Testejä suhdeasteikollisille muuttujille

Koko: px
Aloita esitys sivulta:

Download "Testejä suhdeasteikollisille muuttujille"

Transkriptio

1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1

2 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus t-testi parivertailuille Yhden otoksen testi varianssille Varianssien vertailutesti TKK (c) Ilkka Mellin (007)

3 Testit normaalijakauman parametreille Normaalijakauman parametrien tilastolliset testit 1/ Normaalijakauma on tilastotieteen tärkein jakauma. Oletetaan, että satunnaismuuttuja X noudattaa normaalijakaumaa parametrein µ ja σ : X N( µ, σ ) Tällöin E(X) = µ on normaalijakauman odotusarvo ja Var(X) = σ on normaalijakauman varianssi. Parametrit µ ja σ määräävät täysin normaalijakauman. TKK (c) Ilkka Mellin (007) 3

4 Testit normaalijakauman parametreille Normaalijakauman parametrien tilastolliset testit / Normaalijakauman parametreja koskevat testit voidaan jakaa kahteen ryhmään: Yhden otoksen testit Kahden otoksen testit eli vertailutestit Yhden otoksen testeissä testataan yksinkertaisia nollahypoteeseja, jotka koskevat normaalijakauman odotusarvo- tai varianssiparametria. Kahden otoksen testit ovat vertailutestejä, joilla verrataan kahden normaalijakauman odotusarvo- tai varianssiparametreja toisiinsa. TKK (c) Ilkka Mellin (007) 4

5 Testit normaalijakauman parametreille Normaalijakauman parametreille tarkoitettujen testien yleinen soveltuvuus 1/ Testejä normaalijakauman odotusarvolle sovelletaan usein myös sellaisissa tilanteissa, joissa havainnot eivät noudata normaalijakaumaa. Tämä perustuu seuraaviin seikkoihin: (i) Esitettävät testit odotusarvolle perustuvat havaintojen aritmeettisiin keskiarvoihin. (ii) Keskeisen raja-arvolauseen mukaan myös einormaalisten havaintojen aritmeettiset keskiarvot noudattavat tietyin ehdoin suurissa otoksissa approksimatiivisesti normaalijakaumaa. TKK (c) Ilkka Mellin (007) 5

6 Testit normaalijakauman parametreille Normaalijakauman parametreille tarkoitettujen testien yleinen soveltuvuus / Sen sijaan testit normaalijakauman varianssille eivät yleensä ole käyttökelpoisia ei-normaalisille havainnoille ja tilanne ei välttämättä parane suurillakaan havaintojen lukumäärillä. TKK (c) Ilkka Mellin (007) 6

7 Testit normaalijakauman parametreille Tavanomaiset testit normaalijakauman parametreille Tarkastelemme seuraavia testejä normaalijakauman parametreille: Yhden otoksen t-testi odotusarvolle Kahden riippumattoman otoksen t-testi A odotusarvoille: Yleinen tapaus Kahden riippumattoman otoksen t-testi B: odotusarvoille: Yhtä suurten varianssien tapaus t-testi parivertailuille Yhden otoksen χ -testi varianssille Kahden riippumattoman otoksen F-testi variansseille eli varianssien vertailutesti TKK (c) Ilkka Mellin (007) 7

8 Testejä suhdeasteikollisille muuttujille Testit normaalijakauman parametreille >> Yhden otoksen t-testi Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus t-testi parivertailuille Yhden otoksen testi varianssille Varianssien vertailutesti TKK (c) Ilkka Mellin (007) 8

9 Yhden otoksen t-testi Testausasetelma 1/ Olkoon X 1, X,, X n yksinkertainen satunnaisotos perusjoukosta S, joka noudattaa normaalijakaumaa N( µ, σ ) Jakauma riippuu seuraavista parametreista: µ = jakauman odotusarvo σ = jakauman varianssi TKK (c) Ilkka Mellin (007) 9

10 Yhden otoksen t-testi Testausasetelma / Asetetaan normaalijakauman N( µ, σ ) odotusarvo- eli paikkaparametrille µ nollahypoteesi H 0 :µ = µ 0 Testausongelma: Ovatko havainnot sopusoinnussa nollahypoteesin H 0 kanssa? Ongelman ratkaisuna on yhden otoksen t-testi. TKK (c) Ilkka Mellin (007) 10

11 Yhden otoksen t-testi Hypoteesit Yleinen hypoteesi H : (i) Havainnot Xi N( µ, σ ), i= 1,,, n (ii) Havainnot X 1, X,, X n ovat riippumattomia Nollahypoteesi H 0 : H 0 :µ = µ 0 Vaihtoehtoinen hypoteesi H 1 : H: 1 µ > µ 0 1-suuntaiset vaihtoehtoiset hypoteesit H: 1 µ < µ 0 H : µ µ -suuntainen vaihtoehtoinen hypoteesi 1 0 TKK (c) Ilkka Mellin (007) 11

12 Yhden otoksen t-testi Parametrien estimointi Olkoot X ja 1 n Xi n i = 1 = 1 s X X n = ( i ) n 1 i= 1 tavanomaiset harhattomat estimaattorit parametreille E(X i ) = µ, i = 1,,, n ja Var(X i ) = σ, i = 1,,, n TKK (c) Ilkka Mellin (007) 1

13 Yhden otoksen t-testi Testisuure ja sen jakauma Määritellään t-testisuure X µ 0 t = s/ n Jos nollahypoteesi H 0 :µ = µ 0 pätee, niin testisuure t noudattaa Studentin t-jakaumaa vapausastein (n 1): t t( n 1) TKK (c) Ilkka Mellin (007) 13

14 Yhden otoksen t-testi Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu 1/ Oletetaan, että testin yleinen hypoteesi H ja nollahypoteesi H 0 pätevät: X 1, X,, X n X i N( µ 0, σ ), i = 1,,, n Koska tällöin (ks. lukua Otokset ja otosjakaumat) niin X 1 σ n = Xi N µ 0, n i= 1 n X µ 0 z = N(0,1) σ / n Koska standardipoikkeama σ on tuntematon, satunnaismuuttujan z lauseke on testisuureena epäoperationaalinen. TKK (c) Ilkka Mellin (007) 14

15 Yhden otoksen t-testi Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu / Jos standardipoikkeama σ korvataan satunnaismuuttujan z lausekkeessa vastaavalla otossuureella n 1 s = ( Xi X) n 1 i= 1 niin saadaan t-testisuure X µ 0 t = s / n joka nollahypoteesin H 0 pätiessä noudattaa t-jakaumaa vapausastein (n 1): t t(n 1) Todistus: ks. lukua Otokset ja otosjakaumat. TKK (c) Ilkka Mellin (007) 15

16 Yhden otoksen t-testi t-testisuure mittaa tilastollista etäisyyttä Testisuure X µ 0 t = s/ n mittaa havaintoarvojen aritmeettisen keskiarvon ja nollahypoteesin H 0 :µ = µ 0 kiinnittämän odotusarvoparametrin µ arvon µ 0 tilastollista etäisyyttä. Mittayksikkönä on erotuksen X µ 0 standardipoikkeaman σ / n estimaattori, jota määrättäessä on oletettu, että nollahypoteesi H 0 pätee. TKK (c) Ilkka Mellin (007) 16

17 Yhden otoksen t-testi Testi Testisuureen X µ 0 t = s/ n normaaliarvo = 0, koska nollahypoteesin pätiessä E(t) = 0 H 0 :µ = µ 0 Siten itseisarvoltaan suuret testisuureen t arvot viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos testin p-arvo on kyllin pieni. TKK (c) Ilkka Mellin (007) 17

18 Yhden otoksen t-testi Testin hylkäysalueen määrääminen 1/4 Valitaan testin merkitsevyystasoksi α. Jos vaihtoehtoinen hypoteesi on muotoa H 1 : µ > µ 0 niin kriittinen arvo +t α saadaan ehdosta Pr(t +t α ) = α jossa t t(n 1) Testin hylkäysalue on tällöin muotoa (+t α, + ) TKK (c) Ilkka Mellin (007) 18

19 Yhden otoksen t-testi Testin hylkäysalueen määrääminen /4 Valitaan testin merkitsevyystasoksi α. Jos vaihtoehtoinen hypoteesi on muotoa H 1 : µ < µ 0 niin kriittinen arvo t α saadaan ehdosta Pr(t t α ) = α jossa t t(n 1) Testin hylkäysalue on tällöin muotoa (, t α ) TKK (c) Ilkka Mellin (007) 19

20 Yhden otoksen t-testi Testin hylkäysalueen määrääminen 3/4 Valitaan testin merkitsevyystasoksi α. Jos vaihtoehtoinen hypoteesi on muotoa H 1 : µ µ 0 niin kriittiset arvot t α/ ja +t α/ saadaan ehdoista Pr(t t α/ ) = α/ Pr(t +t α/ ) = α/ jossa t t(n 1) Testin hylkäysalue on tällöin muotoa (, t α ) (+t α, + ) TKK (c) Ilkka Mellin (007) 0

21 Yhden otoksen t-testi Testin hylkäysalueen määrääminen 4/4 Oletetaan, että testin merkitsevyystasoksi on valittu α. Testin hylkäysalueen määräämistä voidaan havainnollistaa alla olevilla kuvioilla. H:µ 1 µ 0 H:µ µ > H:µ 1 < µ tn ( 1) tn ( 1) tn ( 1) 1 α α α 1 α 1 α 1 α 1 α + t α t α t α / +t α / Hylkäysalue Hylkäysalue Hylkäysalue Hylkäysalue TKK (c) Ilkka Mellin (007) 1

22 Yhden otoksen t-testi Testin p-arvo Olkoon t-testisuureen havaittu arvo t 0. Testin p-arvon määräämistä voidaan havainnollistaa alla olevilla kuvioilla. H:µ 1 µ 0 H:µ µ > H:µ 1 < µ tn ( 1) tn ( 1) tn ( 1) p p p p 1 p 1 p 1 p t + t t0 t0 0 0 Testin p-arvo = p Testin p-arvo = p Testin p-arvo = p TKK (c) Ilkka Mellin (007)

23 Yhden otoksen t-testi Normaalisuusoletuksen merkitys 1/ Yhden otoksen t-testin yleisessä hypoteesissa oletetaan, että havainnot ovat normaalijakautuneita. t-testi ei kuitenkaan ole herkkä poikkeamille normaalisuudesta, jos havaintojen lukumäärä n on kyllin suuri. TKK (c) Ilkka Mellin (007) 3

24 Yhden otoksen t-testi Normaalisuusoletuksen merkitys / Testiä on melko turvallista käyttää, kun havaintojen lukumäärä n > 15 ellei havaintojen jakauma ole kovin vino ja havaintojen joukossa ole poikkeavia havaintoja. Jos havaintojen lukumäärä n > 40 testiä voidaan melko turvallisesti käyttää jopa selvästi vinoille havaintojen jakaumille. TKK (c) Ilkka Mellin (007) 4

25 Yhden otoksen t-testi Testin hyväksymisvirheen todennäköisyys ja voimakkuus 1/6 Tarkastellaan t-testin hyväksymisvirheen todennäköisyyttä ja voimakkuutta tilanteessa, jossa normaalijakauman N( µ, σ ) varianssi σ oletetaan tunnetuksi. Olkoon nollahypoteesi muotoa H 0 :µ = µ 0 ja vaihtoehtoinen hypoteesi muotoa H:µ 1 < µ 0 Huomautus: Jos normaalijakauman varianssia σ ei oleteta tunnetuksi, vaatii t-testin voimakkuuden määrääminen ns. epäkeskisen t-jakauman määrittelemistä. Tämän yleisen tapauksen käsittely sivuutetaan tässä esityksessä. TKK (c) Ilkka Mellin (007) 5

26 Yhden otoksen t-testi Testin hyväksymisvirheen todennäköisyys ja voimakkuus /6 t-testisuure X µ 0 t = σ / n noudattaa nollahypoteesin H 0 :µ = µ 0 pätiessä standardoitua normaalijakaumaa (ks. lukua Otokset ja otosjakaumat): t N(0, 1) TKK (c) Ilkka Mellin (007) 6

27 Yhden otoksen t-testi Testin hyväksymisvirheen todennäköisyys ja voimakkuus 3/6 Vaihtoehtoisen hypoteesin H:µ 1 < µ 0 tapauksessa t-testin päätössääntö on muotoa: Hylkää nollahypoteesi H 0 :µ = µ 0 jos X µ 0 t = < zα σ / n Kriittinen arvo z α saadaan ehdosta Pr(z z α ) = α jossa z N(0, 1). TKK (c) Ilkka Mellin (007) 7

28 Yhden otoksen t-testi Testin hyväksymisvirheen todennäköisyys ja voimakkuus 4/6 Vaihtoehtoisen hypoteesin H:µ 1 < µ 0 tapauksessa t-testin päätössääntö voidaan kirjoittaa myös seuraavaan muotoon: Hylkää nollahypoteesi H 0 :µ = µ 0 jos X < µ 0 zασ / n = Xc Kriittinen arvo z α saadaan ehdosta Pr(z z α ) = α jossa z N(0, 1). TKK (c) Ilkka Mellin (007) 8

29 Yhden otoksen t-testi Testin hyväksymisvirheen todennäköisyys ja voimakkuus 5/6 Vaihtoehtoisen hypoteesin H:µ 1 < µ 0 tapauksessa t-testin hyväksymisvirheen todennäköisyys β on ehdollinen todennäköisyys jossa β = Pr(H0 jätetään voimaan H0ei ole tosi) = Pr( X X µ = µ ) = Pr z µ µ 0 c X c µ σ / n TKK (c) Ilkka Mellin (007) 9

30 Yhden otoksen t-testi Testin hyväksymisvirheen todennäköisyys ja voimakkuus 6/6 Vaihtoehtoisen hypoteesin H:µ 1 < µ 0 tapauksessa t-testin voimakkuus 1 β on ehdollinen todennäköisyys 1 β = Pr(H0hylätään H0ei ole tosi) = Pr( X < X µ = µ ) jossa µ µ 0 = Pr z < c X c µ σ / n TKK (c) Ilkka Mellin (007) 30

31 Yhden otoksen t-testi Testin hyväksymisvirheen todennäköisyys ja voimakkuus: Havainnollistus 1/3 Kuvio oikealla havainnollistaa t- testin hyväksymisvirheen todennäköisyyttä β ja voimakkuutta 1 β. Yleinen hypoteesi H : X 1, X,, X n X i ~ N(µ, σ ), i = 1,,, n Nollahypoteesi H 0 : µ = µ 0 Vaihtoehtoinen hypoteesi H 1 : µ < µ 0 N(µ,σ /n ) N(µ 0,σ /n) α β µ µ 0 X c TKK (c) Ilkka Mellin (007) 31

32 Yhden otoksen t-testi Testin hyväksymisvirheen todennäköisyys ja voimakkuus: Havainnollistus /3 Valitaan merkitsevyystasoksi α. Kriittinen raja z α : Pr(z z α ) = α z N(0, 1) Kriittinen raja X c : X c = µ 0 zασ / n Päätössääntö: Hylkää nollahypoteesi H 0, jos X < X c N(µ,σ /n ) α N(µ 0,σ /n) β µ µ 0 X c TKK (c) Ilkka Mellin (007) 3

33 Yhden otoksen t-testi Testin hyväksymisvirheen todennäköisyys ja voimakkuus: Havainnollistus 3/3 Hyväksymisvirheen todennäköisyys β : β = Pr( X X c µ = µ ) Voimakkuus 1 β : 1 β = Pr( X < X c µ = µ ) N(µ,σ /n ) N(µ 0,σ /n) α β µ µ 0 X c TKK (c) Ilkka Mellin (007) 33

34 Testejä suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi >> Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus t-testi parivertailuille Yhden otoksen testi varianssille Varianssien vertailutesti TKK (c) Ilkka Mellin (007) 34

35 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testausasetelma 1/4 Olkoon X11, X1,, Xn 11 yksinkertainen satunnaisotos perusjoukosta S 1, joka noudattaa normaalijakaumaa N( µ 1, σ1) Jakauma riippuu seuraavista parametreista: µ 1 = jakauman odotusarvo σ 1 = jakauman varianssi TKK (c) Ilkka Mellin (007) 35

36 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testausasetelma /4 Olkoon X1, X,, Xn yksinkertainen satunnaisotos perusjoukosta S, joka noudattaa normaalijakaumaa N( µ, σ ) Jakauma riippuu seuraavista parametreista: µ = jakauman odotusarvo σ = jakauman varianssi TKK (c) Ilkka Mellin (007) 36

37 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testausasetelma 3/4 Oletetaan lisäksi, että perusjoukosta S 1 poimittu otos X11, X1,, Xn 11 ja perusjoukosta S poimittu otos X1, X,, Xn ovat toisistaan riippumattomia. Otosten riippumattomuus merkitsee sitä, että se mikä alkio poimitaan perusjoukosta S 1 ei vaikuta siihen mikä alkioista poimitaan perusjoukosta S ja kääntäen. TKK (c) Ilkka Mellin (007) 37

38 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testausasetelma 4/4 Asetetaan normaalijakaumien N( µ 1, σ1) ja N( µ, σ ) odotusarvo-eli paikkaparametreille µ 1 ja µ nollahypoteesi H 0:µ 1 = µ = µ Testausongelma: Ovatko havainnot sopusoinnussa nollahypoteesin H 0 kanssa? Ongelman ratkaisuna on kahden riippumattoman otoksen t-testi A. Huomautus: Jos voidaan olettaa, että σ1 = σ, testauksessa kannattaa käyttää kahden riippumattoman otoksen t-testiä B. TKK (c) Ilkka Mellin (007) 38

39 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Yleinen hypoteesi Yleinen hypoteesi H : (1) Havainnot Xi1 N( µ 1, σ 1), i= 1,,, n1 () Havainnot X j N( µ, σ ), j = 1,,, n (3) Havainnot X i1 ja X j ovat riippumattomia kaikille i ja j. Huomautuksia: Oletus (3) sisältää kolme riippumattomuusoletusta: Havainnot ovat riippumattomia otoksien 1 ja sisällä. Havainnot ovat riippumattomia otoksien 1 ja välillä. Jakaumien varianssit saavat (mutta ei tarvitse) erota toisistaan; vrt. kahden otoksen t-testi B. TKK (c) Ilkka Mellin (007) 39

40 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Nollahypoteesi ja vaihtoehtoiset hypoteesit Nollahypoteesi H 0 : H 0:µ 1 = µ = µ Vaihtoehtoinen hypoteesi H 1 : H: 1 µ 1 > µ 1-suuntaiset vaihtoehtoiset hypoteesit H: 1 µ 1 < µ H : µ µ -suuntainen vaihtoehtoinen hypoteesi 1 1 TKK (c) Ilkka Mellin (007) 40

41 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Parametrien estimointi Olkoot ja n 1 k Xk = Xik, k = 1, n k i = 1 n 1 k s = ( X X ), k = 1, k ik k n k 1 i= 1 tavanomaiset harhattomat estimaattorit parametreille E(X ik ) = µ k, i = 1,,, n k, k = 1, ja Var(X ik ) = σ k, i = 1,,, n k, k = 1, TKK (c) Ilkka Mellin (007) 41

42 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testisuure ja sen asymptoottinen jakauma Määritellään t-testisuure X1 X t = s1 s + n1 n Jos nollahypoteesi H 0:µ 1 = µ = µ pätee, niin testisuure t noudattaa suurissa otoksissa approksimatiivisesti standardoitua normaalijakaumaa N(0,1): t a N(0,1) TKK (c) Ilkka Mellin (007) 4

43 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu 1/3 Oletetaan, että testin yleinen hypoteesi H ja nollahypoteesi H 0 pätevät: X, X,, X, X, X,, X 11 1 n 1 1 n 1 X N( µσ, ), i = 1,,, n i1 1 1 X j N( µσ, ), j = 1,,, n Tällöin (ks. lukua Otos ja otosjakaumat) n1 1 σ 1 X1 = Xi1 N µ, n1 i= 1 n1 n 1 σ X = X j N µ, n j= 1 n Koska X1 X, niin σ1 σ X1 X N 0, + n1 n TKK (c) Ilkka Mellin (007) 43

44 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu /3 Edellä esitetystä seuraa, että X1 X z = N(0,1) σ1 σ + n1 n Koska varianssit σ ovat tuntemattomia, satunnaismuuttujan z 1 ja σ lauseke on testisuureena epäoperationaalinen. TKK (c) Ilkka Mellin (007) 44

45 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu 3/3 Jos satunnaismuuttujan z lausekkeessa varianssit σ1 ja σ korvataan vastaavilla otossuureilla n 1 k sk = ( Xik Xk), k = 1, n k 1 i= 1 niin saadaan t-testisuure X1 X t = s1 s + n n 1 joka nollahypoteesin H 0 pätiessä noudattaa suurissa otoksissa approksimatiivisesti standardoitua normaalijakaumaa N(0, 1): t a N(0, 1) Todistus sivuutetaan. TKK (c) Ilkka Mellin (007) 45

46 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testisuureen jakauman approksimointi 1/ Pienissä otoksissa saadaan testisuureen t jakaumalle parempi approksimaatio käyttämällä approksimaationa Studentin t-jakaumaa vapausastein (ns. Satterthwaiten approksimaatio) ν = s n s + n s 1 s 1 + n1 1 n 1 n 1 n TKK (c) Ilkka Mellin (007) 46

47 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testisuureen jakauman approksimointi / Joskus testisuureen t jakaumaa approksimoidaan myös Studentin t-jakaumalla vapausastein v= min{ n1 1, n 1} Tämä approksimaatio ei kuitenkaan ole yhtä hyvä kuin Satterthwaiten approksimaatio. TKK (c) Ilkka Mellin (007) 47

48 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus t-testisuure mittaa tilastollista etäisyyttä Testisuure X X t = s s + n n mittaa otoksien 1 ja aritmeettisten keskiarvojen tilastollista etäisyyttä. Mittayksikkönä on erotuksen X1 Xstandardipoikkeaman σ1 σ + n1 n estimaattori, jota määrättäessä on oletettu, että nollahypoteesi H 0 pätee. TKK (c) Ilkka Mellin (007) 48

49 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testi Testisuureen X X t = s s + n n normaaliarvo = 0, koska nollahypoteesin pätiessä E(t) = 0 H 0:µ 1 = µ = µ Siten itseisarvoltaan suuret testisuureen t arvot viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos testin p-arvo on kyllin pieni. TKK (c) Ilkka Mellin (007) 49

50 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testin hylkäysalueen määrääminen 1/5 Käsittelemme seuraavassa kahden otoksen t-testin A hylkäysalueen valintaa, jos testisuureen approksimoidaan standardoidulla normaalijakaumalla N(0, 1). Jos kahden otoksen t-testin A testisuuretta approksimoidaan t-jakaumalla, jossa vapausasteiden lukumäärä ν lasketaan Satterthwaiten kaavan mukaan, testin hylkäysalue määrätään samalla tavalla kuin yhden otoksen t-testin tapauksessa. TKK (c) Ilkka Mellin (007) 50

51 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testin hylkäysalueen määrääminen /5 Valitaan testin merkitsevyystasoksi α. Jos vaihtoehtoinen hypoteesi on muotoa H 1 : µ > µ 0 niin kriittinen arvo +t α saadaan ehdosta Pr(t +t α ) = α jossa t a N(0, 1) Testin hylkäysalue on tällöin muotoa (+t α, + ) TKK (c) Ilkka Mellin (007) 51

52 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testin hylkäysalueen määrääminen 3/5 Valitaan testin merkitsevyystasoksi α. Jos vaihtoehtoinen hypoteesi on muotoa H 1 : µ < µ 0 niin kriittinen arvo t α saadaan ehdosta Pr(t t α ) = α jossa t a N(0, 1) Testin hylkäysalue on tällöin muotoa (, t α ) TKK (c) Ilkka Mellin (007) 5

53 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testin hylkäysalueen määrääminen 4/5 Valitaan testin merkitsevyystasoksi α. Jos vaihtoehtoinen hypoteesi on muotoa H 1 : µ µ 0 niin kriittiset arvot t α/ ja +t α/ saadaan ehdoista Pr(t t α/ ) = α/ Pr(t +t α/ ) = α/ jossa t a N(0,1) Testin hylkäysalue on tällöin muotoa (, t α ) (+t α, + ) TKK (c) Ilkka Mellin (007) 53

54 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testin hylkäysalueen määrääminen 5/5 Oletetaan, että testin merkitsevyystasoksi on valittu α. Testin hylkäysalueen määräämistä voidaan havainnollistaa alla olevilla kuvioilla. H:µ 1 1 µ > H:µ 1 1 < µ H:µ 1 1 µ N(0,1) N(0,1) N(0,1) 1 α α α 1 α 1 α 1 α 1 α + t α t α t α / +t α / Hylkäysalue Hylkäysalue Hylkäysalue Hylkäysalue TKK (c) Ilkka Mellin (007) 54

55 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Testin p-arvo Olkoon t-testisuureen havaittu arvo t 0. Testin p-arvon määräämistä voidaan havainnollistaa alla olevilla kuvioilla. H:µ 1 1 µ > H:µ 1 1 < µ H:µ 1 1 µ N(0,1) N(0,1) N(0,1) p p p p 1 p 1 p 1 p t + t t0 t0 0 0 Testin p-arvo = p Testin p-arvo = p Testin p-arvo = p TKK (c) Ilkka Mellin (007) 55

56 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Normaalisuusoletuksen merkitys 1/ Kahden otoksen t-testin A yleisen hypoteesin mukaan havainnot ovat molemmissa otoksissa normaalijakautuneita. Testi ei kuitenkaan ole herkkä poikkeamille normaalisuudesta, jos molempien otosten otoskoot ovat kyllin suuria. TKK (c) Ilkka Mellin (007) 56

57 Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Normaalisuusoletuksen merkitys / Testiä on melko turvallista käyttää, kun n 1 > 15 ja n > 15 ja n 1 ja n eivät eroa toisistaan kovin paljon, elleivät havaintojen jakaumat ole kovin vinoja ja ellei havaintojen joukossa ole poikkeavia havaintoja. Jos n 1 > 40 ja n > 40 testiä voidaan melko turvallisesti käyttää jopa selvästi vinoille havaintojen jakaumille. TKK (c) Ilkka Mellin (007) 57

58 Testejä suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden riippumattoman otoksen t-testi A: Yleinen tapaus >> Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus t-testi parivertailuille Yhden otoksen testi varianssille Varianssien vertailutesti TKK (c) Ilkka Mellin (007) 58

59 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Testausasetelma 1/4 Olkoon X11, X1,, Xn 11 yksinkertainen satunnaisotos perusjoukosta S 1, joka noudattaa normaalijakaumaa N( µ 1, σ ) Jakauma riippuu seuraavista parametreista: µ 1 = jakauman odotusarvo σ = jakauman varianssi TKK (c) Ilkka Mellin (007) 59

60 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Testausasetelma /4 Olkoon X1, X,, Xn yksinkertainen satunnaisotos perusjoukosta S, joka noudattaa normaalijakaumaa N( µ, σ ) Jakauma riippuu seuraavista parametreista: µ = jakauman odotusarvo σ = jakauman varianssi TKK (c) Ilkka Mellin (007) 60

61 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Testausasetelma 3/4 Oletetaan lisäksi, että perusjoukosta S 1 poimittu otos X11, X1,, Xn 11 ja perusjoukosta S poimittu otos X1, X,, Xn ovat toisistaan riippumattomia. Otosten riippumattomuus merkitsee sitä, että se mikä alkio poimitaan perusjoukosta S 1 ei vaikuta siihen mikä alkioista poimitaan perusjoukosta S ja kääntäen. TKK (c) Ilkka Mellin (007) 61

62 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Testausasetelma 4/4 Asetetaan normaalijakaumien N( µ 1, σ ) ja N( µ, σ ) odotusarvo-eli paikkaparametreille µ 1 ja µ nollahypoteesi H 0:µ 1 = µ = µ Testausongelma: Ovatko havainnot sopusoinnussa nollahypoteesin H 0 kanssa? Ongelman ratkaisuna on kahden riippumattoman otoksen t-testi yhtä suurten varianssien tapauksessa. Huomautus: Jos jakaumien varianssit eivät ole yhtä suuret, testauksessa pitää käyttää kahden riippumattoman otoksen t-testiä A. TKK (c) Ilkka Mellin (007) 6

63 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Yleinen hypoteesi Yleinen hypoteesi H : (1) Xi1 N( µ 1, σ ), i= 1,,, n1 () X j N( µ, σ ), j = 1,,, n (3) Havainnot X i1 ja X j ovat riippumattomia kaikille i ja j Huomautuksia: Oletus (3) sisältää kolme riippumattomuusoletusta: Havainnot ovat riippumattomia otoksien 1 ja sisällä. Havainnot ovat riippumattomia otoksien 1 ja välillä. Jakaumien varianssit on tässä oletettu yhtä suuriksi; vrt. kahden otoksen t-testi A. TKK (c) Ilkka Mellin (007) 63

64 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Nollahypoteesi ja vaihtoehtoiset hypoteesit Nollahypoteesi H 0 : H 0:µ 1 = µ = µ Vaihtoehtoinen hypoteesi H 1 : H: 1 µ 1 > µ 1-suuntaiset vaihtoehtoiset hypoteesit H: 1 µ 1 < µ H : µ µ -suuntainen vaihtoehtoinen hypoteesi 1 1 TKK (c) Ilkka Mellin (007) 64

65 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Parametrien estimointi Olkoot ja n 1 k Xk = Xik, k = 1, n k i = 1 n 1 k s = ( X X ), k = 1, k ik k n k 1 i= 1 tavanomaiset harhattomat estimaattorit parametreille E(X ik ) = µ k, i = 1,,, n k, k = 1, ja Var(X ik ) = σ, i = 1,,, n k, k = 1, TKK (c) Ilkka Mellin (007) 65

66 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Yhdistetty varianssiestimaattori Määritellään ns. yhdistetty varianssiestimaattori s Yhdistetty varianssiestimaattori s P on harhaton estimaattori varianssiparametrille σ, jos nollahypoteesi H :µ = µ = µ pätee. Huomautus: ( n 1) s + ( n 1) s 1 1 P = n1+ n 0 1 Yhdistetty varianssiestimaattori s P ei ole sama kuin yhdistetyn otoksen varianssi, koska otoskeskiarvot X1 ja X eivät (yleensä) ole yhtä suuria. TKK (c) Ilkka Mellin (007) 66

67 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Testisuure ja sen jakauma Määritellään t-testisuure X1 X t = 1 1 sp + n1 n Jos nollahypoteesi H 0:µ 1 = µ = µ pätee, niin testisuure t noudattaa Studentin t-jakaumaa vapausastein (n 1 + n ): t t( n + n ) 1 TKK (c) Ilkka Mellin (007) 67

68 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu 1/3 Oletetaan, että testin yleinen hypoteesi H ja nollahypoteesi H 0 pätevät: X, X,, X, X, X,, X Tällöin (ks. lukua Otos ja otosjakaumat) X 11 1 n 1 1 n X N 0, σ 1 X N( µσ, ), i = 1,,, n i1 1 j N( µσ, ), = 1,,, X j n n1 1 σ X1 = Xi1 N µ, n1 i= 1 n1 n 1 σ X = X j N µ, n j= 1 n Koska X X, niin n1 n TKK (c) Ilkka Mellin (007) 68

69 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu /3 Edellä esitetystä seuraa, että X1 X z = N(0,1) 1 1 σ + n n 1 Koska standardipoikkeama σ on tuntematon, satunnaismuuttujan z lauseke on testisuureena epäoperationaalinen. Määritellään otosvarianssit n 1 k sk = ( Xik Xk), k = 1, 1 n k i= 1 TKK (c) Ilkka Mellin (007) 69

70 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu 3/3 Jos satunnaismuuttujan z lausekkeessa standardipoikkeama σ korvataan otossuureella ( n1 1) s1 + ( n 1) s sp = n + n niin saadaan t-testisuure X1 X t = 1 1 sp + n n 1 1 joka nollahypoteesin H 0 pätiessä noudattaa t-jakaumaa vapausastein (n 1 + n ): t t(n 1 + n ) Todistus sivuutetaan; ks. kuitenkin vastaavaa todistusta yhden otoksen t-testin tapauksessa ja siellä esitettyjä viittauksia. TKK (c) Ilkka Mellin (007) 70

71 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus t-testisuure mittaa tilastollista etäisyyttä Testisuure X t = s P n n mittaa otoksien 1 ja aritmeettisten keskiarvojen tilastollista etäisyyttä. Mittayksikkönä on erotuksen X1 Xstandardipoikkeaman 1 1 σ + n n 1 X 1 estimaattori, jota määrättäessä on oletettu, että nollahypoteesi H 0 pätee. TKK (c) Ilkka Mellin (007) 71

72 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Testi Testisuureen X1 X t = 1 1 sp + n n 1 normaaliarvo = 0, koska nollahypoteesin pätiessä E(t) = 0 H 0:µ 1 = µ = µ Siten itseisarvoltaan suuret testisuureen t arvot viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos testin p-arvo on kyllin pieni. TKK (c) Ilkka Mellin (007) 7

73 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Testin hylkäysalueen määrääminen ja testin p-arvo Kahden otoksen t-testin B hylkäysalueen valinta tapahtuu samalla tavalla kuin yhden otoksen t-testin tapauksessa paitsi, että t-testi-suure noudattaa tässä t-jakaumaa vapausastein (n 1 + n ). Kahden otoksen t-testin B testisuureen arvoa vastaavan p- arvon määrääminen tapahtuu kuten yhden otoksen t-testin tapauksessa paitsi, että t-testisuure noudattaa tässä t- jakaumaa vapausastein (n 1 + n ). TKK (c) Ilkka Mellin (007) 73

74 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Normaalisuusoletuksen merkitys 1/ Kahden otoksen t-testin B yleisen hypoteesin mukaan havainnot ovat molemmissa otoksissa normaalijakautuneita. Testi ei kuitenkaan ole herkkä poikkeamille normaalisuudesta, jos molempien otosten otoskoot ovat kyllin suuria. TKK (c) Ilkka Mellin (007) 74

75 Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus Normaalisuusoletuksen merkitys / Testiä on melko turvallista käyttää, kun n 1 > 15 ja n > 15 ja n 1 ja n eivät eroa toisistaan kovin paljon, elleivät havaintojen jakaumat ole kovin vinoja ja ellei havaintojen joukossa ole poikkeavia havaintoja. Jos n 1 > 40 ja n > 40 testiä voidaan melko turvallisesti käyttää jopa selvästi vinoille havaintojen jakaumille. TKK (c) Ilkka Mellin (007) 75

76 Testejä suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus >> t-testi parivertailuille Yhden otoksen testi varianssille Varianssien vertailutesti TKK (c) Ilkka Mellin (007) 76

77 t-testi parivertailuille Parivertailuasetelma Parivertailuasetelma syntyy tilastollisessa tutkimuksessa esimerkiksi seuraavissa tilanteissa: (i) Päämääränä on verrata kahta mittaria mittaamalla molemmilla mittareilla samat kohteet samoissa olosuhteissa. (ii) Päämääränä on tutkia jonkin käsittelyn vaikutusta mittaamalla samat kohteet ennen käsittelyä ja käsittelyn jälkeen. (iii) Päämääränä on vertailla kahta perusjoukkoa mittaamalla saman muuttujan arvot perusjoukkojen alkioiden sovitetuissa pareissa. TKK (c) Ilkka Mellin (007) 77

78 t-testi parivertailuille Testausasetelma 1/ Oletetaan, että havainnot muodostuvat muuttujaa X koskevista mittaustuloksien pareista (X i1, X i ), i = 1,,, n jotka ovat riippumattomia. Päämääränä on verrata mittauksia toisiinsa: Antavatko mittaukset keskimäärin saman tuloksen? Tällaisissa parivertailuasetelmissa ei saa käyttää riippumattomien otoksien t-testiä A tai B, koska mittaustulokset X i1 ja X i eivät yleensä ole riippumattomia. TKK (c) Ilkka Mellin (007) 78

79 t-testi parivertailuille Testausasetelma / Muodostetaan mittaustuloksien X i1 ja X i erotukset D, 1,,, i = Xi1 Xi i = n Mittaukset 1 ja antavat keskimäärin saman tuloksen, jos erotukset D i saavat keskimäärin arvon nolla. Parivertailuasetelman testausongelman ratkaisuna on tavanomainen yhden otoksen t-testi mittaustuloksien X i1 ja X i erotuksien D i odotusarvolle. TKK (c) Ilkka Mellin (007) 79

80 t-testi parivertailuille Hypoteesit Yleinen hypoteesi H : (1) Erotukset () Erotukset D 1, D,, D n ovat riippumattomia Nollahypoteesi H 0 : H : µ = 0 0 D i N( µ D, σ D), = 1,,, D i n Vaihtoehtoinen hypoteesi H 1 : H: 1 µ D 0 1-suuntaiset vaihtoehtoiset hypoteesit > H: 1 µ D < 0 H : µ 0 -suuntainen vaihtoehtoinen hypoteesi 1 D TKK (c) Ilkka Mellin (007) 80

81 t-testi parivertailuille Parametrien estimointi Olkoot 1 n Di n i = 1 D= ja 1 s D D n D = ( i ) n 1 i= 1 tavanomaiset harhattomat estimaattorit parametreille E(D i ) = µ D, i = 1,,, n ja Var(D i ) = σ D, i = 1,,, n TKK (c) Ilkka Mellin (007) 81

82 t-testi parivertailuille Testisuure ja sen jakauma Määritellään t-testisuure D t = sd / n Jos nollahypoteesi H 0 : µ D = 0 pätee, niin testisuure t noudattaa Studentin t-jakaumaa vapausastein (n 1): t t( n 1) TKK (c) Ilkka Mellin (007) 8

83 t-testi parivertailuille Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu 1/ Oletetaan, että testin yleinen hypoteesi H ja nollahypoteesi H 0 pätevät: D 1, D,, D n Di N(0, σ D), i = 1,,, n Koska tällöin (ks. lukua Otokset ja otosjakaumat) n 1 σ D D= Di N 0, n i= 1 n niin D z = N(0,1) σ D / n Koska standardipoikkeama σ D on tuntematon, satunnaismuuttujan z lauseke on testisuureena epäoperationaalinen. TKK (c) Ilkka Mellin (007) 83

84 t-testi parivertailuille Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu / Jos satunnaismuuttujan z lausekkeessa standardipoikkeama σ D korvataan vastaavalla otossuureella n 1 sd = ( Di D) n 1 i= 1 niin saadaan t-testisuure D t = sd / n joka nollahypoteesin H 0 pätiessä noudattaa t-jakaumaa vapausastein (n 1): t t(n 1) Todistus: ks. kappaletta Yhden otoksen t-testi. TKK (c) Ilkka Mellin (007) 84

85 t-testi parivertailuille t-testisuure mittaa tilastollista etäisyyttä Testisuure D t = s / D n mittaa havaintoarvojen erotuksien aritmeettisen keskiarvon tilastollista etäisyyttä nollasta. Mittayksikkönä on erotuksien D i aritmeettisen keskiarvon D standardipoikkeaman σ D n estimaattori, jota määrättäessä on oletettu, että nollahypoteesi H 0 pätee. TKK (c) Ilkka Mellin (007) 85

86 t-testi parivertailuille Testi Testisuureen D t = s / D n normaaliarvo = 0, koska nollahypoteesin H 0 : µ D = 0 pätiessä E(t) = 0 Siten itseisarvoltaan suuret testisuureen t arvot viittaavat siihen, että nollahypoteesi H 0 ei päde. Nollahypoteesi H 0 hylätään, jos testin p-arvo on kyllin pieni. TKK (c) Ilkka Mellin (007) 86

87 t-testi parivertailuille Testin hylkäysalueen määrääminen ja testin p-arvo Parivertailutestin hylkäysalueen valinta tapahtuu kuten yhden otoksen t-testin tapauksessa. Parivertailutestin testisuureen arvoa vastaavan p-arvon määrääminen tapahtuu kuten yhden otoksen t-testin tapauksessa. TKK (c) Ilkka Mellin (007) 87

88 t-testi parivertailuille Normaalisuusoletuksen merkitys 1/ Parivertailuasetelman t-testin yleisessä hypoteesissa oletetaan, että havaintoarvojen erotukset ovat normaalijakautuneita. Testi ei kuitenkaan ole herkkä poikkeamille normaalisuudesta, jos havaintojen lukumäärä n on kyllin suuri. TKK (c) Ilkka Mellin (007) 88

89 t-testi parivertailuille Normaalisuusoletuksen merkitys / Testiä on melko turvallista käyttää, kun n > 15 ellei erotusten jakauma ole kovin vino ja erotuksien joukossa ole poikkeavia erotuksia. Jos havaintojen lukumäärä n > 40 testiä voidaan melko turvallisesti käyttää jopa selvästi vinoille erotuksien jakaumille. TKK (c) Ilkka Mellin (007) 89

90 Testejä suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus t-testi parivertailuille >> Yhden otoksen testi varianssille Varianssien vertailutesti TKK (c) Ilkka Mellin (007) 90

91 Yhden otoksen testi varianssille Testausasetelma 1/ Olkoon X 1, X,, X n yksinkertainen satunnaisotos perusjoukosta S, joka noudattaa normaalijakaumaa N( µ, σ ) Jakauma riippuu seuraavista parametreista: µ = jakauman odotusarvo σ = jakauman varianssi TKK (c) Ilkka Mellin (007) 91

92 Yhden otoksen testi varianssille Testausasetelma / Asetetaan normaalijakauman N( µ, σ ) varianssiparametrille σ nollahypoteesi H 0 :σ = σ0 Testausongelma: Ovatko havainnot sopusoinnussa nollahypoteesin H 0 kanssa? Ongelman ratkaisuna on yhden otoksen χ -testi varianssille. TKK (c) Ilkka Mellin (007) 9

93 Yhden otoksen testi varianssille Hypoteesit Yleinen hypoteesi H : (1) Havainnot () Havainnot X 1, X,, X n ovat riippumattomia. Nollahypoteesi H 0 : H :σ = σ 0 0 Vaihtoehtoinen hypoteesi H 1 : H: σ 1 0 H: σ 1 0 H : σ 1 0 i > σ < σ σ N( µ, σ ), = 1,,, X i n 1-suuntaiset vaihtoehtoiset hypoteesit -suuntainen vaihtoehtoinen hypoteesi TKK (c) Ilkka Mellin (007) 93

94 Yhden otoksen testi varianssille Parametrien estimointi Olkoot X ja 1 n Xi n i = 1 = 1 s X X n = ( i ) n 1 i= 1 tavanomaiset harhattomat estimaattorit parametreille E(X i ) = µ, i = 1,,, n ja Var(X i ) = σ, i = 1,,, n TKK (c) Ilkka Mellin (007) 94

95 Yhden otoksen testi varianssille Testisuure ja sen jakauma Määritellään χ -testisuure ( n 1) s χ = σ 0 Jos nollahypoteesi H 0 :σ = σ0 pätee, niin testisuure χ noudattaa χ -jakaumaa vapausastein (n 1): χ χ ( n 1) TKK (c) Ilkka Mellin (007) 95

96 Yhden otoksen testi varianssille Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu 1/3 Oletetaan, että testin yleinen hypoteesi H ja nollahypoteesi H 0 pätevät: X 1, X,, X n X i N( µ, σ 0 ), i = 1,,, n Tällöin (ks. lukua Otokset ja otosjakaumat) n X i µ Y = χ ( n) i 1 σ = 0 Koska odotusarvo µ on tuntematon, satunnaismuuttujan Y lauseke on testisuureena epäoperationaalinen. TKK (c) Ilkka Mellin (007) 96

97 Yhden otoksen testi varianssille Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu /3 Jos satunnaismuuttujan z lausekkeessa odotusarvo µ korvataan vastaavalla otossuureella X 1 n X i n i = 1 = niin saadaan χ -testisuure n Xi X ( n 1) s χ = i= 1 σ = 0 σ0 jossa n 1 s = ( Xi X) 1 n i= 1 TKK (c) Ilkka Mellin (007) 97

98 Yhden otoksen testi varianssille Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu 3/3 Jos nollahypoteesi H 0 pätee, testisuure χ noudattaa χ -jakaumaa vapausastein (n 1): χ χ (n 1) Todistus: ks. lukua Otokset ja otosjakaumat. TKK (c) Ilkka Mellin (007) 98

99 Yhden otoksen testi varianssille Testi Testisuureen ( n 1) s χ = σ 0 normaaliarvo = (n 1), koska nollahypoteesin H pätiessä E(s 0 :σ = σ0 ) = σ 0, jolloin E(χ ) = n 1 Siten sekä pienet että suuret testisuureen χ arvot sen normaaliarvoon (n 1) nähden viittaavat siihen, että nollahypoteesi ei päde. Nollahypoteesi H 0 hylätään, jos testin p-arvo on kyllin pieni. TKK (c) Ilkka Mellin (007) 99

100 Yhden otoksen testi varianssille Testin hylkäysalueen määrääminen 1/4 Valitaan testin merkitsevyystasoksi α. Jos vaihtoehtoinen hypoteesi on muotoa H:σ 1 > σ0 niin kriittinen raja χ α saadaan ehdosta Pr(χ χ α ) = α jossa χ χ (n 1) Testin hylkäysalue on tällöin muotoa (, + ) χ α TKK (c) Ilkka Mellin (007) 100

101 Yhden otoksen testi varianssille Testin hylkäysalueen määrääminen /4 Valitaan testin merkitsevyystasoksi α. Jos vaihtoehtoinen hypoteesi on muotoa H:σ 1 < σ0 niin kriittinen raja χ1 α saadaan ehdosta Pr(χ χ1 α ) = α jossa χ χ (n 1) Testin hylkäysalue on tällöin muotoa (0, ) χ1 α TKK (c) Ilkka Mellin (007) 101

102 Yhden otoksen testi varianssille Testin hylkäysalueen määrääminen 3/4 Valitaan testin merkitsevyystasoksi α. Jos vaihtoehtoinen hypoteesi on muotoa H:σ σ 1 0 χ1 α niin kriittiset rajat ja χ α saadaan ehdoista Pr(χ χ ) = α/ 1 α Pr(χ χ α ) = α/ jossa χ χ (n 1) Testin hylkäysalue on tällöin muotoa (0, ) (, + ) χ1 α χ α TKK (c) Ilkka Mellin (007) 10

103 Yhden otoksen testi varianssille Testin hylkäysalueen määrääminen 4/4 Oletetaan, että testin merkitsevyystasoksi on valittu α. Testin hylkäysalueen määräämistä voidaan havainnollistaa alla olevilla kuvioilla. H:σ > σ 1 0 H:σ < σ 1 0 H:σ σ 1 0 χ ( n 1) χ ( n 1) χ ( n 1) 1 α α α 1 α 1 1 α 1 α χα χ1 χ α χ1 α α α Hylkäysalue Hylkäysalue Hylkäysalue Hylkäysalue TKK (c) Ilkka Mellin (007) 103

104 Yhden otoksen testi varianssille Testin p-arvo 1/ Olkoon χ -testisuureen havaittu arvo. Jos vaihtoehtoinen hypoteesi on 1-suuntainen, testin p- arvon määräämistä voidaan havainnollistaa alla olevilla kuvioilla. H:σ > σ 1 0 H:σ < σ 1 0 χ 0 χ ( n 1) χ ( n 1) p 1 p 1 p Testin p-arvo = p χ0 χ 0 p Testin p-arvo = p TKK (c) Ilkka Mellin (007) 104

105 Yhden otoksen testi varianssille Testin p-arvo / Olkoon vaihtoehtoinen hypoteesi -suuntainen: H:σ σ 1 0 Tällöin testin p-arvo on { } p = min Pr( χ χ0),pr( χ χ0) jossa χ χ ( n 1) TKK (c) Ilkka Mellin (007) 105

106 Yhden otoksen testi varianssille Normaalisuusoletuksen merkitys Tässä esitetyn varianssitestin yleisessä hypoteesissa oletetaan, että havainnot ovat normaalijakautuneita. Testi on herkkä poikkeamille normaalisuudesta ja testi ei toimi kovinkaan hyvin, jos havaintojen jakauma on vino tai havaintojen joukossa on poikkeavia havaintoja. Suuretkaan havaintojen lukumäärät eivät yleensä paranna tilannetta. TKK (c) Ilkka Mellin (007) 106

107 Testejä suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden riippumattoman otoksen t-testi A: Yleinen tapaus Kahden riippumattoman otoksen t-testi B: Yhtä suurten varianssien tapaus t-testi parivertailuille Yhden otoksen testi varianssille >> Varianssien vertailutesti TKK (c) Ilkka Mellin (007) 107

108 Varianssien vertailutesti Testausasetelma 1/4 Olkoon X11, X1,, Xn 11 yksinkertainen satunnaisotos perusjoukosta S 1, joka noudattaa normaalijakaumaa N( µ 1, σ1) Jakauma riippuu seuraavista parametreista: µ 1 = jakauman odotusarvo σ 1 = jakauman varianssi TKK (c) Ilkka Mellin (007) 108

109 Varianssien vertailutesti Testausasetelma /4 Olkoon X1, X,, Xn yksinkertainen satunnaisotos perusjoukosta S, joka noudattaa normaalijakaumaa N( µ, σ ) Jakauma riippuu seuraavista parametreista: µ = jakauman odotusarvo σ = jakauman varianssi TKK (c) Ilkka Mellin (007) 109

110 Varianssien vertailutesti Testausasetelma 3/4 Oletetaan lisäksi, että perusjoukosta S 1 poimittu otos X11, X1,, Xn 11 ja perusjoukosta S poimittu otos X1, X,, Xn ovat toisistaan riippumattomia. Otosten riippumattomuus merkitsee sitä, että se mikä alkio poimitaan perusjoukosta S 1 ei vaikuta siihen mikä alkioista poimitaan perusjoukosta S ja kääntäen. TKK (c) Ilkka Mellin (007) 110

111 Varianssien vertailutesti Testausasetelma 4/4 Asetetaan normaalijakaumien N( µ 1, σ1) ja N( µ, σ ) varianssiparametreille σ 1 ja σ nollahypoteesi H 0 :σ1 = σ = σ Testausongelma: Ovatko havainnot sopusoinnussa nollahypoteesin H 0 kanssa? Ongelman ratkaisuna on kahden riippumattoman otoksen F-testi variansseille eli varianssien vertailutesti. TKK (c) Ilkka Mellin (007) 111

112 Varianssien vertailutesti Yleinen hypoteesi Yleinen hypoteesi H : (1) Havainnot Xi1 N( µ 1, σ 1), i= 1,,, n1 () Havainnot X j N( µ, σ ), j = 1,,, n (3) Havainnot X i1 ja X j ovat riippumattomia kaikille i ja j Huomautus: Oletus (3) sisältää kolme riippumattomuusoletusta: Havainnot ovat riippumattomia otoksien 1 ja sisällä. Havainnot ovat riippumattomia otoksien 1 ja välillä. TKK (c) Ilkka Mellin (007) 11

113 Varianssien vertailutesti Nollahypoteesi ja vaihtoehtoiset hypoteesit Nollahypoteesi H 0 : H :σ = σ = σ 0 1 Vaihtoehtoinen hypoteesi H 1 : H: σ 1 1 H: σ 1 1 H : σ > σ < σ σ suuntaiset vaihtoehtoiset hypoteesit -suuntainen vaihtoehtoinen hypoteesi TKK (c) Ilkka Mellin (007) 113

114 Varianssien vertailutesti Parametrien estimointi Olkoot ja n 1 k Xk = Xik, k = 1, n k i = 1 n 1 k s = ( X X ), k = 1, k ik k n k 1 i= 1 tavanomaiset harhattomat estimaattorit parametreille E(X ik ) = µ k, i = 1,,, n k, k = 1, ja Var(X ik ) = σ k, i = 1,,, n k, k = 1, TKK (c) Ilkka Mellin (007) 114

115 Varianssien vertailutesti Testisuure ja sen jakauma Määritellään F-testisuure s1 F = s Jos nollahypoteesi H 0 :σ1 = σ = σ pätee, niin testisuure F noudattaa Fisherin F-jakaumaa vapausastein (n 1 1) ja (n 1): F F( n 1, n 1) 1 TKK (c) Ilkka Mellin (007) 115

116 Varianssien vertailutesti Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu 1/4 Oletetaan, että testin yleinen hypoteesi H ja nollahypoteesi H 0 pätevät: X, X,, X, X, X,, X 11 1 n 1 1 n Tällöin (ks. lukua Otokset ja otosjakaumat) n 1 X i1 µ 1 Y1 = χ ( n1) i= 1 σ n X j µ Y = χ ( n) j 1 σ = Koska Y 1 Y, niin Y1/ n1 Y = F( n1, n) Y / n 1 X N( µ, σ ), i = 1,,, n i1 1 1 j N( µ, σ ), = 1,,, X j n TKK (c) Ilkka Mellin (007) 116

117 Varianssien vertailutesti Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu /4 Koska odotusarvot µ 1 ja µ ovat tuntemattomia, satunnaismuuttujan Y1/ n1 Y = Y/ n lauseke on testisuureena epäoperationaalinen. Korvataan satunnaismuuttujien Y 1 ja Y lausekkeissa odotusarvot µ 1 ja µ vastaavilla otossuureilla n 1 k X = X, k = 1, k n k i = 1 ik TKK (c) Ilkka Mellin (007) 117

118 Varianssien vertailutesti Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu 3/4 Saamme satunnaismuuttujat (ks. lukua Otokset ja otosjakaumat) n 1 ( n1 1) s1 Xi 1 X1 V1 = = χ ( n1 1) σ i= 1 σ n ( n 1) s X j X V = = χ ( n 1) σ j 1 σ = jossa n 1 k sk = ( Xik Xk), k = 1, n k 1 i= 1 Lisäksi satunnaismuuttujat V 1 ja V ovat riippumattomia: V V 1 TKK (c) Ilkka Mellin (007) 118

119 Varianssien vertailutesti Testisuureen jakauma nollahypoteesin H 0 pätiessä: Perustelu 4/4 Määritellään F-testisuure F V1/( n1 1) s1 = = V /( n 1) s Jos nollahypoteesi H 0 pätee, testisuure F noudattaa F-jakaumaa vapausastein (n 1 1) ja (n 1): F F( n 1, n 1) 1 TKK (c) Ilkka Mellin (007) 119

120 Varianssien vertailutesti Testi Testisuureen s1 F = s normaaliarvo 1, koska nollahypoteesin H 0 :σ1 = σ = σ pätiessä (ja jos n on kyllin suuri) n 1 E( F) = 1 n 3 Siten sekä pienet että suuret testisuureen F arvot sen normaaliarvoon 1 nähden viittaavat siihen, että nollahypoteesi ei päde. Nollahypoteesi H 0 hylätään, jos testin p-arvo on kyllin pieni. TKK (c) Ilkka Mellin (007) 10

121 Varianssien vertailutesti Testin hylkäysalueen määrääminen 1/4 Valitaan testin merkitsevyystasoksi α. Jos vaihtoehtoinen hypoteesi on muotoa H 0:σ1 > σ niin kriittinen raja F α saadaan ehdosta Pr(F F α ) = α jossa F F(n 1 1,n 1) Testin hylkäysalue on tällöin muotoa (F α, + ) TKK (c) Ilkka Mellin (007) 11

122 Varianssien vertailutesti Testin hylkäysalueen määrääminen /4 Valitaan testin merkitsevyystasoksi α. Jos vaihtoehtoinen hypoteesi on muotoa H 0:σ1 < σ niin kriittinen raja F 1 α saadaan ehdosta Pr(F F 1 α ) = α jossa F F(n 1 1,n 1) Testin hylkäysalue on tällöin muotoa (0, F 1 α ) TKK (c) Ilkka Mellin (007) 1

123 Varianssien vertailutesti Testin hylkäysalueen määrääminen 3/4 Valitaan testin merkitsevyystasoksi α. Jos vaihtoehtoinen hypoteesi on muotoa H 0:σ1 σ niin kriittiset rajat F 1 α/ ja F α/ saadaan ehdoista Pr(F F 1 α/ ) = α/ Pr(F F α/ ) = α/ jossa F F(n 1 1,n 1) Testin hylkäysalue on tällöin muotoa (0, F 1 α/ ) (F α/, + ) TKK (c) Ilkka Mellin (007) 13

124 Varianssien vertailutesti Testin hylkäysalueen määrääminen 4/4 Oletetaan, että testin merkitsevyystasoksi on valittu α. Testin hylkäysalueen määräämistä voidaan havainnollistaa olevilla kuvioilla. H:σ > σ 1 1 H:σ < σ 1 1 H:σ σ 1 1 F( n 1, n 1) 1 F( n1 1, n 1) F( n1 1, n 1) α α 1 α 1 α 1 α 1 α 1 α F α F 1 α F 1 α F α Hylkäysalue Hylkäysalue Hylkäysalue Hylkäysalue TKK (c) Ilkka Mellin (007) 14

125 Varianssien vertailutesti Testin p-arvo 1/ Olkoon F-testisuureen havaittu arvo F 0. Jos vaihtoehtoinen hypoteesi on 1-suuntainen, testin p- arvon määräämistä voidaan havainnollistaa alla olevilla kuvioilla. H:σ > σ 1 1 H:σ < σ 1 1 F( n 1, n 1) 1 F( n 1, n 1) 1 p p 1 p 1 p F 0 Testin p-arvo = p F 0 Testin p-arvo = p TKK (c) Ilkka Mellin (007) 15

126 Varianssien vertailutesti Testin p-arvo / Olkoon vaihtoehtoinen hypoteesi -suuntainen: Tällöin testin p-arvo on p = min Pr( F F ),Pr( F F ) jossa H:σ σ 1 1 F F(n 1 1,n 1) { } 0 0 TKK (c) Ilkka Mellin (007) 16

127 Varianssien vertailutesti Normaalisuusoletuksen merkitys Tässä esitetyn varianssien vertailutestin yleisessä hypoteesissa oletetaan, että havainnot ovat molemmissa otoksissa normaalijakautuneita. Testi on herkkä poikkeamille normaalisuudesta ja testi ei toimi kovinkaan hyvin, jos havaintojen jakauma on vino tai havaintojen joukossa on poikkeavia havaintoja. Suuretkaan havaintojen lukumäärät eivät yleensä paranna tilannetta. TKK (c) Ilkka Mellin (007) 17

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit järjestysasteikollisille muuttujille Järjestysasteikollisten muuttujien testit Merkkitesti Wilcoxonin

Lisätiedot

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastolliset testit TKK (c) Ilkka Mellin (2005) 1 Tilastolliset testit Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet testauksessa

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Tilastolliset menetelmät: Tilastolliset testit

Tilastolliset menetelmät: Tilastolliset testit Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5 TKK (c) Ilkka Mellin (4) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (4) : Mitä opimme? 1/5 Tilastollisessa tutkimuksessa tutkimuksen kohteena olevasta perusjoukosta esitetään tavallisesti väitteitä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 11 (vko 48/003) (Aihe: Tilastollisia testejä, Laininen luvut 4.9, 15.1-15.4, 15.7) Nordlund 1. Kemiallisen prosessin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007

Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 Mat-2.204 Tilastollisen analyysin perusteet, kevät 2007 3. luento: Pari sanaa vielä hypoteesien formuloinneista Kai Virtanen Hypoteesien muodoista Luennolla nro. 2 muotoiltiin nollahypoteesi - H 0 : θ

Lisätiedot

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset. Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit,

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Väliestimointi TKK (c) Ilkka Mellin (2007) 1 Väliestimointi >> Todennäköisyysjakaumien parametrien estimointi Luottamusväli

Lisätiedot

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Väliestimointi TKK (c) Ilkka Mellin (2005) 1 Väliestimointi Todennäköisyysjakaumien parametrien estimointi Luottamusväli Normaalijakauman odotusarvon luottamusväli Normaalijakauman

Lisätiedot

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu

Lisätiedot

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat: Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,

Lisätiedot

Hypoteesin testaus Alkeet

Hypoteesin testaus Alkeet Hypoteesin testaus Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Johdanto Kokeellinen tutkimus: Varmennetaan teoreettista olettamusta fysikaalisen systeemin käyttäytymisestä

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan 17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen

Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen TKK (c) Ilkka Mellin (2007) 1 Yhteensopivuuden, homogeenisuuden ja riippumattomuuden

Lisätiedot

Johdatus tilastotieteeseen Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen TKK (c) Ilkka Mellin (2004) 1 Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen Jakaumaoletuksien

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto Kytkentäanalyysin teoriaa Pyritään selvittämään tiettyyn ominaisuuteen vaikuttavien eenien paikka enomissa Perustavoite: löytää markkerilokus jonka alleelit ja tutkittava ominaisuus (esim. sairaus) periytyvät

Lisätiedot

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1 Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 5

031021P Tilastomatematiikka (5 op) viikko 5 031021P Tilastomatematiikka (5 op) viikko 5 Jukka Kemppainen Mathematics Division Hypoteesin testauksesta Tilastollisessa testauksessa on kyse havainnoista tapahtuvasta päätöksenteosta. Kokeellisen tutkimuksen

Lisätiedot

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Kaksisuuntainen varianssianalyysi. Heliövaara 1 Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu 1.1 Noudattakoon satunnaismuuttuja X normaalijakaumaa a) b) c) d) N(5, 15). Tällöin P (1.4 < X 12.7) on likimain

Lisätiedot

χ 2 -yhteensopivuustestissä käytetään χ 2 -testisuuretta χ = Mat Sovellettu todennäköisyyslasku A

χ 2 -yhteensopivuustestissä käytetään χ 2 -testisuuretta χ = Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Estimointi, Havaittu frekvenssi, Heterogeenisuus,

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Johdatus tilastotieteeseen Tilastollinen riippuvuus ja korrelaatio. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollinen riippuvuus ja korrelaatio. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollinen riippuvuus ja korrelaatio TKK (c) Ilkka Mellin (2005) 1 Tilastollinen riippuvuus ja korrelaatio Tilastollinen riippuvuus, korrelaatio ja regressio Kahden muuttujan

Lisätiedot

Johdatus tilastotieteeseen Kaksisuuntainen varianssianalyysi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Kaksisuuntainen varianssianalyysi. TKK (c) Ilkka Mellin (2005) 1 ohdatus tilastotieteeseen Kaksisuuntainen varianssianalyysi TKK (c) Ilkka Mellin (2005) Kaksisuuntainen varianssianalyysi Varianssianalyysi: ohdanto Kaksisuuntainen varianssianalyysi ja sen suorittaminen

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 31.03.2012 klo. 9.00-12.00 saleissa L1,L3 Jukka Kemppainen Mathematics

Lisätiedot

Parametrin estimointi ja bootstrap-otanta

Parametrin estimointi ja bootstrap-otanta Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista

Lisätiedot

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme

Lisätiedot

TILASTOMATEMATIIKKA. Keijo Ruohonen

TILASTOMATEMATIIKKA. Keijo Ruohonen TILASTOMATEMATIIKKA Keijo Ruohonen 20 Sisältö I PERUSOTOSJAKAUMAT JA DATAN KUVAUKSET. Satunnaisotanta.2 Tärkeitä otossuureita 2.3 Datan esitykset ja graafiset metodit 6.4 Otosjakaumat 6.4. Otoskeskiarvon

Lisätiedot

Tilastollisen analyysin perusteet Luento 5: Jakaumaoletuksien. testaaminen

Tilastollisen analyysin perusteet Luento 5: Jakaumaoletuksien. testaaminen Tilastollisen analyysin perusteet Luento 5: Sisältö Tilastotieteessä tehdään usein oletuksia havaintojen jakaumasta. Useat tilastolliset menetelmät toimivat tehottomasti tai jopa virheellisesti, jos jakaumaoletukset

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin

Lisätiedot

2. Keskiarvojen vartailua

2. Keskiarvojen vartailua Havaintoaineiston perusteella näyttää ilmeiseltä, että alkuperäisen laastin sidoslujuus on suurempi. Ero sattumasta johtuvaa? Palataan tuonnempana. Tension bond strength data for Portland Cement formulation

Lisätiedot

Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu

Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu ilastollinen päättely 5.. Johdanto Estimointi, Joukkoestimointi, Kriittinen alue, uottamusjoukko, uottamustaso, uottamusväli, Otos, Parametri, Peittotodennäköisyys, Piste-estimointi, Väliestimaatti, Väliestimaattori,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Tilastollisen merkitsevyyden testaus (+ jatkuvan parametrin Bayes-päättely) Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,

Lisätiedot

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu Latinalaiset neliöt TKK (c) Ilkka Mellin (2005) 1 Latinalaiset neliöt Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman analysointi Laskutoimitusten suorittaminen

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II G. Gripenberg Aalto-yliopisto 11. helmikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 4

031021P Tilastomatematiikka (5 op) viikko 4 031021P Tilastomatematiikka (5 op) viikko 4 Jukka Kemppainen Mathematics Division Tilastollinen aineisto Tilastolliset menetelmät ovat eräs keino tutkia numeerista havaintoaineistoa todennäköisyyslaskentaa

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9

Lisätiedot

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13

Lisätiedot