on tavanomainen yhden selittäjän lineaarinen regressiomalli, jossa jäännöstermit ε i toteuttavat seuraavat oletukset:

Koko: px
Aloita esitys sivulta:

Download "on tavanomainen yhden selittäjän lineaarinen regressiomalli, jossa jäännöstermit ε i toteuttavat seuraavat oletukset:"

Transkriptio

1 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Ylee leaare mall Artmeette keskarvo, Estmot, F-jakauma, F-test, F-testsuure, Hajotakuvo, Hpotees, Jääöselösumma, Jääösterm, Jääösvahtelu, Kokoasvahtelu, Korrelaato, Kovarass, Krtte raja, Kulmakerro, Leaare regressomall, Luottamuskerro, Luottamustaso, Luottamusväl, Mallelösumma, Matrs, Nelösumma, Merktsevs taso, Nollahpotees, Otostuusluku, p-arvo, Pemmä elösumma meetelmä, Pstedagramm, Regressokerro, Regressosuora, Resduaal, Seltettävä muuttuja, Selttäjä, Selttävä muuttuja, Selts, Seltsaste, Sovte, Stadardpokkeama, t-jakauma, t-test, t-testsuure, Test, Testsuure, Vahtoehtoe hpotees, Varass, Varassaalshajotelma, Vrheterm Tehtävä 5.. Oletetaa, että β0 + β + ε,,,, o tavaomae hde selttäjä leaare regressomall, jossa jääöstermt ε toteuttavat seuraavat oletukset: () E( ε ) 0,,,, () Var( ε ) σ,,,, (3) ε, ε,, ε ovat korrelomattoma el Olkoo Cor( ε, ε j) 0, j s b s ( )( ) ( ) parametr β el regressosuora kulmakertome pemmä elösumma (PNS-) estmaattor ja olkoo seltettävä muuttuja havattuje arvoje artmeette keskarvo. Osota, että Cov( b, ) 0 Tehtävä 5.. Mtä opmme? Tehtävässä tarkastellaa regressosuora kulmakertome PNS-estmaattor stokastsa omasuuksa. Ilkka Mell (005) /3

2 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Tehtävä 5.. Ratkasu: Huomaa, että jääöstermejä ε koskevasta oletuksesta () seuraa, että E( ) E( β + β + ε ) 0 β + β + E( ε ) 0 β + β,,,, 0 Satuasmuuttuja odotusarvo muodostaa hde selttäjä leaarse regressomall rakeeosa. Merktää E( ) β + β µ,,,, 0 Jääöstermejä ε koskevsta oletukssta () ja (3) seuraa, että Cov(, j) E ( E( ))( j E( j)) E ( µ )( j µ j) E( εε ) j 0, j Cov( ε, ε j) σ, j Ste satuasmuuttujat (seltettävä muuttuja havatut arvot),,,, ovat korrelomattoma satuasmuuttuja. Todetaa seuraavaks, että satuasmuuttujat ja b vodaa esttää satuasmuuttuje (seltettävä muuttuja havattuje arvoje),,,, leaarkombaatoa. Artmeettse keskarvo ests seltettävä muuttuja havattuje arvoje,,,, leaarkombaatoa: u jossa paokertomet u,,,, ovat e-satuasa vakota. Ilkka Mell (005) /3

3 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Regressosuora kulmakertome b ests seltettävä muuttuja havattuje arvoje,,,, leaarkombaatoa: jossa paokertomet ( )( ) ( ) b ( ) ( ) ( ) v,,,, ( ) ovat e-satuasa vakota. Regressokerrota b koskevaa tulosta johdettaessa o kätett hväks stä, että koska v ( )( ) ( ) ( ) ( ) ( ) ( ) 0 ( ) ( ) 0 Kättäe hväks satuasmuuttuje ja b estsmuotoja satuasmuuttuje,,,, leaarkombaatoa ja odotusarvo-operaattor E( ) leaarsuutta ähdää, että ja jossa ss E( ) u E( ) u µ E( b) v E( ) v 0 µ µ E( ) β + β,,,, Ilkka Mell (005) 3/3

4 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Yllä estetstä seuraa, että Edellä todett, että [ ] Cov( b, ) E ( E( ))( b E( b)) E u uµ v vµ E u( µ ) v( µ ) E uv j( µ )( j µ j) j uv je ( µ )( j µ j) j uv E j ( E( ))( j E( j)) j j 0, j Cov(, j) σ, j uv Cov(, ) j j Ste seltettävä muuttuja havattuje arvoje artmeettse keskarvo ja regressokertome β PNS-estmaattor b kovarass o Cov( b, ) uvcov(, ) j σ uv Var( ) σ j j uv ( ) σ ( ) ( ) σ 0 0 ( ) Ilkka Mell (005) 4/3

5 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Tämä perustuu she, että edellä todett, että ( ) 0 Olemme ss todstaeet, että seltettävä muuttuja havattuje arvoje artmeette keskarvo ja regressokertome β PNS-estmaattor b ovat korrelomattoma satuasmuuttuja. Ilkka Mell (005) 5/3

6 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Tehtävä 5.. Tarkastellaa seuraavaa havatoaestoa: (a) (b) Prrä havatoaestosta pstedagramm (hajotakuvo). Sovta havatoaestoo hde selttäjä leaare regressomall β0 + β + ε,,,, pemmä elösumma meetelmää kättäe. (c) Muodosta 99 %: luottamusväl parametrlle β. (d) (e) (f) Testaa ollahpoteesa H 0 : β 0 t-testä kättäe, ku merktsevstasoa o 0.0 ja vahtoehtosea hpoteesa o H : β 0 Testaa ollahpoteesa H 0 : β 0 estmodu mall seltsasteesee R perustuvaa F-testä kättäe, ku merktsevstasoa o 0.0 ja vahtoehtosea hpoteesa o H : β 0 Vertaa kohte (c), (d) ja (e) tuloksa tossa. Oletamme, että mall toteuttaa s. stadardoletukset. Tehtävä 5.. Mtä opmme? Tehtävässä tarkastellaa hde selttäjä leaarse regressomall el regressosuora kulmakerrota koskevaa tlastollsta päättelä: () () Mte kulmakerro estmodaa PNS-meetelmällä? Mte kulmakertomelle kostruodaa luottamusväl? () Mte kulmakertome arvoa koskeva hpoteeseja testataa t-testllä ta F-testllä. Ilkka Mell (005) 6/3

7 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Tehtävä deaa o havaollstaa stä, mte luottamusväl, t-test ja F-test kättö regressosuora kulmakerrota koskevssa testessä johtavat samaa tuloksee, ku luottamustaso ja teste merktsevstasot valtaa sopvalla tavalla. Yhde selttäjä leaare regressomall lee muoto o jossa β0 + β + ε,,,, seltettävä muuttuja satuae ja havattu arvo havatokskössä selttäjä (selttävä muuttuja) e-satuae ja havattu arvo havatokskössä ε jääös- el vrheterm satuae ja e-havattu arvo havatokskössä β 0 e-satuae ja tutemato vako (vakoselttäjä regressokerro) β selttäjä e-satuae ja tutemato regressokerro Mall jääöstermstä tehdää seuraavat stokastset oletukset: () ε, ε,, ε ovat rppumattoma () ε σ N(0, ),,,, Jos mall selttäjä arvot ovat satuasa, korvataa jääöstermä ε koskeva oletus () llä estetssä s. stadardoletuksssa seuraavalla oletuksella: () ε σ N(0, ),,,, Oletus () tarkottaa, että satuasmuuttuja ε ehdolle jakauma ehdolla o ormaale. Mall β0 + β + ε,,,, regressokertome β 0 ja β pemmä elösumma (PNS-) estmaattort saadaa kaavolla b b 0 s s b r s s Regressokertome estmaattorede kaavossa ja Ilkka Mell (005) 7/3

8 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset s s ( ) ( s ( )( ) r s ss ) Jos regressokertomet joudutaa laskemaa käs ta laskmella, laskutomtukset kaattaa järjestää seuraava tauluko muotoo: ˆ e e ˆ e e ˆ e e # # # # # # # # # ˆ e e Sum e e Huomaa, että samaa taulukkoo kaattaa laskea mös estmodu mall sovtteet resduaalt e (ks. määrtelmä alla) sekä resduaale elösumma. Artmeettset keskarvot ja, otosvarasst s ja s sekä otoskovarass s saadaa llä oleva tauluko sarakesummsta kaavolla s s s josta regressokertome estmaatt saadaa ss lasketuks kaavolla s b s b b 0 ˆ ja Ilkka Mell (005) 8/3

9 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Estmodu mall sovtteet saadaa kaavalla ˆ b + b,,,, 0 ja resduaalt kaavalla e ˆ b b,,,, 0 Estmodu mall seltsaste vodaa laskea kaavolla jossa R SSE SSM [Cor(, ˆ)] SST SST SSE e o estmodu mall jääöselösumma (resduaale elösumma) SST ( ) ( ) s o seltettävä muuttuja arvoje vahtelua kuvaava kokoaselösumma ja SSM SST SSE ( ˆ ) o estmodu mall mallelösumma. Seltsastee määrtelmä perustuu she, että (koska mallssa o mukaa vakoterm) aa pätee s. varassaalshajotelma SST SSM + SSE jossa mallelösumma SSM kuvaa stä osaa seltettävä muuttuja arvoje kokoasvahtelusta, joka mall o selttät ja jääöselösumma SSM kuvaa stä osaa seltettävä muuttuja arvoje kokoasvahtelusta, jota mall e ole selttät. Huomaa, että hde selttäjä leaarse regressomall tapauksessa pätee R r Vodaa osottaa, että s SSE e o jääösvarass σ harhato estmaattor. Ilkka Mell (005) 9/3

10 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Parametr β luottamusväl luottamustasolla ( α) o muotoa ± b ˆD( tα / b) jossa ± t α / ovat luottamustasoo ( α) lttvät luottamuskertomet ja e s SSE /( ) b ( ) s ( ) ( ) ˆD ( ) o regressokertome β PNS-estmaattor b varass harhato estmaattor. Luottamuskertomet ±t α / määrätää ste, että jossa Pr( t t ) α / α / Pr( t + t ) α / α / t t( ) Ste luottamuskertomet ± t α / toteuttavat htälö Pr( t t + t ) α / α / α Oletetaa, että haluamme testata ollahpoteesa H 0 : β 0 Test vodaa perustaa t-testsuureesee t b ˆD( b ) jossa D( ˆ b ) o määrtelt edellä. Jos ollahpotees H0 pätee, testsuure t oudattaa Studet t-jakaumaa vapausaste ( ): t H t( ) 0 Testsuuree t ormaalarvo (odotusarvo ollahpotees pätessä) 0. Ste tsesarvoltaa suuret testsuuree arvot johtavat ollahpotees hlkäämsee. Valtaa test merktsevstasoks α. Test hlkäsalue määrätää täsmällee samalasella tekkalla ku tavaomase ormaaljakauma odotusarvoa koskeva t-test htedessä pats, että t-jakauma vapausastede lukumäärä o tässä ( ). Ilkka Mell (005) 0/3

11 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Oletetaa, että vahtoehtoe hpotees o kakssuutae: H : β 0 Valtaa krttset rajat t α/ ja +t α/ ste, että jossa Pr( t t ) α / α / Pr( t + t ) α / α / t t( ) Valtaa test hlkäsalueeks (, t ) ( + t, + ) α / α / jollo test hväksmsalueea o suljettu väl [ t, + t α / α / ] Todeäköss, että testsuuree t arvo joutuu hlkäsalueelle ollahpotees pätessä o ss α, mkä merktsee stä, että hlkäsvrhee el I laj vrhee todeäköss testssä o α. Mös test p-arvo määrätää tavaomasee tapaa. Oletetaa, että vahtoehtoe hpotees o kakssuutae: H : β 0 Olkoo testsuuree t havattu arvo t *. Tällö test p-arvo o jossa p Pr( t > t ) t t( ) Todeäköss, että testsuure t saa ollahpotees pätessä (testsuuree ormaalarvoo ähde) pokkeuksellsempa arvoja ku t * o ss p. Test ollahpoteeslle H 0 : β 0 vodaa hde selttäjä regressomall tapauksessa perustaa mös F-testsuureesee R SST SSE F ( ) ( ) R SSE Jos ollahpotees H 0 pätee, testsuure F oudattaa Fsher F-jakaumaa vapausaste ja ( ): F H F(, ) 0 Testsuuree F ormaalarvo (odotusarvo ollahpotees pätessä) 0. Ste tsesarvoltaa suuret testsuuree arvot johtavat ollahpotees hlkäämsee. Ilkka Mell (005) /3

12 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Oletetaa, että haluamme testata ollahpoteesa H 0 : β 0 kakssuutasta vahtoehtosta hpoteesa H : β 0 vastaa kättäe samaa merktsevstasoa α. Tällö llä estett t-test ja F-test ovat tässä hde selttäjä leaarse regressomall tapauksessa ekvvaletteja el e hlkäävät ollahpotees H 0 täsmällee samossa tlatessa. Huomaa, että llä estett t- (ta F-) test, jossa merktsevstasoks o valttu α, o ekvvalett mös sellase testausmeettel kassa, jossa ollahpotees H 0 : β 0 hlätää, jos parametr β luottamustasoa ( α) vastaava luottamusväl e petä lukua olla. Tehtävä 5.. Ratkasu: (a) (b) Ecel-taulukko tehtävä havatoaestosta: Sovte Res Res Yht Ilkka Mell (005) /3

13 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Taulukosta saadaa: Ste s s s s b s b b Taulukkoo o laskettu mös estmodu mall sovtteet ja resduaalt ja de summat; esmerkks jollo ˆ e ˆ (c) Määrätää parametrlle β luottamusväl luottamustasolla Luottamustasoa 0.99 vastaavks luottamuskertomks ±t saadaa t-jakauma taulukosta ±3.355 Luottamuskertomet ±t ±3.355 toteuttavat ss htälöt ja Pr( t 3.355) Pr( t ) Pr( t ) 0.99 jossa t oudattaa t-jakaumaa vapausaste 0 8: t t(8) Ilkka Mell (005) 3/3

14 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Jääösvarass σ estmaatks saadaa s SSE e Ste PNS-estmaattor b varass estmaatks saadaa s ˆD ( b ) ( ) s (0 ) 99.8 jote regressokertome β PNS-estmaattor b keskvrheeks tulee ˆD( b ) Regressokertome β luottamustasoa 0.99 vastaava luottamusvälks saadaa ste b ± t ˆD( b) ± α / ± (0.8,0.960) (d) Olkoo ollahpoteesa H 0 : β 0 ja vahtoehtosea hpoteesa H : β 0 Valtaa merktsevstasoks α 0.0. t-testsuuree arvoks saadaa t b D( ˆ b ) jossa regressokertome β PNS-estmaattor b keskvrhe kohdassa. ˆD( b ) o laskettu (c)- Merktsevstasoa α 0.0 vastaavks krttsks rajoks ±t saadaa t-jakauma taulukosta ±3.355 Krttset rajat ±t ±3.355 toteuttavat ss htälöt ja Pr( t 3.355) Pr( t ) Pr( t ) 0.99 jossa t oudattaa t-jakaumaa vapausaste 0 8: t t(8) Ilkka Mell (005) 4/3

15 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Test hlkäsalue o muotoa (, 3.355) ( , + ) jote test hväksmsalue o suljettu väl Koska [ 3.355, ] t > t-testsuuree arvo o joutuut hlkäsalueelle ja ollahpotees hlätää merktsevstasolla α 0.0. (e) Olkoo ollahpoteesa H 0 : β 0 ja vahtoehtosea hpoteesa H : β 0 Valtaa merktsevstasoks α 0.0. Määrätää F-testsuuree arvo kaavalla SST SSE F ( ) SSE Kokoaselösumma SST o SST s ( ) (0 ) ja jääöselösumma o Ste SSE e SST SSE F ( ) (0 ) SSE Merktsevstasoa α 0.0 vastaavaks krttsks rajaks F 0.0 saadaa F-jakauma taulukosta.59 Krtte raja F toteuttaa ss htälö ja Pr( F.59) 0.0 Pr( F.59) 0.99 jossa F oudattaa F-jakaumaa vapausaste ja 0 8: F F(,8) Ilkka Mell (005) 5/3

16 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Test hlkäsalue o muotoa (.59, ) jote test hväksmsalue o suljettu väl Koska [ 0,.59] t >.59 F-testsuuree arvo o joutuut hlkäsalueelle ja ollahpotees hlätää merktsevstasolla α 0.0. (f) Kohte (d) ja (e) testt ovat ekvvaletteja el e johtavat ollahpotees hlkäämsee täsmällee samossa tlatessa. Tämä ähdää stä, että testsuurede arvoje välllä pätee htälö t F ja lsäks teste krttste arvoje välllä pätee htälö t F Teoreettsea perustelua tälle havaolle o se lee tosasa, että t F ja käätäe jossa F t t t( df) F F(, df) Oletetaa t, että kohda (c) luottamusvälä kätetää testaamsee seuraavalla tavalla: Hlätää ollahpotees H 0 : β 0, jos parametr β luottamustasoa ( α) vastaava luottamusväl e petä lukua olla. Tämä meettel o ekvvalett kohte (d) ja (e) teste kassa, mkä ähdää helpost todeks stä, että luottamustasoo ( α) lttvät luottamuskertomet ovat samat ku merktsevstasoo α lttvät krttset rajat kohda (d) t-testssä. Huomaa, että ekvvaless vaat stä, että testessä kätetää vahtoehtosea hpoteesa kakssuutasta vahtoehtosta hpoteesa H : β 0 Ilkka Mell (005) 6/3

17 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Statst-ohjelma tuottaa tehtävä 5.. aestosta seuraava tulostukse: UNWEIGHTED LEAST SQUARES LINEAR REGRESSION OF Y PREDICTOR VARIABLES COEFFICIENT STD ERROR STUDENT'S T P CONSTANT X R-SQUARED ADJUSTED R-SQUARED RESID. MEAN SQUARE (MSE) STANDARD DEVIATION SOURCE DF SS MS F P REGRESSION RESIDUAL TOTAL CASES INCLUDED 0 MISSING CASES 0 Ilkka Mell (005) 7/3

18 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Tehtävä 5.3. Tarkastellaa harjotustehtävä 4.4. aestoa. Aesto ol saatu tutkmuksesta, jossa kästelt eerga kulutukse ja kottaloude tulotaso välstä htettä. Seuraavassa taulukossa o aettu kottaloude tulotaso muuttujaa (kskkö: 000 $ per vuos) ja eerga kulutus muuttujaa (kskkö: 0 8 Btu per vuos): Eerga kulutus Kottaloude tulotaso Tarkastellaa hde selttäjä leaare regressomall regressokertome estmota matrskaavo, ku seltettävää muuttuja o eerga kulutus ( ) ja selttäjä o tulotaso ( ) ja vakoterm. (a) Aa matrst ja X. (b) (c) Laske X X. Laske X. (d) Laske (X X). (e) Laske regressokertome β 0 ja β PNS-estmaatt matrsalgebra avulla. Tehtävä 5.3. Mtä opmme? Tehtävässä tarkastellaa leaarse regressomall ja mall regressokertome muodostama vektor PNS-estmaattor matrsestksä. Tarkastelussa kätetää esmerkkä hde selttäjä leaarsta regressomalla el regressosuoraa. Ilkka Mell (005) 8/3

19 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Ylee leaare mall β0 + β + β + $ + βpp + ε,,,, vodaa esttää matrse muodossa Xβ + ε jossa # o seltettävä muuttuja havattuje arvoje muodostama -matrs, X $ $ p p # # # # $ p o selttävä muuttuja havattuje arvoje j muodostama (p+)-matrs, β β0 β β # β p o regressokertome β muodostama (p+) -matrs ja ε ε ε # ε o jääösterme ε muodostama -matrs. Olettae, että matrs X sarakkeet ovat leaarsest rppumattoma el, jos r(x) p + vektor β PNS-estmaattor b vodaa esttää matrse muodossa b ( XX ) X Ilkka Mell (005) 9/3

20 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Tämä vodaa perustella esmerkks seuraavalla tavalla: Krjotetaa es ( X( β + h))( X( β + h)) (( Xβ) Xh) (( Xβ) Xh) ( Xβ)( Xβ) hx ( Xβ) + hxxh ( Xβ )( Xβ) + h ( X + XXβ ) + hxxh Atamalla h 0 ähdää, että elösumma εε ( Xβ)( Xβ ) dervaatta o ( Xβ )( Xβ) ( X + XXβ ) h Merktää dervaatta ollaks, jollo saadaa matrsmuotoe ormaalhtälö X + XXβ 0 Tämä ormaalhtälö ratkasuks saadaa βˆ b ( XX ) X joka vastaa elösumma ε ε mmä. Tehtävä 5.3. Ratkasu: (a) X (b) XX Ilkka Mell (005) 0/3

21 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset (c) 46. X (d) Ste ( ) det( XX ) ( XX ) det( XX ) Huomaa, että hde selttäjä leaarse regressomall tapauksessa ( ) XX ) ( ) s det( (e) Kohdsta (c) ja (d) vektor β PNS-estmaattorks b saadaa ( ) b XX X Tulos o sama ku tehtävässä 4.4. kute tetst ptääk. Ilkka Mell (005) /3

22 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Huomaa, että lesest pätee jote ja b ( XX) X det( XX ) ( ) + b b ( ) s s ( ) + 0 ( ) ( ) + ( ) ( ) ( ) ( ) s s s b s s Ste olemme johtaeet tehtävässä 5.. aetut kaavat hde selttäjä leaarse mall β0 + β + ε,,,, regressokertome β 0 ja β PNS-estmaattorelle. Ilkka Mell (005) /3

23 Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Tehtävä 5. laskutomtuste suorttame Mcrosoft Ecel -ohjelmalla: Tehtävä Tehtävä 5.. Tedosto KsHt5.ls > Ht5.. Tehtävä 5. laskutomtuste suorttame Statst-ohjelmalla: Tehtävä Tehtävä 5.. Tedosto Sdata5.s Ilkka Mell (005) 3/3

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat: Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Artmeette keskarvo, Estmaatt,

Lisätiedot

1. PARAMETRIEN ESTIMOINTI

1. PARAMETRIEN ESTIMOINTI Mat-.04 Tlastollse aalyys perusteet Mat-.04 Tlastollse aalyys perusteet / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Estmaatt, Estmaattor, Estmot, Jääöselösumma, Jääösterm, Jääösvarass,

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.4 Tlastollse aals perusteet, evät 7 8. lueto: Usea selttää leaare regressomall Usea selttää leaare regressomall Seltettävä muuttua havattue arvoe vahtelu halutaa selttää selttäve muuttue havattue

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 6

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 6 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 6 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 6 Aheet: Tlastolle rppuvuus ja korrelaato Yhde selttäjä leaare regressomall Regressoaalyys

Lisätiedot

Tilastollinen riippuvuus ja korrelaatio

Tilastollinen riippuvuus ja korrelaatio Tlastollset meetelmät Osa 4: Leaare regressoaalyys Tlastolle rppuvuus ja korrelaato KE (204) Tlastolle rppuvuus ja korrelaato >> Tlastolle rppuvuus, korrelaato ja regresso Kahde muuttuja havatoaesto kuvaame

Lisätiedot

Testaa onko lämpökäsittelyllä vaikutusta tankojen keskimääräiseen vetolujuuteen.

Testaa onko lämpökäsittelyllä vaikutusta tankojen keskimääräiseen vetolujuuteen. Mat-.03 Koesuuttelu ja tlastollset mallt 6. harjotuset Mat-.03 Koesuuttelu ja tlastollset mallt 6. harjotuset / Ratasut Aheet: Avasaat: Yssuutae varassaals Artmeette esarvo, Bartlett test, Box ja Whser

Lisätiedot

7.5. Yleinen lineaarinen malli ja suurimman uskottavuuden menetelmä

7.5. Yleinen lineaarinen malli ja suurimman uskottavuuden menetelmä Mat.36 Tlastolle päättely 7. Suurmma uskottavuude meetelmä ja asymptootte teora Tlastolle päättely 7. Suurmma uskottavuude meetelmä ja asymptootte teora 7.. Suurmma uskottavuude estmotmeetelmä Akasarja,

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemaalyys laboratoro Mat-.090 Sovellettu todeäkösyyslasku A Nordlud Harotus (vko 49/003) (Ahe: Tlastollsa testeä, regressoaalyysä Lae luvut 5.5, 6) HUOM! Laskarede palautukse takaraa o pokkeuksellsest

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:

Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat: Mat-1.60 Sovellettu todeäkösyyslasketa Mat-1.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Otos ja otosjakaumat Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, χ -jakauma, Frekvess, Frekvessjakauma,

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ

Lisätiedot

2-suuntainen vaihtoehtoinen hypoteesi

2-suuntainen vaihtoehtoinen hypoteesi Mat-.6 Sovellettu todeäkösyyslasketa. harjotukset Mat-.6 Sovellettu todeäkösyyslasketa B. harjotukset / Ratkasut Aheet: Tlastollset testt Avasaat: Artmeette keskarvo, Beroull-jakauma, F-jakauma, F-test,

Lisätiedot

Varianssianalyysi. Varianssianalyysi. Varianssianalyysi. Varianssianalyysi: Mitä opimme? Varianssianalyysi: Johdanto

Varianssianalyysi. Varianssianalyysi. Varianssianalyysi. Varianssianalyysi: Mitä opimme? Varianssianalyysi: Johdanto TKK (c Ila Mell (004 Varassaalyys Varassaalyys: Johdato Johdatus tlastoteteesee Varassaalyys TKK (c Ila Mell (004 Varassaalyys: Mtä opmme? Tarastelemme tässä luvussa seuraavaa ysymystä: Mte tavaomae ahde

Lisätiedot

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2 HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske

Lisätiedot

Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio: Esitiedot

Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio. Tilastollinen riippuvuus ja korrelaatio: Esitiedot TKK (c) Ilkka Mell (4) Tlastolle rppuvuus ja korrelaato Tlastolle rppuvuus, korrelaato ja regresso Kahde muuttuja havatoaesto kuvaame Pearso korrelaatokertome estmot ja testaus Järjestyskorrelaatokertomet

Lisätiedot

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset

Lisätiedot

Tilastolliset menetelmät: Lineaarinen regressioanalyysi

Tilastolliset menetelmät: Lineaarinen regressioanalyysi Tlastollset meetelmät Leaare regressoaals Tlastollset meetelmät: Leaare regressoaals 3. Tlastolle rppuvuus ja korrelaato 4. Johdatus regressoaals 5. Yhde selttäjä leaare regressomall 6. Ylee leaare mall

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Avainsanat:

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Avainsanat: MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 MS-A5 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 5 Aheet: Tlastollset testt Avasaat: Artmeette keskarvo Beroull-jakauma

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit

Mat Koesuunnittelu ja tilastolliset mallit Mat-.03 Koeuuttelu tlatollet mallt. harjotuket Mat-.03 Koeuuttelu tlatollet mallt. harjotuket / Ratkaut Aheet: Avaaat: Tlatollte aetoje kuvaame Oto otokaumat Etmot Etmotmeetelmät Väletmot Artmeette kekarvo,

Lisätiedot

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4 TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun

Lisätiedot

Muuttujien välisten riippuvuuksien analysointi

Muuttujien välisten riippuvuuksien analysointi Mat-.4 Tlastollse aalyys peusteet, kevät 7 5. lueto: Tlastolle ppuvuus ja koelaato Muuttuje välste ppuvuukse aalysot Tlastollsssa aalyysessä tutktaa use muuttuje välsä ppuvuuksa Työttömyysastee ppuvuus

Lisätiedot

Tilastolliset menetelmät: Otokset, otosjakaumat ja estimointi. 4. Otokset ja otosjakaumat 5. Estimointi 6. Estimointimenetelmät 7.

Tilastolliset menetelmät: Otokset, otosjakaumat ja estimointi. 4. Otokset ja otosjakaumat 5. Estimointi 6. Estimointimenetelmät 7. Tlastollset meetelmät Otokset, otosjakaumat ja estmot Tlastollset meetelmät: Otokset, otosjakaumat ja estmot 4. Otokset ja otosjakaumat 5. Estmot 6. Estmotmeetelmät 7. Välestmot Ilkka Mell 5 Tlastollset

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4 MS-A Todeäkösyyslaskea ja tlastotetee peruskurss Vkko Tlastollste aestoje kerääme ja mttaame; tlastollste aestoje kuvaame; Otokset ja otosjakaumat; Estmot; Estmotmeetelmät; Vällestmot Mtä tlastotede o?

Lisätiedot

Kaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa:

Kaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa: Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalsi Aritmeettinen keskiarvo, Estimointi, F-testi,

Lisätiedot

1.4. Aritmeettisen keskiarvon otosjakauma: Suurten otosten tuloksia

1.4. Aritmeettisen keskiarvon otosjakauma: Suurten otosten tuloksia Tlastolle päättely. Otosjakaumat Tlastolle päättely. Otosjakaumat.. Otos, otostuusluvut ja de otosjakaumat Arvota, Havato, Havatoarvo, Otos, Otosjakauma, Otostuusluku, Rppumattomuus, Satuasmuuttuja, Satuasotos,

Lisätiedot

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla

Lisätiedot

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit 68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta

Lisätiedot

Tilastollinen päättely. 3. Piste-estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet

Tilastollinen päättely. 3. Piste-estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet Mat-1.361 Tlastolle päättely 3. Pste-estmot Tlastolle päättely 3. Pste-estmot 3.1. Johdato Estmaattor, Estmaatt, Estmot, Havato, Havatopste, Otos, Otostuusluku, Parametr, Pste-estmot, Pstetodeäkösyysfukto,

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/24

TKK @ Ilkka Mellin (2008) 1/24 Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,

Lisätiedot

ε i = jäännös- eli virhetermin ε satunnainen ja ei-havaittu arvo havaintoyksikössä i

ε i = jäännös- eli virhetermin ε satunnainen ja ei-havaittu arvo havaintoyksikössä i Mat-.60 Sovellettu todeäkölaketa B. harjotuket Mat-.60 Sovellettu todeäkölaketa B. harjotuket / Ratkaut Aheet: Yhde elttäjä leaare regreomall Avaaat: Ehdolle jakauma, Ehdolle odotuarvo, Ehdolle vara, Etmot,

Lisätiedot

1.2. Aritmeettisen keskiarvon ja otosvarianssin otosjakaumat: Odotusarvot ja varianssit

1.2. Aritmeettisen keskiarvon ja otosvarianssin otosjakaumat: Odotusarvot ja varianssit Tlastolle päättely. Otosjakaumat Tlastolle päättely. Otosjakaumat.. Otos, otostuusluvut ja de otosjakaumat Arvota, Havato, Havatoarvo, Otos, Otosjakauma, Otostuusluku, Rppumattomuus, Satuasmuuttuja, Satuasotos,

Lisätiedot

Generoidaan tiedostoon BINORM satunnaislukuja jakaumasta N(0,1) muuttujiksi U, V: (U, V): N 2 (0, 0, 1, 1, 0)

Generoidaan tiedostoon BINORM satunnaislukuja jakaumasta N(0,1) muuttujiksi U, V: (U, V): N 2 (0, 0, 1, 1, 0) Mat-2.04 Tlastollse aalyys perusteet / Ratkasut Aheet: Avasaat Korrelaato ja assosaato Hypotees, Järjestyskorrelaatokertomet, χ 2 -rppumattomuustest, Korrelaatokerro, Pstedagramm, Päätössäätö, Nollahypotees,

Lisätiedot

Suoran sovittaminen pistejoukkoon

Suoran sovittaminen pistejoukkoon Suora sovttame pstejoukkoo Ku halutaa tutka kahde tlastollse muuttuja rppuvuutta tosstaa, käytetää use leaarsta regressota el suora sovttamsta havatojoukkoo. Sä o aettu joukko havatopareja (x, y ), ja

Lisätiedot

Tilastollinen päättely. 3. Piste estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet

Tilastollinen päättely. 3. Piste estimointi Johdanto Estimointimenetelmät Estimaattoreiden ominaisuudet Mat.36 Tlastolle päättely 3. Pste estmot Tlastolle päättely 3. Pste estmot 3.. Johdato Estmaattor, Estmaatt, Estmot, Havato, Havatopste, Otos, Otostuusluku, Parametr, Pste estmot, Pstetodeäkösyysfukto,

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.04 Tlastollsen analyysn perusteet, evät 007. luento: Johdatus varanssanalyysn S ysteemanalyysn Laboratoro Ka Vrtanen Kertaus: ahden rppumattoman otosen t-test () () Perusjouo oostuu ahdesta ryhmästä

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.204 Tlastollsen analyysn perusteet, kevät 2007 5. luento: Tlastollnen rppuvuus ja korrelaato Ka Vrtanen Muuttujen välsten rppuvuuksen analysont Tlastollsssa analyysessä tutktaan usen muuttujen välsä

Lisätiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia. HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla

Lisätiedot

Moniulotteiset jakaumat ja havaintoaineistot

Moniulotteiset jakaumat ja havaintoaineistot Momuuttujameetelmät: Ilkka Mell. Moulotteset jakaumat.. Satuasmuuttujat ja todeäkösyysjakaumat.. Yhtesjakaumat.3. Reuajakaumat ja satuasmuuttuje rumattomuus.4. Ehdollset jakaumat.5. Yhtesjakaume tuusluvut.6.

Lisätiedot

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat: Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,

Lisätiedot

Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet: Mitä opimme?

Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet: Mitä opimme? TKK (c) Ilkka Mell (004) Kovergesskästteet ja raja-arvolauseet Kovergesskästtetä Suurte lukuje lat Keskee raja-arvolause Keskese raja-arvolausee seurauksa Johdatus todeäkösyyslasketaa Kovergesskästteet

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä. MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:

Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat: Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Estmot Estmotmeetelmät Välestmot Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, Estmaatt, Estmaattor,

Lisätiedot

Kaksisuuntainen varianssianalyysi. Kaksisuuntainen varianssianalyysi. Kaksisuuntainen varianssianalyysi

Kaksisuuntainen varianssianalyysi. Kaksisuuntainen varianssianalyysi. Kaksisuuntainen varianssianalyysi T (c lkka Melln (005 akssuuntanen varanssanals Varanssanals: ohdanto akssuuntasen varanssanalsn mall a sen parametren estmont ohdatus tlastoteteeseen akssuuntanen varanssanals T (c lkka Melln (005 akssuuntanen

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli: Lisätiedot. Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli: Lisätiedot. Yhden selittäjän lineaarinen regressiomalli TKK (c) Ilkka Melli (4) Yhde selittää lieaarie regressiomalli Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 6

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 6 Todeäkölakea ja tlatotetee perukur Emerkkkokoelma 6 Todeäkölakea ja tlatotetee perukur Emerkkkokoelma 6 Aheet: Tlatolle rppuvuu ja korrelaato Yhde elttäjä leaare regreomall Avaaat: Artmeette kekarvo Etmot

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yksisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Kokonaiskeskiarvo,

Lisätiedot

Tilastollinen päättely. 4. Hypoteesien testaus Johdanto Testien konstruointi Testien vertailu

Tilastollinen päättely. 4. Hypoteesien testaus Johdanto Testien konstruointi Testien vertailu Mat.36 Tlastolle päättely 4. Hypoteese testaus Tlastolle päättely 4. Hypoteese testaus 4.. Johdato Hylkäysalue, Hypotees, Hyväksymsalue, Krtte alue, Nollahypotees, Otos, Parametr, Parametravaruus, Perusjoukko,

Lisätiedot

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan:

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan: Mat-.6 Sovellettu todennäköisslaskenta B Mat-.6 Sovellettu todennäköisslaskenta B / Ratkaisut Aiheet: Moniulotteiset satunnaismuuttujat ja todennäköissjakaumat Moniulotteisia jakaumia Avainsanat: Diskreetti

Lisätiedot

Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus

Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus Mat.36 Tlastolle päättely. Data reduso peraatteet Tlastolle päättely. Data reduso peraatteet.. Tyhjetävyys Asllaarsuus, Basu teoreema, Data redusot, Faktorotteoreema, Iformaato, Mmaale tyhjetävyys, Otos,

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Yleinen lineaarinen malli TKK (c) Ilkka Mellin (2007) 1 Yleinen lineaarinen malli >> Usean selittäjän lineaarinen regressiomalli

Lisätiedot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot Mat-.09 Sovellettu todeäkösyyslasku Systeemaalyys laboratoro Teklle korkeakoulu SYKSY 00 Ilkka Mell Sovellettu todeäkösyyslasku: Kaavat ja taulukot f XY x X x X y Y ( x, y) exp XY ( XY ) XY XY X X Y Tomttaut

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen Tilastolliset aineistot

Tilastollisten aineistojen kerääminen ja mittaaminen Tilastolliset aineistot Todeäkösyyslaskea ja talstotetee peruskurssesmerkkkokoelma 4 Todeäkösyyslaskea ja tlastotetee peruskurss Esmerkkkokoelma 4 Aheet: Tlastollste aestoje kerääme ja mttaame Tlastollste aestoje kuvaame Otokset

Lisätiedot

1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO

1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Regressiodiagnostiikka Cooken etäisyys, Funktionaalinen muoto, Diagnostinen grafiikka, Diagnostiset testit, Heteroskedastisuus,

Lisätiedot

Johdatus tilastotieteeseen Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Yleinen lineaarinen malli TKK (c) Ilkka Mellin (2004) 1 Yleinen lineaarinen malli Usean selittäjän lineaarinen regressiomalli Yleisen lineaarisen mallin matriisisesitys Yleisen

Lisätiedot

Ratkaisu: Kaikki tehtävän laskutoimitukset on tehty Microsoft Excel -ohjelmalla; ks. taulukkoa tehtävän lopussa.

Ratkaisu: Kaikki tehtävän laskutoimitukset on tehty Microsoft Excel -ohjelmalla; ks. taulukkoa tehtävän lopussa. Mat-.09 Sovellettu todeäköyylaku. harjotuket Mat-.09 Sovellettu todeäköyylaku. harjotuket / Ratkaut Aheet: Avaaat: Regreoaalyy Etmot, Jääöelöumma, Jääöterm, Jääövara, Kekhajota, Kokoaelöumma, Korrelaato,

Lisätiedot

Tilastollinen päättely. 4. Hypoteesien testaus Johdanto Testien konstruointi Testien vertailu

Tilastollinen päättely. 4. Hypoteesien testaus Johdanto Testien konstruointi Testien vertailu Mat-1.361 Tlastolle päättely 4. Hypoteese testaus Tlastolle päättely 4. Hypoteese testaus 4.1. Johdato Hylkäysalue, Hypotees, Hyväksymsalue, Krtte alue, Nollahypotees, Otos, Parametr, Parametravaruus,

Lisätiedot

Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus

Tilastollinen päättely. 2. Datan redusoinnin periaatteet Tyhjentävyys Uskottavuus Mat-1.361 Tlastolle päättely. Data reduso peraatteet Tlastolle päättely. Data reduso peraatteet.1. Tyhjetävyys Asllaarsuus, Basu teoreema, Data redusot, Faktorotteoreema, Iformaato, Mmaale tyhjetävyys,

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Usea selittää lieaarie regressiomalli Mat-.04 Tilastollise aalyysi perusteet, evät 007 8. lueto: Usea selittää lieaarie regressiomalli Selitettävä muuttua havaittue arvoe vaihtelu halutaa selittää selittävie

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 6

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 6 MS-A Todeäkölakea ja tlatotetee perukur Vkko Tlatolle rppuvuu ja korrelaato; Yhde elttäjä leaare regreomall Rppuvuu, korrelaato ja regreoaal Tlatoteteeä kahde muuttuja väle rppuvuu vo olla Ekakta: toe

Lisätiedot

Tilastolliset menetelmät: Lineaarinen regressioanalyysi

Tilastolliset menetelmät: Lineaarinen regressioanalyysi Tlastollset meetelmät Leaare regressoaalyys Tlastollset meetelmät: Leaare regressoaalyys 3. Tlastolle rppuvuus ja korrelaato 4. Johdatus regressoaalyys 5. Yhde selttäjä leaare regressomall 6. Ylee leaare

Lisätiedot

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Usean selittäjän lineaarinen regressiomalli Estimaatti, Estimaattori, Estimointi, Jäännösneliösumma, Jäännöstermi, Jäännösvarianssi,

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli

Lisätiedot

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1

Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1 Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia Heliövaara 1 Regressiokertoimien PNS-estimaattorit Määritellään havaintojen x j ja y j, j = 1, 2,...,n

Lisätiedot

Mat Tilastollisen analyysin perusteet. Painotettu PNS-menetelmä. Avainsanat:

Mat Tilastollisen analyysin perusteet. Painotettu PNS-menetelmä. Avainsanat: Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Mallin valinta Painotettu PNS-menetelmä Alaspäin askellus, Askellus, Askeltava valikointi, Diagnostinen grafiikka, Diagnostiset

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

3. Datan käsittely lyhyt katsaus

3. Datan käsittely lyhyt katsaus 3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus

Lisätiedot

Tilastolliset menetelmät: Otokset, otosjakaumat ja estimointi

Tilastolliset menetelmät: Otokset, otosjakaumat ja estimointi Tlastollset meetelmät Otokset, otosjakaumat ja estmot Tlastollset meetelmät: Otokset, otosjakaumat ja estmot 4. Otokset ja otosjakaumat 5. Estmot 6. Estmotmeetelmät 7. Välestmot TKK @ Ilkka Mell (006)

Lisätiedot

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1 Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat: Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva

Lisätiedot

Menestyminen valintakokeissa ja todennäköisyyslaskussa

Menestyminen valintakokeissa ja todennäköisyyslaskussa 21.5.21 Menestyminen valintakokeissa ja todennäköisyyslaskussa Esa Pursiheimo 45761L 1 JOHDANTO...2 2 LÄHTÖTIEDOT JA OTOS...3 3 PÄÄSYKOETULOKSIEN YHTEISJAKAUMA...4 4 REGRESSIOANALYYSI...9 4.1 MALLI JA

Lisätiedot

Yleinen lineaarinen malli. Yleinen lineaarinen malli. Yleinen lineaarinen malli: Mitä opimme? 2/4. Yleinen lineaarinen malli: Mitä opimme?

Yleinen lineaarinen malli. Yleinen lineaarinen malli. Yleinen lineaarinen malli: Mitä opimme? 2/4. Yleinen lineaarinen malli: Mitä opimme? TKK (c) Ila Melli (004) Yleie lieaarie malli Johdatus tilastotieteesee Yleie lieaarie malli Usea selittää lieaarie regressiomalli Yleise lieaarise malli matriisisesitys Yleise lieaarise malli estimoiti

Lisätiedot

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Kaksisuuntainen varianssianalyysi. Heliövaara 1 Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän

Lisätiedot

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1 Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin

Lisätiedot

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n = 1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista

Lisätiedot

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7.4.006 Thomas Hackman 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 5. Tähtteteellsten

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo? MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

Monimuuttujamenetelmät: Multinormaalijakauma. Ilkka Mellin. 1. Multinormaalijakauma ja sen ominaisuudet

Monimuuttujamenetelmät: Multinormaalijakauma. Ilkka Mellin. 1. Multinormaalijakauma ja sen ominaisuudet Momuuttumeetelmät Multormaalkauma Momuuttumeetelmät: Multormaalkauma Ilkka Mell. Multormaalkauma se omasuudet.. Multormaalkauma.. Multormaalkauma omasuudet.3. Multormaalkauma ehdollset kaumat.4. -ulottee

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

8. laskuharjoituskierros, vko 11, ratkaisut

8. laskuharjoituskierros, vko 11, ratkaisut Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3 LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Turingin kone on kuin äärellinen automaatti, jolla on käytössään 4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa

Lisätiedot