Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1
|
|
- Mauno Juuso Väänänen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Koesuunnittelu Latinalaiset neliöt TKK (c) Ilkka Mellin (2005) 1
2 Latinalaiset neliöt Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman analysointi Laskutoimitusten suorittaminen latinalaisten neliöiden analyysissa TKK (c) Ilkka Mellin (2005) 2
3 Latinalaiset neliöt: Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan, kun asetelmassa on mukana kaksi kiusatekijää, joiden vaikutukset sekoittuvat kiinnostuksen kohteena olevan tekijän vaikutukseen? Esitiedot: Yksisuuntainen varianssianalyysi Kaksisuuntainen varianssianalyysi Useampisuuntainen varianssianalyysi TKK (c) Ilkka Mellin (2005) 3
4 Latinalaiset neliöt Avainsanat Aritmeettinen keskiarvo Estimointi F-testi Interaktio Jäännösneliösumma Kiusatekijä Kokonaisvaihtelu Kolmisuuntainen varianssianalyysi Kontrollointi Latinalainen neliö Käsittely Käsittelyvaikutus Neliösumma Odotusarvo Rivivaikutus Ryhmä Ryhmäkeskiarvo Sarakevaikutus Sekoittuminen Taso Testaus Vapausaste Varianssi Varianssianalyysihajotelma Varianssianalyysitaulukko Vaste Yhdysvaikutus Yleiskeskiarvo TKK (c) Ilkka Mellin (2005) 4
5 Latinalaiset neliöt >> Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman analysointi Laskutoimitusten suorittaminen latinalaisten neliöiden analyysissa TKK (c) Ilkka Mellin (2005) 5
6 Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelma 1/5 Oletetaan, että kokeen tavoitteena on verrata, miten käsittelyt A, B, C, ( kpl) vaikuttavat kiinnostuksen kohteena olevan vastemuuttujan y keskimääräisiin arvoihin. Asetelmassa on kuitenkin mukana kaksi kiusatekijää R ja C, joiden vaikutus saattaa sekoittua käsittelyiden A, B, C, vaikutukseen ja saattaa jopa peittää käsittelyiden vaikutuksen alleen. Jos kiusatekijöiden R ja C vaikutusta ei pystytä kontrolloimaan, käsittelyiden vaikutuksista saatetaan tehdä täysin virheellisiä johtopäätöksiä. TKK (c) Ilkka Mellin (2005) 6
7 Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelma 2/5 Kiusatekijöiden R ja C vaikutusta voidaan kontrolloida, jos voimme tehdä seuraavan oletuksen: Tutkimuksen kohteena oleva perusjoukko voidaan jakaa kiusatekijöiden R ja C tasojen suhteen homogeenisiin ryhmiin. Ryhmiä kutsutaan koesuunnittelussa lohkoiksi ja tavoitteena on estää lohkovaikutuksen sekoittuminen käsittelyiden vaikutukseen. TKK (c) Ilkka Mellin (2005) 7
8 Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelma 3/5 Valitaan kiusatekijälle Rtasot R 1, R 2,, R ja kiusatekijälle C tasot C 1, C 2,, C jolloin perusjoukko voidaan jakaa = 2 lohkoon. TKK (c) Ilkka Mellin (2005) 8
9 Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelma 4/5 Latinalaisten neliöiden koeasetelmassa havainnot kerätään seuraavalla tavalla: (i) Olkoon vertailtavia käsittelyitä kpl: A, B, C, ( kpl) (ii) Jaetaan tutkimuksen kohteet = 2 lohkoon kiusatekijöille R ja C valittujen tasojen suhteen. (iii) Kohdistetaan jokaisessa lohkossa yksi käsittelyistä satunnaisesti yhteen tutkimuksen kohteeseen niin, että käsittelyitä vastaavat kirjaimet A, B, C, ( kpl) muodostavat ns. latinalaisen neliön. TKK (c) Ilkka Mellin (2005) 9
10 Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelma 5/5 Satunnaistaminen voidaan tehdä niin, että kaikkien mahdollisten latinalaisten neliöiden joukosta arvotaan yksi neliö, jonka kirjainten järjestys määrää käsittelyiden A, B, C, ( kpl) soveltamisjärjestyksen. Huomautus: Latinalaisten neliöiden koeasetelmassa satunnaistamista on rajoitettu siinä mielessä, että kirjainten A, B, C ( kpl) on aina muodostettava latinalainen neliö. TKK (c) Ilkka Mellin (2005) 10
11 Latinalaisten neliöiden koeasetelma ja sen malli Latinalaiset neliöt -matriisi on latinalainen neliö, jos sen alkioina ovat kirjaimet A, B, C, ( kpl) ja jokainen kirjain esiintyy täsmälleen kerran matriisin jokaisella rivillä ja sarakkeella. Huomautus: Samankokoisia latinalaisia neliöitä on useita kappaleita; ks. seuraavaa kalvoa. TKK (c) Ilkka Mellin (2005) 11
12 Latinalaisten neliöiden koeasetelma ja sen malli Latinalaiset neliöt: Lukumäärä -neliöiden lukumäärä, kun = 1, 2, 3, 4, 5, 6, 7: Standardineliöiden lukumäärä ,408 16,942,080 K Neliöiden kokonaislukumäärä , ,851,200 61,479,419,904,000!( 1)! K Standardineliöksi kutsutaan latinalaista neliötä, jonka 1. rivin ja 1. sarakkeen kirjaimet ovat aakkosjärjestyksessä TKK (c) Ilkka Mellin (2005) 12
13 Latinalaisten neliöiden koeasetelma ja sen malli Latinalaiset neliöt: Esimerkkejä Esimerkkejä latinalaisista neliöistä, kun = 1, 2, 3, 4, 5, 6: A DC E BF A D B E C A B D C B A E C F D ABC D A C B E B A B C A D C E D F A B BC A C B E D A A B C D B A D C F B E A C A B B E A C D D A C B F B A D C E E C D A B E F B A D C Standardineliö TKK (c) Ilkka Mellin (2005) 13
14 Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman nollahypoteesi Käsittelyiden vaikutusta koskeva nollahypoteesi on muotoa H A : Ei käsittelyvaikutusta Latinalaisten neliöiden koeasetelman analyysi tarkoittaa nollahypoteesin H A testaamista, kun asetelmassa on mukana kaksi kiusatekijää R ja C. TKK (c) Ilkka Mellin (2005) 14
15 Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman havainnot ja niiden tilastollinen malli Olkoon y ijk = vastemuuttujan arvo, kun i. rivillä ja j. sarakkeessa on käytetty käsittelyä k i = 1, 2,,, j = 1, 2,,, k = 1, 2,, Käytetystä otantamenetelmästä seuraa, että havainnot y ijk voidaan olettaa riippumattomiksi (ja siten myös korreloimattomiksi) satunnaismuuttujiksi. Oletetaan, että havainnot y ijk ovat normaalijakautuneita: y ijk N(µ ijk, σ 2 ) i = 1, 2,,, j = 1, 2,,, k = 1, 2,, TKK (c) Ilkka Mellin (2005) 15
16 Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman tilastollisen mallin parametrointi 1/3 Latinalaisten neliöiden koeasetelman tilastollinen malli voidaan parametroida seuraavalla tavalla: y ijk = µ + α i + β j + τ k + ε ijk i= 1, 2,,, j = 1, 2,,, k = 1, 2,, jossa jäännöstermit ε ijk ovat riippumattomia ja normaalijakautuneita: ε ijk 2 N(0, σ ) i= 1,2,,, j = 1,2,,, k = 1,2,, TKK (c) Ilkka Mellin (2005) 16
17 Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman tilastollisen mallin parametrointi 2/3 Ei-satunnaiset vakiot µ, α i, β j, τ k i = 1, 2,,, j = 1, 2,,, k = 1, 2,, ja jäännösvarianssi σ 2 ovat latinalaisten neliöiden koeasetelman tilastollisen mallin parametreja. Mallin parametrien on toteutettava seuraavat ehdot: α = β = τ = i j k i= 1 j= 1 k= 1 0 TKK (c) Ilkka Mellin (2005) 17
18 Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman tilastollisen mallin parametrointi 3/3 Mallia koskevista oletuksista seuraa, että ja E( ) y ijk = µ + α i + β j + τ k D( ) i= 1, 2,,, j = 1, 2,,, k = 1, 2,, 2 2 y ijk = σ i= 1, 2,,, j = 1, 2,,, k = 1, 2,, TKK (c) Ilkka Mellin (2005) 18
19 Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman mallin parametrit ja mallia koskeva nollahypoteesi Latinalaisten neliöiden koeasetelman nollahypoteesi H A voidaan ilmaista mallin parametrien avulla seuraavassa muodossa: H A : τ 1 = τ 2 = = τ k = 0 TKK (c) Ilkka Mellin (2005) 19
20 Latinalaiset neliöt Latinalaisten neliöiden koeasetelma ja sen malli >> Latinalaisten neliöiden koeasetelman analysointi Laskutoimitusten suorittaminen latinalaisten neliöiden analyysissa TKK (c) Ilkka Mellin (2005) 20
21 Latinalaisten neliöiden koeasetelman analysointi Havainnot Olkoon y ijk = vastemuuttujan arvo, kun i. rivillä ja j. sarakkeessa on käytetty käsittelyä k, i = 1, 2,,, j = 1, 2,,, k = 1, 2,, TKK (c) Ilkka Mellin (2005) 21
22 Latinalaisten neliöiden koeasetelman analysointi Rivikeskiarvot, sarakekeksiarvot ja käsittelykeskiarvot Määritellään havaintoarvojen y ijk rivikeskiarvot: 1 y = y, i= 1,2,, iii Määritellään havaintoarvojen y ijk sarakekeskiarvot: Määritellään havaintoarvojen y ijk käsittelykeskiarvot: 1 y = y, k = 1,2,, ii k j = 1 k = 1 i = 1 k = 1 i = 1 j = 1 ijk 1 y = y, j = 1,2,, i ji ijk ijk TKK (c) Ilkka Mellin (2005) 22
23 Latinalaisten neliöiden koeasetelman analysointi Kokonaiskeskiarvo Jos havainnot yhdistetään yhdeksi otokseksi, yhdistetyn otoksen havaintoarvojen yleis- eli kokonaiskeskiarvo on jossa y 1 I J K = iii 2 i = 1 j = 1 k = 1 y ijk = 2 = N on yhdistetyn otoksen havaintojen kokonaislukumäärä. TKK (c) Ilkka Mellin (2005) 23
24 Latinalaisten neliöiden koeasetelman analysointi oikkeamat keskiarvoista Kirjoitetaan identiteetti y y = ( y y ) + ( y y ) + ( y y ) ijk iii iii iii i ji iii iik iii + ( yijk yiii yi ji yiik + 2 yiii) Latinalaisten neliöiden koeasetelman perustuvat näiden sulkulausekkeilla esitettyjen poikkeamien neliösummille. TKK (c) Ilkka Mellin (2005) 24
25 Latinalaisten neliöiden koeasetelman analysointi Kokonaisneliösumma Määritellään havaintoarvojen kokonaisvaihtelua kuvaava kokonaisneliösumma: Jos kaikki havainnot yhdistetään yhdeksi otokseksi, saadun yhdistetyn otoksen varianssi on jossa SST = ( y y ) s 2 y = i= 1 j= 1 k= 1 1 SST 2 1 ijk = 2 = N on yhdistetyn otoksen havaintojen kokonaislukumäärä. iii 2 TKK (c) Ilkka Mellin (2005) 25
26 Latinalaisten neliöiden koeasetelman analysointi Rivivaikutuksen, sarakevaikutuksen ja käsittelyvaikutuksen neliösummat Määritellään rivivaikutusta kuvaava neliösumma: iii iii i= 1 SSR = ( y y ) 2 Määritellään sarakevaikutusta kuvaava neliösumma: i ji j= 1 SSC = ( y y ) iii 2 Määritellään käsittelyvaikutusta kuvaava neliösumma: iik k = 1 SSA = ( y y ) iii 2 TKK (c) Ilkka Mellin (2005) 26
27 Latinalaisten neliöiden koeasetelman analysointi Jäännösneliösumma Määritellään jäännösneliösumma: I J K ijk iii i ji iik iii i= 1 j= 1 k= 1 SSE = ( y y y y + 2 y ) 2 TKK (c) Ilkka Mellin (2005) 27
28 Latinalaisten neliöiden koeasetelman analysointi Varianssianalyysihajotelma Neliösummat SST, SSR, SSC, SSA, SSE toteuttavat varianssianalyysihajotelman SST = SSR + SSC + SSA + SSE ja neliösummiin liittyvät vapausasteiden lukumäärät toteuttavat yhtälön 2 1 = ( 1) + ( 1) + ( 1) + ( 2)( 1) TKK (c) Ilkka Mellin (2005) 28
29 Latinalaisten neliöiden koeasetelman analysointi Testi käsittelyvaikutukselle Määritellään F-testisuure ( 2)( 1) SSA FA = 1 SSE jossa SSA on käsittelyvaikutusta kuvaava neliösumma ja SSE on jäännösvaihtelua kuvaava neliösumma. Jos nollahypoteesi H A : Ei käsittelyvaikutusta pätee, niin F F(( 1),( 2)( 1)) A Suuret testisuureen F A arvot johtavat nollahypoteesin hylkäämiseen. TKK (c) Ilkka Mellin (2005) 29
30 Latinalaisten neliöiden koeasetelman analysointi Rivivaikutus Olkoon ( 2)( 1) SSR FR = 1 SSE jossa SSR on rivivaikutusta kuvaava neliösumma ja SSE on jäännösvaihtelua kuvaava neliösumma. Suureen F R suurten arvojen tulkitaan tavallisesti indikoivan sitä, että lohkoihin jako on ollut tarpeellinen. TKK (c) Ilkka Mellin (2005) 30
31 Latinalaisten neliöiden koeasetelman analysointi Sarakevaikutus Olkoon ( 2)( 1) SSC FC = 1 SSE jossa SSC on rivivaikutusta kuvaava neliösumma ja SSE on jäännösvaihtelua kuvaava neliösumma. Suureen F C suurten arvojen tulkitaan tavallisesti indikoivan sitä, että lohkoihin jako on ollut tarpeellinen. TKK (c) Ilkka Mellin (2005) 31
32 Latinalaisten neliöiden koeasetelman analysointi Varianssianalyysitaulukko 1/2 Varianssianalyysin tulokset esitetään tavallisesti varianssianalyysitaulukon muodossa: Vaihtelun lähde SS df MS F A SSA 1 MSA = SSA/df F A = MSA/MSE R SSR 1 MSR = SSR/df C SSC 1 MSC = SSC/df Jäännösvaihtelu SSE ( 2)( 1) MSE = SSE/df Kokonaisvaihtelu SST 2 1 TKK (c) Ilkka Mellin (2005) 32
33 Latinalaisten neliöiden koeasetelman analysointi Varianssianalyysitaulukko 2/2 Varianssianalyysitaulukon neliösummat toteuttavat yhtälön SST = SSA + SSR + SSC + SSE Yhtälö on varianssianalyysihajotelma. Varianssianalyysitaulukon neliösummien vapausasteet toteuttavat yhtälön 2 1 = ( 1) + ( 1) + ( 1) + ( 2)( 1) TKK (c) Ilkka Mellin (2005) 33
34 Latinalaisten neliöiden koeasetelman analysointi Latinalaisten neliöiden koeasetelma ja kolmisuuntainen varianssianalyysi Latinalaisten neliöiden koeasetelman analyysiin voidaan soveltaa kolmisuuntaista varianssianalyysia, jos otetaan huomioon seuraavat seikat: (i) Kolmisuuntaisen varianssianalyysin malliin ei saa liittää interaktiotermejä, koska latinalaisten neliöiden koeasetelmassa kiusatekijöiden ja kiinnostuksen kohteena olevan tekijän mahdolliset interaktiot sekoittuvat jäännösvaihteluun. (ii) Kolmisuuntaisen varianssianalyysin tuloksia modifioidaan sopivalla tavalla (sivuutamme tässä yksityiskohdat). TKK (c) Ilkka Mellin (2005) 34
35 Latinalaiset neliöt Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman analysointi >> Laskutoimitusten suorittaminen latinalaisten neliöiden analyysissa TKK (c) Ilkka Mellin (2005) 35
36 Laskutoimitusten suorittaminen latinalaisten neliöiden analyysissa Havainnot Olkoon y ijk = vastemuuttujan arvo, kun i. rivillä ja j. sarakkeessa on käytetty käsittelyä k, i = 1, 2,,, j = 1, 2,,, k = 1, 2,, TKK (c) Ilkka Mellin (2005) 36
37 Laskutoimitusten suorittaminen latinalaisten neliöiden analyysissa Kokonaissumma Määritellään havaintoarvojen y ijk kokonaissumma: T iii = i= 1 j= 1 k= 1 y ijk TKK (c) Ilkka Mellin (2005) 37
38 Laskutoimitusten suorittaminen latinalaisten neliöiden analyysissa Rivisummat, sarakesummat ja käsittelysummat Määritellään havaintoarvojen y ijk rivisummat: T = y, i= 1,2,, iii j= 1 k= 1 ijk Määritellään havaintoarvojen y ijk sarakesummat: T = y, j = 1,2,, i ji i= 1 k= 1 ijk Määritellään havaintoarvojen y ijk käsittelysummat: T = y, k = 1,2,, ii k i= 1 j= 1 ijk TKK (c) Ilkka Mellin (2005) 38
39 Laskutoimitusten suorittaminen latinalaisten neliöiden analyysissa Havaintoarvojen neliöiden summa Määritellään havaintoarvojen y ijk neliöiden summa: i= 1 j= 1 k= 1 y 2 ijk TKK (c) Ilkka Mellin (2005) 39
40 Laskutoimitusten suorittaminen latinalaisten neliöiden analyysissa Kokonaisvarianssin laskeminen Havaintoarvojen y ijk kokonaisvarianssi saadaan kaavalla s = 2 iii yijk T 2 iii 1 I= 1 j= 1 j= 1 TKK (c) Ilkka Mellin (2005) 40
41 Laskutoimitusten suorittaminen latinalaisten neliöiden analyysissa Kokonaisneliösumman laskeminen Kokonaisneliösumma SST voidaan laskea kaavalla 1 SST = y T i= 1 j= 1 k= ijk 2 iii TKK (c) Ilkka Mellin (2005) 41
42 Laskutoimitusten suorittaminen latinalaisten neliöiden analyysissa Rivivaikutuksen, sarakevaikutuksen ja käsittelyvaikutusten neliösummien laskeminen Rivivaikutusta kuvaava neliösumma saadaan kaavalla 1 1 SSR = T T 2 2 iii 2 iii i= 1 Sarakevaikutusta kuvaava neliösumma saadaan kaavalla 1 1 SSC = T T 2 2 i ji 2 iii j= 1 Käsittelyvaikutusta kuvaava neliösumma saadaan kaavalla SSA = Tiik T 2 iii k = 1 TKK (c) Ilkka Mellin (2005) 42
43 Laskutoimitusten suorittaminen latinalaisten neliöiden analyysissa Jäännösneliösumman laskeminen Jäännösneliösumma SSE saadaan varianssianalyysihajotelman nojalla kaavalla SSE = SST SSA SSR SSC TKK (c) Ilkka Mellin (2005) 43
Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt
TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,
Lohkoasetelmat. Kuusinen/Heliövaara 1
Lohkoasetelmat Kuusinen/Heliövaara 1 Kiusatekijä Kaikissa kokeissa kokeen tuloksiin voi vaikuttaa vaihtelu, joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla on mahdollisesti vaikutusta vastemuuttujan
Lohkoasetelmat. Heliövaara 1
Lohkoasetelmat Heliövaara 1 Kiusatekijä Kaikissa kokeissa, kokeen tuloksiin voi vaikuttaa vaihtelu joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla mahdollisesti on vaikutusta vastemuuttujan arvoon,
Lohkoasetelmat. Vilkkumaa / Kuusinen 1
Lohkoasetelmat Vilkkumaa / Kuusinen 1 Motivointi 1/3 Kaksisuuntaisella varianssianalyysilla voidaan tutkia kahden tekijän A ja B vaikutusta sekä niiden yhdysvaikutusta tutkimuksen kohteeseen Kaksisuuntaisessa
Hierarkkiset koeasetelmat. Heliövaara 1
Hierarkkiset koeasetelmat Heliövaara 1 Hierarkkiset koeasetelmat Kaksiasteista hierarkkista koeasetelmaa käytetään tarkasteltaessa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tekijän
2 2 -faktorikokeen määritelmä
TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tai useamman tekijän vaikutusta
Johdatus tilastotieteeseen Kaksisuuntainen varianssianalyysi. TKK (c) Ilkka Mellin (2005) 1
ohdatus tilastotieteeseen Kaksisuuntainen varianssianalyysi TKK (c) Ilkka Mellin (2005) Kaksisuuntainen varianssianalyysi Varianssianalyysi: ohdanto Kaksisuuntainen varianssianalyysi ja sen suorittaminen
Koesuunnittelu 2 k -faktorikokeet. TKK (c) Ilkka Mellin (2005) 1
Koesuunnittelu 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 k -faktorikokeet 2 2 -faktorikokeet 2 3 -faktorikokeet 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 2 k -faktorikokeet: Mitä opimme?
Kaksisuuntainen varianssianalyysi. Heliövaara 1
Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän
Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1
Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu
Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1
Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n
Altistusaika 1 kk 2 kk 3 kk 1.35 1.53 1.38 1.35 1.63 1.51 1.60 1.40 2.18 1.77 1.66 1.98 1.73 1.76 1.60 1.72
Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut iheet: vainsanat: Kaksisuuntainen varianssianalsi Lohkoasetelmat Latinalaiset neliöt ritmeettinen
Useampisuuntainen varianssianalyysi. Useampisuuntainen varianssianalyysi. Useampisuuntainen varianssianalyysi
(c) lkka Mellin (005) Useampisuuntainen varianssianalsi ohdatus tilastotieteeseen Useampisuuntainen varianssianalsi (c) lkka Mellin (005) Useampisuuntainen varianssianalsi: Mitä opimme? arkastelemme tässä
Testejä suhdeasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman
2 k -faktorikokeet. Vilkkumaa / Kuusinen 1
2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta
Kaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa:
Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalsi Aritmeettinen keskiarvo, Estimointi, F-testi,
Vastepintamenetelmä. Heliövaara 1
Vastepintamenetelmä Kurssipalautteen antamisesta saa hyvityksenä yhden tenttipisteen. Palautelomakkeeseen tulee lähiaikoina linkki kurssin kotisivuille. Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä
Osafaktorikokeet. Kurssipalautetta voi antaa Oodissa Kuusinen/Heliövaara 1
Osafaktorikokeet Kurssipalautetta voi antaa Oodissa 27.4.-25.5. Kuusinen/Heliövaara 1 Osafaktorikokeet Kun faktorien määrä 2 k -faktorikokeessa kasvaa, tarvittavien havaintojen määrä voi ylittää kokeen
Testit järjestysasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten
Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset
Kertausluento. Vilkkumaa / Kuusinen 1
Kertausluento Vilkkumaa / Kuusinen 1 Kokeellinen tutkimus Kokeellisessa tutkimuksessa on tavoitteena selvittää, miten erilaiset käsittelyt vaikuttavat tutkimuksen kohteisiin - Esim. miten lämpötila ja
Harjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi
Koesuunnittelu Vastepintamenetelmä. TKK (c) Ilkka Mellin (2005) 1
Koesuunnittelu Vastepintamenetelmä TKK (c) Ilkka Mellin (2005) 1 Vastepintamenetelmä Vastepintamenetelmä: Johdanto 2 k -faktorikokeet Vastefunktion kaarevuuden testaaminen 1. asteen vastepintamallin varianssianalyysihajotelma
Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin
Vastepintamenetelmä. Kuusinen/Heliövaara 1
Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,
Toimittaja 1 2 3 Erä 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 0 1 0 2 2 1 3 1 3 0 4 2 4 0 3 4 0 1 2 0 4 1 0 3 2 2 2 0 2 2 1
Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Hierarkkiset koeasetelmat -faktorikokeet Vastepintamenetelmä Aritmeettinen keskiarvo, Estimaatti, Estimaattori, -testi, aktorikokeet,
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4
TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit järjestysasteikollisille muuttujille Järjestysasteikollisten muuttujien testit Merkkitesti Wilcoxonin
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.04 Tilastollisen analsin perusteet, kevät 007. luento: Kaksisuuntainen varianssianalsi Kai Virtanen Kaksisuuntaisen varianssianalsin perusasetelma Jaetaan perusjoukko rhmiin kahden tekän A ja B suhteen
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin
Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta
Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1
Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että
Testit laatueroasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten
Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle
Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)
χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut
Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai
Vastepintamenetelmä. Vilkkumaa / Kuusinen 1
Vastepintamenetelmä Vilkkumaa / Kuusinen 1 Motivointi Varianssianalyysissa tutkitaan tekijöiden vaikutusta vasteeseen siten, että tekijöiden tasot on ennalta valittu. - Esim. tutkitaan kemiallisen prosessin
Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit
Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli
Salkin poliorokotekoe Ryhmän koko Sairastuvuus (per 100000) Hoitoryhmä 200000 28 Vertailuryhmä 200000 71 Ei saanut rokottaa 350000 46
TKK (c) Ilkka Mellin (2005) 1 suunnittelu: Johdanto Johdattelevia esimerkkejä suunnittelu ja tilastolliset mallit Johdanto TKK (c) Ilkka Mellin (2005) 2 suunnittelu: Johdanto Johdattelevia esimerkkejä
Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
Regressioanalyysi. Kuusinen/Heliövaara 1
Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin
Regressioanalyysi. Vilkkumaa / Kuusinen 1
Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen
Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit
Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja
Hypoteesin testaus Alkeet
Hypoteesin testaus Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Johdanto Kokeellinen tutkimus: Varmennetaan teoreettista olettamusta fysikaalisen systeemin käyttäytymisestä
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.04 Tilastollisen analsin perusteet, kevät 007. luento: Kaksisuuntainen varianssianalsi Kai Virtanen Kaksisuuntaisen varianssianalsin perusasetelma aetaan perusoukko rhmiin kahden tekän A a B suhteen
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen
Tilastollisten aineistojen kerääminen ja mittaaminen
Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2007) 1 ja mittaaminen >> Tilastollisten aineistojen kerääminen Mittaaminen
1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yksisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Kokonaiskeskiarvo,
VARIANSSIANALYYSI ANALYSIS OF VARIANCE
VARIANSSIANALYYSI ANALYSIS OF VARIANCE 1 Suomalaisten aikuisten pituusjakauma:.8.7.6.5.4.3.2.1 14 15 16 17 18 19 2 21 Jakauma ei ole normaali, sen olettaminen sellaiseksi johtaa virheellisiin päätelmiin.
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Käytännön järjestelyt Luennot: Luennot maanantaisin (sali E) ja keskiviikkoisin (sali U4) klo 10-12 Luennoitsija: (lauri.viitasaari@aalto.fi)
ARVIOINTIPERIAATTEET
PSYKOLOGIAN YHTEISVALINNAN VALINTAKOE 2012 ARVIOINTIPERIAATTEET Copyright Helsingin yliopisto, käyttäytymistieteiden laitos, Materiaalin luvaton kopiointi kielletty. TEHTÄVÄ 1. (max. 34.5 pistettä) 1 a.i)
Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Tilastolliset testit TKK (c) Ilkka Mellin (2005) 1 Tilastolliset testit Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet testauksessa
Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Yleinen lineaarinen malli TKK (c) Ilkka Mellin (2007) 1 Yleinen lineaarinen malli >> Usean selittäjän lineaarinen regressiomalli
Johdatus tilastotieteeseen Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Yleinen lineaarinen malli TKK (c) Ilkka Mellin (2004) 1 Yleinen lineaarinen malli Usean selittäjän lineaarinen regressiomalli Yleisen lineaarisen mallin matriisisesitys Yleisen
1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT
imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen
edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾
ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12
11. laskuharjoituskierros, vko 15, ratkaisut
11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman
Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan
17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Väliestimointi TKK (c) Ilkka Mellin (2007) 1 Väliestimointi >> Todennäköisyysjakaumien parametrien estimointi Luottamusväli
Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle
Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden
1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.
A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät
Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5
TKK (c) Ilkka Mellin (4) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (4) : Mitä opimme? 1/5 Tilastollisessa tutkimuksessa tutkimuksen kohteena olevasta perusjoukosta esitetään tavallisesti väitteitä
Yleistetyistä lineaarisista malleista
Yleistetyistä lineaarisista malleista Tilastotiede käytännön tutkimuksessa -kurssi, kesä 2001 Reijo Sund Klassinen lineaarinen malli y = Xb + e eli E(Y) = m, jossa m = Xb Satunnaiskomponentti: Y:n komponentit
Normaalijakaumasta johdettuja jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma
Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää
Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Väliestimointi TKK (c) Ilkka Mellin (2005) 1 Väliestimointi Todennäköisyysjakaumien parametrien estimointi Luottamusväli Normaalijakauman odotusarvon luottamusväli Normaalijakauman
Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1
Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus KE (2014) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet
Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1
Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia Heliövaara 1 Regressiokertoimien PNS-estimaattorit Määritellään havaintojen x j ja y j, j = 1, 2,...,n
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan
Testaa onko myrkkypitoisuus eri ryhmissä sama. RATK. Lasketaan kaikkien havaintoarvojen summa: k T i = = 486.
Mat-.103 Koesuunnittelu ja tilastolliset mallit Harjoitus 8, kevät 004 Esimerkkiratkaisut. 1. Myrkyllistä ainetta oli kaadettu jokeen, joka johtaa suurelle kalastusalueelle. Tie- ja vesirakennusinsinöörit
Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta
MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,
χ 2 -yhteensopivuustestissä käytetään χ 2 -testisuuretta χ = Mat Sovellettu todennäköisyyslasku A
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Estimointi, Havaittu frekvenssi, Heterogeenisuus,
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin
Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?
TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä
1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalyysi Bonferronin menetelmä, F-testi, Jäännösneliösumma, Kaksisuuntainen varianssianalyysi Kokonaiskeskiarvo,
031021P Tilastomatematiikka (5 op) kertausta 2. vk:een
031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11
10. laskuharjoituskierros, vko 14, ratkaisut
10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset
Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain
MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
Tilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa