattisesti päällekkäin. Input $x^n$ Output x n $x_2$ x 2 $x_2^n$ x n 2 $x^n_2$ x n 2 Jos indeksiin halutaan useista merkeistä koostuva termi, niin termi täytyy laittaa aaltosulkuihin { ja }. $x^{n+1}$ x n+1 $x^n+1$ x n + 1 $x^{n^2}$ x n2 $x^{n_2}$ x n 2 $x^{n_2^2}$ x n2 2 $x^{n^{m^2}}$ $x_m^{n^2}$ $x_{m_k}^{n^2}$ x nm2 x n2 m x n2 m k 2

3 Kuten edeltävistä esimerkeistäkin voi nähdä, niin jokainen termi muodostuu aina pienemmistä osista. Esimerkiksi termi x n2 m k muodostuu termeistä x, m k ja n 2, jotka taas muodostuvat termeistä x, m, k, n ja 2. Tällä tavoin monimutkaisimmatkin termit ja kaavat saadaan rakennettua lähtemällä yksinkertaisista osista. Yleisesti matematiikkatilassa aaltosuluilla erotettu osa muodostaa kiinteän yksikön. Seuraavissa esimerkeissä kiinteälle termille x n annetaan ylä- ja alaindeksi; vertaa aiempiin esimerkkeihin. ${x^n}^2$ x n2 ${x^n}_2$ x n 2 Matematiikassa usein käytetty heittopilkku on itse asiassa yläindeksissä oleva symboli. Tätä tarvitaan kuitenkin niin usein, että pilkun saa termeihin yksinkertaisesti kirjoittamalla '. $f'$ f $f''$ f 2 Kreikkalaiset kirjaimet Kreikkalaiset kirjaimet saa käskyillä \alpha, \beta,... $\gamma$ $\delta$ $\epsilon$ Ainoa ongelma on siis yhdistää kreikkalaiset kirjaimet niiden englanninkielisiin nimiinsä. Tämä tieto löytyy Symboliluettelosta. Joistain kreikkalaisista kirjaimista on useampi vaihtoehto; käytä johdonmukaisesti vain yhtä kirjoitusasua koko kirjoitelman ajan. $\varepsilon$ $\theta$ $\vartheta$ $\phi$ $\varphi$ Kuten matematiikkatilan käskyillä on tapana, käskyt \alpha, \beta, jne. eivät toimi matematiikkatilan ulkopuolella. γ δ ɛ ε θ ϑ φ ϕ 3 Binäärioperaattorit Käsitellään seuraavaksi binäärioperaattoreita kuten + ja. Tarpeellisimmat binäärioperaattori löytyvätkin suoraan näppäimistöltä, mutta on myös lukuisia symboleita, jotka täytyy syöttää käskyinä. Huomaa 3

4 kuinka L A TEX pitää automaattisesti huolen siitä että termit ovat sopivalla etäisyydellä operaattoreista. Muista ettei tyhjillä merkeillä ole matematiikkatilassa merkitystä symboleiden etäisyyksiin toisistaan. $x + y$ x + y $x - y$ x y $x / y$ x/y $x \cdot y$ x y $x \times y$ x y $x \div y$ x y $f \circ g$ f g $f * g$ f g $A \cap B$ A B $A \cup B$ A B $A \setminus B$ A \ B $X \otimes Y$ X Y 4 Relaatiot Seuraavassa esitellään joitain relaatiokäskyjä. $x = y$ x = y $x < y$ x < y $x > y$ x > y $x \le y$ x y $x \ge y$ x y $x \in X$ x X $A \subseteq B$ A B $A \supseteq B$ A B $A \subset B$ A B Suosittelen merkitsemään joukkojen sisältyvyyttä symbolilla symbolin sijaan; vertaa ja <. Relaatioiden negaatiot saa lisäämällä relaation eteen käskyn \not. Huomaa kuitenkin poikkeukset \ne ja \notin. Muillekin relaatioille löytyy hienosäädetyt negaatiot paketista amssymb. $x \ne y$ x y $x \notin X$ x / X $A \not\subseteq B$ A B $A \not\supseteq B$ A B 4

5 5 Tekstioperaattorit Trigonometriset funktiot ovat esimerkkejä tekstioperaattoreista, jotka ladotaan pystyyn. Tällaisia tapauksia varten on valmiit käskyt, joista esimerkkejä seuraavassa. $\sin \phi$ $\cos \phi$ $\tan \phi$ $\cot \phi$ $\arcsin x$ $\sinh x$ $\ln x$ $\log x$ sin φ cos φ tan φ cot φ arcsin x sinh x ln x log x Oikeaan lopputulokseen ei pääse kirjoittamalla $sin \phi$, vaan tällöin tulostuu sinφ. Tekstioperaattorit on helppo muistaa, sillä ne ovat aina muotoa \teksti. Huomautus edistyneille: Tarvittaessa uuden operaattorin saa tehtyä itse käskyllä \DeclareMathOperator, jonka saa paketista amsmath. Esimerkiksi gradienttioperaatorin saa luotua esittelyosassa käskyllä \DeclareMathOperator\grad{grad} jonka jälkeen käsky \grad f tulostaa termin grad f. 6 Muita symboleja Tässä vaiheessa pitäisi olla aika selvää, että matematiikan kirjoittaminen tapahtuu L A TEXissa pääasiassa kirjoittamalla erilaisia symboleja peräkkäin. L A TEX huolehtii automaattisesti symbolien välisestä tyhjästä, sillä eri symboleilla on vakiintuneet käyttötarkoitukset. Joskus myös symbolin käyttötapa vaikuttaa lopputulokseen: jos esimerkiksi binäärioperaattoreilta puuttuu operoitavat termit, niin operaattorin ympärille ei tule ylimääräistä tyhjää. $\mu^+$ µ + $T^*$ Operaattoreiden ja relaatioiden lisäksi löytyy joukko sekalaisia symboleja, nuolia, sulkuja ja vierasperäisiä kirjaimia. Näitä voi käyttää kuten muitakin symboleja eli yksinkertaisesti antamalla symbolia vastaavan käskyn matematiikkatilassa. 5 T

6 $\partial_n f(x)$ $\nabla f$ n f(x) f $X^\complement$ X (amssymb) $\aleph_0$ ℵ 0 $x\mapsto x^2$ x x 2 $x_n \to \infty$ $\{\emptyset\}$ $ x $ $\Vert A \Vert$ x n { } x A Sulkujen käyttöön liittyviä hienouksia selitetään myöhemmin. Myös isot operaattorit kuten summat ja integraalit ovat vielä käsittelemättä, mutta nämäkin sopivat paremmin näyttömatematiikkatilaan, josta puhutaan myöhemmin. 7 Juuret, yläviivat ja alaviivat Neliöjuuren saa käskyllä \sqrt{juurrettava} ja n:nnen juuren käskyllä \sqrt[n]{juurrettava}. $\sqrt{2}$ 2 $\sqrt{x^2+y^2}$ x2 + y 2 $\sqrt{1+\sqrt{2}}$ $\sqrt[3]{2}$ 3 2 $\sqrt[n]{x}$ Yläviivan ja alaviivan saa käskyllä \overline ja \underline, jotka ottavat yhden argumentin samaan tapaan kuin \sqrt. $\overline{a}$ $\overline{1+i}$ $\underline{x}$ n x A 1 + i Ethän käytä käskyä \underline tekstin alleviivaamiseen. Teksin korostukseen on parempikin keino, nimittäin kursivointi: \emph{tekstiä}. x 8 Matematiikkatilan aksentit Tavalliset aksenttikäskyt eivät toimi matematiikkatilassa. Matemaattisissa merkinnöissä esiintyi kuitenkin usein hattuja ja tildejä symbolien päällä, joten niillekin on omat käskynsä. 6

7 $\tilde{x}$ $\dot{x}$ $\hat{\bar{x}}$ Usein \widehat ja \widetilde antavat paremman tuloksen kuin \hat ja \tilde. $\hat{x}$ ˆX $\widehat{x}$ X $\widehat{xyz}$ x ẋ ˆ x xyz 9 Kolme pistettä Kolme pistettä saa käskyillä \ldots (matalat) ja \cdots (keskitetyt). $2, 4, 6, \ldots$ 2, 4, 6,... $ \cdots + n$ n Listoissa käytetään alhaalla olevia pisteitä (\ldots), joten pilkun jälkeen tulee aina alhaalla ovat pisteet. Operaattoreiden, kuten +, tai, välissä käytetään keskitettyjä pisteitä ja samoin relaatioiden, kuten = ja. $2\times 3\times\cdots\times n$ 2 3 n $x_1 < x_2 < \cdots < x_n$ x 1 < x 2 < < x n Jos operaattorisymbolit puuttuvat, niin käytetään matalia pisteitä. $x_1 x_2 \ldots x_n$ x 1 x 2... x n $(a+1)(a+2)\ldots(a+n)$ (a + 1)(a + 2)... (a + n) Jotkut tosin käyttävät tällöinkin keskitettyjä pisteitä; tärkeintä on että valitsee jonkin linjan ja pysyy siinä. $x_1 x_2 \cdots x_n$ x 1 x 2 x n $(a+1)(a+2)\cdots(a+n)$ (a + 1)(a + 2) (a + n) L A TEXista löytyy myös pystypisteet ja diagonaalipisteet (\vdots ja \ddots), joita tarvitaan lähinnä matriiseja kirjoitettaessa. Käsky \ldots toimii myös tekstitilassa. 10 Välimerkit matematiikkatilassa Matemaattisissa termeissä esiintyy joskus myös välimerkkejä. Tällöinkin L A TEX hoitaa merkkien välitykset yleensä mallikkaasti. $(x, y)$ (x, y) $(x, y; z)$ (x, y; z) 7

8 Ongelmia tulee, jos haluaa käyttää desimaalipilkkua desimaalipisteen sijaan. Yleensä pilkun jälkeen pieni tyhjä väli on paikallaan, kuten pisteparin (x, y) tapauksessa. Desimaalipilkun jälkeen ei kuitenkaan saisi olla tyhjää, joten sen ympärille on syytä laittaa aaltosulut. $3,14$ 3, 14 (väärin) $3{,}14$ 3,14 (oikein) $3.14$ 3.14 (oikein) Normaalisti kaksoispiste toimii binäärioperaattorina, joten sen molemmin puolin tulee tyhjää. Kaksoispiste, jota ennen ei ole tyhjää ja jonka jälkeen on pieni tyhjä, on nimeltään \colon. $f: X \to Y$ $f\colon X \to Y$ f : X Y f : X Y Edellisistä esimerkeistä ensimmäinen on ihan hyvä, mutta toinen on parempi. 8

Harjoitus 1 -- Ratkaisut

Harjoitus 1 -- Ratkaisut Kun teet harjoitustyöselostuksia Mathematicalla, voit luoda selkkariin otsikon (ja mahdollisia alaotsikoita...) määräämällä soluille erilaisia tyylejä. Uuden solun tyyli määrätään painamalla ALT ja jokin

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

Luku 3. Listankäsittelyä. 3.1 Listat

Luku 3. Listankäsittelyä. 3.1 Listat Luku 3 Listankäsittelyä Funktio-ohjelmoinnin tärkein yksittäinen tietorakenne on lista. Listankäsittely on paitsi käytännöllisesti oleellinen aihe, se myös valaisee funktio-ohjelmoinnin ideaa. 3.1 Listat

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Muodolliset kieliopit

Muodolliset kieliopit Muodolliset kieliopit Luonnollisen kielen lauseenmuodostuksessa esiintyy luonnollisia säännönmukaisuuksia. Esimerkiksi, on jokseenkin mielekästä väittää, että luonnollisen kielen lauseet koostuvat nk.

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

MAT-71506 Program Verification (Ohjelmien todistaminen) merkintöjen selityksiä

MAT-71506 Program Verification (Ohjelmien todistaminen) merkintöjen selityksiä MAT-71506 Program Verification (Ohjelmien todistaminen) merkintöjen selityksiä Antti Valmari & Antero Kangas Tampereen teknillinen yliopisto Matematiikan laitos 20. elokuuta 2013 Merkkien selityksiä Tähän

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

Valitse ruudun yläosassa oleva painike Download Scilab.

Valitse ruudun yläosassa oleva painike Download Scilab. Luku 1 Ohjeita ohjelmiston Scilab käyttöön 1.1 Ohjelmiston lataaminen Ohjeet ohjelmiston lataamiseen Windows-koneelle. Mene verkko-osoitteeseen www.scilab.org. Valitse ruudun yläosassa oleva painike Download

Lisätiedot

plot(f(x), x=-5..5, y=-10..10)

plot(f(x), x=-5..5, y=-10..10) [] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

Matemaattisten menetelmien hallinnan tason testi.

Matemaattisten menetelmien hallinnan tason testi. Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 1.4.2009 T-106.1208 Ohjelmoinnin perusteet Y 1.4.2009 1 / 56 Tentti Ensimmäinen tenttimahdollisuus on pe 8.5. klo 13:00 17:00 päärakennuksessa. Tämän jälkeen

Lisätiedot

Matematiikan kirjoittamisesta

Matematiikan kirjoittamisesta Matematiikan kirjoittamisesta Asiasisältö Tärkeintä kaikessa on, että kaiken minkä kirjoitat, niin myös itse ymmärrät. Toisin sanoen asiasisällön on vastattava lukijan pohjatietoja. Tekstin täytyy olla

Lisätiedot

Java-kielen perusteita

Java-kielen perusteita Java-kielen perusteita valintalauseet 1 Johdantoa kontrollirakenteisiin Tähän saakka ohjelmissa on ollut vain peräkkäisyyttä eli lauseet on suoritettu peräkkäin yksi kerrallaan Tarvitsemme myös valintaa

Lisätiedot

Kappale 18: Teksti-editori

Kappale 18: Teksti-editori Kappale 18: Teksti-editori 18 Johdanto: Tekstitoiminnot... 304 Text-editori-istunnon aloittaminen... 305 Tekstin syöttäminen ja muokkaaminen... 307 Erikoismerkkien syöttäminen... 311 Komentokielisen ohjelman

Lisätiedot

3.1 Funktion käsite. Ensiasteen polynomifunktio

3.1 Funktion käsite. Ensiasteen polynomifunktio 3.1 Funktion käsite. Ensiasteen polynomifunktio Arkikielessä saatetaan sanoa esimerkiksi niin, että auton jarrutusmatka on vauhdin funktio tai että jäätien kantavuus on jään paksuuden funktio. Nämä sanonnat

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

MIKROTEORIA 1, HARJOITUS 1 BUDJETTISUORA, PREFERENSSIT, HYÖTYFUNKTIO JA VALINTA

MIKROTEORIA 1, HARJOITUS 1 BUDJETTISUORA, PREFERENSSIT, HYÖTYFUNKTIO JA VALINTA MIKROTEORIA, HARJOITUS BUDJETTISUORA, PREFERENSSIT, HYÖTYFUNKTIO JA VALINTA tilasto (600 00) 00 a. Kulmakerroin: = = =, koska 00 sivua lisää ta aiheuttaa (00 400) 00 luopumisen 00 sivusta tilastoa. Toisin

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Roosa Niemi. Riippuvuuslogiikkaa

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Roosa Niemi. Riippuvuuslogiikkaa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Roosa Niemi Riippuvuuslogiikkaa Informaatiotieteiden yksikkö Matematiikka Syyskuu 2011 Tampereen yliopisto Informaatiotieteiden yksikkö ROOSA NIEMI: Riippuvuuslogiikkaa

Lisätiedot

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan

Lisätiedot

MATEMAATTISEN TEKSTIN KIRJOITTAMINEN

MATEMAATTISEN TEKSTIN KIRJOITTAMINEN MATEMAATTISEN TEKSTIN KIRJOITTAMINEN Jokainen, joka on katsellut useampia matemaattisia kirjoja tai artikkeleita, voi todeta, että on useita toisistaan poikkeavia tapoja kirjoittaa matemaattista tekstiä

Lisätiedot

Stokesin lause LUKU 5

Stokesin lause LUKU 5 LUU 5 Stokesin lause 5.1. Integrointi monistolla Olkoot W R k alue, W kompakti Jordan-joukko ja ω jatkuva k-muoto alueessa W, ω f dx 1 dx k. Asetetaan ω : f, t.s. f dx 1 dx k : f(x dx f(x 1,, x k dx 1

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

Ehto- ja toistolauseet

Ehto- ja toistolauseet Ehto- ja toistolauseet 1 Ehto- ja toistolauseet Uutena asiana opetellaan ohjelmointilauseet / rakenteet, jotka mahdollistavat: Päätösten tekemisen ohjelman suorituksen aikana (esim. kyllä/ei) Samoja lauseiden

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Automaatit. Muodolliset kielet

Automaatit. Muodolliset kielet Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten

Lisätiedot

TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT

TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT ARI LEHTONEN. Trigonometriset funktiot.. Peruskaavat. tan x := sin x cos x, cos x cot x := sin x Anglosaksisissa maissa käytössä ovat myös funktiot sekantti sec

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

etunimi, sukunimi ja opiskelijanumero ja näillä

etunimi, sukunimi ja opiskelijanumero ja näillä Sisällys 1. Algoritmi Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.1 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

1 Logiikkaa. 1.1 Logiikan symbolit

1 Logiikkaa. 1.1 Logiikan symbolit 1 Logiikkaa Tieteessä ja jokapäiväisessä elämässä joudutaan tekemään päätelmiä. Logiikassa tutkimuskohteena on juuri päättelyt. Sen sijaan päätelmien sisältöön ei niinkäään kiinnitetä huomiota. Päätelmät

Lisätiedot

Talousmatematiikan perusteet, L2

Talousmatematiikan perusteet, L2 Talousmatematiikan perusteet, L2 orms.1030 EPKY / kevät 2011 Toisen Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat (alkaen sisältä ulospäin) 2. potenssit ja juuri 3. kerto-

Lisätiedot

Est.kand Kandidaatintyö ja seminaari: L A T E Xin käyttöönotto

Est.kand Kandidaatintyö ja seminaari: L A T E Xin käyttöönotto Est.kand Kandidaatintyö ja seminaari: L A T E Xin käyttöönotto Luis R.J. Costa Aalto-yliopisto Sähkötekniikan korkeakoulu Syksy 2015 Sisältö Yleistä Minimaalinen suomenkielinen esimerkki Tärkeimmät yksityiskohdat

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

ALOITUSOPAS. Versio 0.8

ALOITUSOPAS. Versio 0.8 ALOITUSOPAS Versio 0.8 Matti Lähteenmäki 999 KÄYTTÖLIITTYMÄ Mathcad on tavanomainen Windows-ohjelma ja sen käyttöliittymällä on monia muista Wi n- dows-ohjelmista tuttuja ominaisuuksia. Käyttäjällä on

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 16.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 16.2.2010 1 / 41 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

10. Globaali valaistus

10. Globaali valaistus 10. Globaali valaistus Globaalilla eli kokonaisvalaistuksella tarkoitetaan tietokonegrafiikassa malleja, jotka renderöivät kuvaa laskien pisteestä x heijastuneen valon ottamalla huomioon kaiken tähän pisteeseen

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 3. helmikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet suoritetaan peräkkäin.

Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet suoritetaan peräkkäin. 2. Ohjausrakenteet Ohjausrakenteiden avulla ohjataan ohjelman suoritusta. peräkkäisyys valinta toisto Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet

Lisätiedot

SQL-perusteet, SELECT-, INSERT-, CREATE-lauseet

SQL-perusteet, SELECT-, INSERT-, CREATE-lauseet SQL-perusteet, SELECT-, INSERT-, CREATE-lauseet A271117, Tietokannat Teemu Saarelainen teemu.saarelainen@kyamk.fi Lähteet: Leon Atkinson: core MySQL Ari Hovi: SQL-opas TTY:n tietokantojen perusteet-kurssin

Lisätiedot

Jos d-kohdan vasemmalla puolella perusjoukkona on X, niin oikealla puolella

Jos d-kohdan vasemmalla puolella perusjoukkona on X, niin oikealla puolella DISKREETTI MATEMATIIKKA, harjoitustehtävät Tehtäviä tulee todennäköisesti lisää. Uudet tehtävät tulevat aikanaan ladattavaksi samalle sivulle, josta tämäkin moniste löytyi. Ilmoitustaululta on nähtävissä

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

Hyvän salasanan tunnusmerkit Hyökkääjästä salasanan pitää näyttää satunnaiselta merkkijonolta. Hyvän salasanan luominen: Luo mahdollisimman pitkä

Hyvän salasanan tunnusmerkit Hyökkääjästä salasanan pitää näyttää satunnaiselta merkkijonolta. Hyvän salasanan luominen: Luo mahdollisimman pitkä Hyvä Salis Hyvän salasanan tunnusmerkit Hyökkääjästä salasanan pitää näyttää satunnaiselta merkkijonolta. Hyvän salasanan luominen: Luo mahdollisimman pitkä salasana. Jokainen salasanaan lisäämäsi kirjain

Lisätiedot

Johdatus Ohjelmointiin

Johdatus Ohjelmointiin Johdatus Ohjelmointiin Syksy 2006 Viikko 2 13.9. - 14.9. Tällä viikolla käsiteltävät asiat Peruskäsitteitä Kiintoarvot Tiedon tulostus Yksinkertaiset laskutoimitukset Muuttujat Tiedon syöttäminen Hyvin

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

Luvuilla laskeminen. Esim. 1 Laske 6 21 7

Luvuilla laskeminen. Esim. 1 Laske 6 21 7 Luvuilla laskeminen TI-84 Plus käyttää laskujen suorittamiseen ns. yhtälönkäsittelyjärjestelmää (EOS TM, Equation Operating System), jonka avulla lausekkeiden syöttö tapahtuu matemaattisessa kirjoitusjärjestyksessä.

Lisätiedot

Luonnolliset vs. muodolliset kielet

Luonnolliset vs. muodolliset kielet Luonnolliset vs. muodolliset kielet Luonnollisia kieliä ovat esim. 1. englanti, 2. suomi, 3. ranska. Muodollisia kieliä ovat esim. 1. lauselogiikan kieli (ilmaisut p, p q jne.), 2. C++, FORTRAN, 3. bittijonokokoelma

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 16.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 16.9.2015 1 / 26 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 26.1.2009 T-106.1208 Ohjelmoinnin perusteet Y 26.1.2009 1 / 33 Valintakäsky if syote = raw_input("kerro tenttipisteesi.\n") pisteet = int(syote) if pisteet >=

Lisätiedot

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma. Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia LUKU II HOMOLOGIA-ALGEBRAA 1. Joukko-oppia Matematiikalle on tyypillistä erilaisten objektien tarkastelu. Tarkastelu kohdistuu objektien tai näiden muodostamien joukkojen välisiin suhteisiin, mutta objektien

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

PHP tehtävä 3 Atte Pekarinen TIKT13A 4.12.2014

PHP tehtävä 3 Atte Pekarinen TIKT13A 4.12.2014 PHP-kielen perusteet 3.1 Mitä tarkoittaan heredoc? Milloin sitä kannattaa käyttää? Kirjoita esimerkki sen käyttämisestä. Heredoc on ominaisuus PHP-koodaamisessa, jolla voidaan kirjoittaa pitkiä tekstejä

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Maxima ja Maple. millaan lailla sukua muuttujille a ja b. 1 Ohjelmat eivät yleensä pahastu turhista välilyönneistä, joten niitä

Maxima ja Maple. millaan lailla sukua muuttujille a ja b. 1 Ohjelmat eivät yleensä pahastu turhista välilyönneistä, joten niitä Maxima ja Maple Maple on symbolisen matematiikan laskentaohjelma jota käytetään esim. Joensuun yliopistossa; siihen on törmätty mestariluokan laskuharjoituksissa. Koska Maple on kaupallinen ohjelma ja

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

Tutki ja kirjoita -kurssi, s-2005

Tutki ja kirjoita -kurssi, s-2005 Teoreettisen tutkimuksen raportoinnista Tutki ja kirjoita -kurssi, s-2005 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Teoreettisen tutkimuksen raportoinnista p.1/14 Sisältö Algoritmisten

Lisätiedot

Johdatus L A TEXiin. 7. Taulukot ja kuvat. Dept. of Mathematical Sciences

Johdatus L A TEXiin. 7. Taulukot ja kuvat. Dept. of Mathematical Sciences Johdatus L A TEXiin 7. Taulukot ja kuvat Dept. of Mathematical Sciences Taulukot I Taulukkomaiset rakenteet tehdään ympäristöllä tabular Ympäristön argumentiksi annetaan sarakemäärittely, joka on kirjaimista

Lisätiedot

Johdatus L A TEXiin. 8. Taulukot ja kuvat. Matemaattisten tieteiden laitos

Johdatus L A TEXiin. 8. Taulukot ja kuvat. Matemaattisten tieteiden laitos Johdatus L A TEXiin 8. Taulukot ja kuvat Matemaattisten tieteiden laitos Taulukot I Taulukkomaiset rakenteet tehdään ympäristöllä tabular Ympäristön argumentiksi annetaan sarakemäärittely, joka on kirjaimista

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

Matematiikan perusteista - logiikkaa ja joukko-oppia LaaMa 1 syksyllä 2009

Matematiikan perusteista - logiikkaa ja joukko-oppia LaaMa 1 syksyllä 2009 Ensimmäisen viikon luennot Matematiikan perusteista - logiikkaa ja joukko-oppia LaaMa 1 syksyllä 2009 Perustuu osittain kirjan Poole: Linear Algebra lukuihin Appendix A ja Appendix B Esko Turunen esko.turunen@tut.fi

Lisätiedot

Palauta jokainen funktio-tiedosto. Esitä myös funktiot vastauspaperissasi.

Palauta jokainen funktio-tiedosto. Esitä myös funktiot vastauspaperissasi. Tehtävä 1 Kirjoita neljä eri funktiota (1/2 pistettä/funktio): 1. Funktio T tra saa herätteenä 3x1-kokoisen paikkavektorin p. Se palauttaa 4x4 muunnosmatriisin, johon sijoitettu p:n koordinaattien mukainen

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 25.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 25.2.2009 1 / 34 Syötteessä useita lukuja samalla rivillä Seuraavassa esimerkissä käyttäjä antaa useita lukuja samalla

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

Johdatus L A TEXiin. Dept. of Mathematical Sciences. Tunti 1: Alkeet. Markus Harju, markus.harju at oulu.fi, M207

Johdatus L A TEXiin. Dept. of Mathematical Sciences. Tunti 1: Alkeet. Markus Harju, markus.harju at oulu.fi, M207 Johdatus L A TEXiin Tunti 1: Alkeet Markus Harju, markus.harju at oulu.fi, M207 Dept. of Mathematical Sciences Kurssista Tarkoitus: johdattaa opiskelija L A TEX-ladontaohjelman käyttöön, jotta hän kykenee

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 11 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Listakomprehensio Uusi tapa luoda (ja muokata) listoja: [ lauseke

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Heidi Luukkonen. Sahlqvistin kaavat

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Heidi Luukkonen. Sahlqvistin kaavat TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heidi Luukkonen Sahlqvistin kaavat Informaatiotieteiden yksikkö Matematiikka Maaliskuu 2013 Tampereen yliopisto Informaatiotieteiden yksikkö LUUKKONEN, HEIDI: Sahlqvistin

Lisätiedot

Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla

Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla Muuttuja Frekvenssi 7 12 8 16 9 11 10 8 Tilastomoodin valinta. Tilastomuistin tyhjennys. Keskiarvon ja keskihajonnan

Lisätiedot

Trigonometriset funktiot 1/7 Sisältö ESITIEDOT: reaalifunktiot

Trigonometriset funktiot 1/7 Sisältö ESITIEDOT: reaalifunktiot Trigonometriset funktiot 1/7 Sisältö Trigonometriset funktiot suorakulmaisessa kolmiossa a c b Olkoon suorakulmaisen kolmion terävä kulma, a tämän vastainen kateetti, b viereinen kateetti ja c kolmion

Lisätiedot

Neljän alkion kunta, solitaire-peli ja

Neljän alkion kunta, solitaire-peli ja Neljän alkion kunta, solitaire-peli ja taikaneliöt Kalle Ranto ja Petri Rosendahl Matematiikan laitos, Turun yliopisto Nykyisissä tietoliikennesovelluksissa käytetään paljon tekniikoita, jotka perustuvat

Lisätiedot

Digitaaliset fysiikan ja kemian kokeet. Tiina Tähkä Kemian jaoksen jäsen 2.2.2015

Digitaaliset fysiikan ja kemian kokeet. Tiina Tähkä Kemian jaoksen jäsen 2.2.2015 Digitaaliset fysiikan ja kemian kokeet Tiina Tähkä Kemian jaoksen jäsen 2.2.2015 DIGABI ylioppilastutkinnon sähköistämisprojekti Mitä tiedämme nyt fysiikan ja kemian kokeista? Koe suoritetaan suljetussa

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

Esimerkki 1: Kahviautomaatti.

Esimerkki 1: Kahviautomaatti. Esimerkki 1: Kahviautomaatti. ÄÄRELLISET AUTOAATIT JA SÄÄNNÖLLISET KIELET 2.1 Tilakaaviot ja tilataulut Tarkastellaan aluksi tietojenkäsittelyjärjestelmiä, joilla on vain äärellisen monta mahdollista tilaa.

Lisätiedot

Fortran 90/95. + sopii erityisesti numeriikkaan:

Fortran 90/95. + sopii erityisesti numeriikkaan: Fortran 90/95 + sopii erityisesti numeriikkaan: + optimoivat kääntäjät tehokas koodi + mukana valmiiksi paljon varusfunktioita + kompleksiluvut + taulukko-operaatiot + operaattorit laajennettavissa myös

Lisätiedot

Matematiikan viestintä (3 op)

Matematiikan viestintä (3 op) Matematiikan viestintä (3 op) Sisältö 1 Kurssin sisältö 1 2 TEX 1 3 L A TEX 2 4 L A TEX-dokumentit 3 4.1 Dokumenttiluokat (documentclass)............... 3 4.2 Makropakkaukset (usepackage).................

Lisätiedot

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Lisätiedot

VINKKI: Katso Kentät Muistioon -painikkeella, mikä on taulukon nimen oikea kirjoitusasu.

VINKKI: Katso Kentät Muistioon -painikkeella, mikä on taulukon nimen oikea kirjoitusasu. RATKAISUJA PULMAILMOITUKSIIN ASTERIOHJELMIEN SQLKYSELYISSÄ Virhe kyselyssä: Microsoft Jet tietokantamoduuli ei löydä syötetaulukkoa tai kyselyä Laskut. Varmista, että se on luotu ja että kirjoitit nimen

Lisätiedot

Osa VI. Viisauden hippusia

Osa VI. Viisauden hippusia Osa VI Viisauden hippusia Sisällys 17 Usein kysyttyjä kysymyksiä & yleisimpiä virheitä 18 Ulkoasun viilaaminen 19 Sekalaisia vinkkejä 20 Loppusanat Usein kysyttyjä kysymyksiä & yleisimpiä virheitä Esipuhe

Lisätiedot

Vektorilla on suunta ja suuruus. Suunta kertoo minne päin ja suuruus kuinka paljon. Se on siinä.

Vektorilla on suunta ja suuruus. Suunta kertoo minne päin ja suuruus kuinka paljon. Se on siinä. Koska varsinkin toistensa suhteen liikkuvien kappaleiden liikkeen esittäminen suorastaan houkuttelee käyttämään vektoreita, mutta koska ne eivät kaikille ehkä ole kuitenkaan niin tuttuja kuin ansaitsisivat,

Lisätiedot

Lausuminen kertoo sanojen määrän

Lausuminen kertoo sanojen määrän Sivu 1/5 Lausuminen kertoo sanojen määrän Monta osaa Miten selvä ero Rinnasteiset ilmaisut Yhdyssana on ilmaisu, jossa yksi sana sisältää osinaan kaksi sanaa tai enemmän. Puhutussa kielessä tätä vastaa

Lisätiedot