Markov-ketjun hetkittäinen käyttäytyminen
|
|
- Martti Elstelä
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Matematiika ja systeemiaalyysi laitos B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava siirtymäkaavio ja laskemaa Markov-ketjuje hetkittäisiä jakaumia matriisilaskea keioi. Jos mahdollista, harjoituksii kaattaa tuoda mukaa kaettava tietokoe tai laski, jolla voi laskea tehtävissä esiityvie matriisilaskuje lukuarvot. Alla o kuhuki tehtävää esitetty malliratkaisut puaisella sekä malliratkaisuje lisämateriaalit siisellä. Tutitehtävät B Tarkastellaa tähtimäistä verkkoa, joka solmujoukko o V = {, 2,..., }, ja joka sisältää likit x ja x, x = 2, 3,...,, mutta ei muita likkejä. (a) Piirrä verkko ja kirjoita se aapuruusmatriisi G tapauksessa = 4. Ratkaisu. Jos = 4, ii verkko ja se aapuruusmatriisi G ovat: Matriisi G alkioille pätee 0 G = G(x, y) = { x y 0 muute (b) Tarkista, että luetomoistee PageRak-malli yhteydessä (esimerkki 2.3) määritelty matriisi P todella o siirtymämatriisi, eli että P : alkiot ovat ei-egatiivisia ja rivisummat ykkösiä. Ratkaisu. Muistetaa, että P (x, y) = c + ( c) G(x, y) y V G(x, y ), missä V = sekä G o verko aapuruusmatriisi. Muistetaa, että G(x, y ) > 0, y V / 7
2 Matematiika ja systeemiaalyysi laitos jokaiselle x V. Tämä lisäksi, parametri c tulkitaa todeäköisyyteä, jote 0 c. i. Huomataa, että jokaiselle x, y V pätee 0 G(x, y) y V G(x, y ). Näi G(x, y) olle o selvää, että P (x, y) o yksikkövälissä olevie lukuje y V G(x, y ) ja koveksi kombiaatio. Tämä siis tarkoittaa, että 0 P (x, y). ii. Huomataa, että jokaiselle x V pätee P (x, y) = c y V G(x, y) + ( c) y V G(x, y ) y V y V = c + ( c) = (c) Kirjoita siirtymämatriisi P ja piirrä se siirtymäkaavio tapauksessa = 4 vaimeuskertoime arvoille c =, c = 0 ja c =. Mite kuvailisit Markov-ketju käyttäytymistä tapauksessa c =? Ratkaisu. Olkoo = 4 ja merkitää P c = (P c (i, j)) i,j 4, jossa P c (i, j) = 4 c + ( c) G(i, j) 4 k= G(i, k). Näi olle, saadaa /8 7/24 7/24 7/24 P = 5/8 /8 /8 /8 5/8 /8 /8 /8, 5/8 /8 /8 /8 0 /3 /3 /3 P 0 = , /4 /4 /4 /4 P = /4 /4 /4 /4 /4 /4 /4 /4, /4 /4 /4 /4 (d) Oletetaa, että c (0, ). Mikä o todeäköisyys että solmusta käyistyvä ketju löydetää yhde ajahetke kuluttua solmusta? Ratkaisu. Solmusta käyistyvä ketju löydetää yhde ajahetke kuluttua 2 / 7
3 Matematiika ja systeemiaalyysi laitos solmusta todeäköisyydellä P c (, ) = c + ( c) G(, ) k= G(, k) = c + ( c) 0 = c. (e) Etä kahde ajahetke kuluttua? Ratkaisu. Laskettava todeäköisyys o P 2 c (, ), eli P 2 c (, ) = P c (, s)p c (s, ) s= = (P c (, )) 2 + = ( c)2 + = c2 2 + k=2 [ ] [ ] c + ( c) G(, s) k= G(, k) c + ( c) G(s, ) k= G(s, k) [ c + ( c) ] [ + c c k=2 [ c ( ) c + c2 = = c c + ( c). ] [ ] c + ( c) ] ( ) B2 Kalvoväätäjät Oyj o liikkeejohdo kosulttiyhtiö, joka työtekijät o jaoteltu kolmee palkkaluokkaa: = juiorit, 2 = seiorit ja 3 = parterit. Viiko alussa juioriasemassa oleva työtekijä yleee seioriksi t:llä 0.03 ja muute jatkaa samassa asemassa seuraava viiko alussa. Vastaavasti seiori yleee parteriksi t:llä 0.0 ja muute jatkaa samassa asemassa. Parteri oletetaa jatkava samassa asemassa hamaa tulevaisuutee. Oletetaa yksikertaisuude vuoksi, että työtekijät eivät poistu yhtiö palveluksesta tarkasteltavalla aikajäteellä. (a) Mallia yksittäise työtekijä palkkaluokkaa tilajouko S = {, 2, 3} Markovketjua, kirjoita ketju siirtymämatriisi ja piirrä siirtymäkaavio. Ratkaisu. Merkitää S = {, 2, 3}. Ketju siirtymämatriisi sekä se siirtymäkaavio ovat P = / 7
4 Matematiika ja systeemiaalyysi laitos (b) Laske juioria aloittava työtekijä palkkaluoka tilajakauma 0 viiko jälkee. Ratkaisu. Alkujakauma o µ 0 = [P(X 0 = ) P(X 0 = 2) P(X 0 = 3)] = [ 0 0]. Kysytty jakauma o µ 0 = µ 0 P 0. Tietokoee avulla lasketaa P 0 = Näi olle saadaa µ 0 = [ ]. (c) Millä todeäköisyydellä yhtiö palveluksee palkattu juiori o yletyyt parteriksi vuode kuluessa? Ratkaisu. Kysytty t o P(X 52 = 3 X 0 = ). Tietokoee avulla lasketaa P 52 = Todeäköisyys, että yhtiö palveluksee palkattu juiori o yletyyt parteriksi vuode kuluessa o P(X 52 = 3 X 0 = ) = P 52 (, 3) = (d) Millä todeäköisyydellä yhtiöö seioriksi palkattu hekilö ei ole yletyyt parteriksi vuode kuluttua? Ratkaisu. Todeäköisyys, että seioriksi palkattu hekilö ei ole yletyyt parteriksi vuode kuluessa o P(X 52 = 3 X 0 = 2) = P 52 (2, 3) = = / 7
5 Matematiika ja systeemiaalyysi laitos Kotitehtävät B3 Syyskuu säätilaa pääkaupukiseudulla mallietaa tila-avaruude S = {, 2, 3} diskreettiaikaisella Markov-ketjulla, jossa = sateista, 2 = pilvistä ja 3 = aurikoista, ja siirtymämatriisi o P = (a) Jos huomea o pilvistä, ii millä todeäköisyydellä myös ylihuomea o pilvistä? Etä ylihuomista seuraavaa päivää? Ratkaisu. Tässä tapauksessa merkitää huomise säätilaa X 0 = 2. Todeäköisyys, että ylihuomea (X ) o pilvistä o P(X = 2 X 0 = 2) = P (2, 2) = 0.7. Toisaalta, todeäköisyys, että ylihuomista seuraavaa päivää (X 2 ) o pilvistä o P(X 2 = 2 X 0 = 2) = P 2 (2, 2) = Viimeie tulos saadaa matriisista P 2 = (b) Jos esi suutaia o aurikoista, ii millä todeäköisyydellä suutaita seuraa peräkkäi vähitää eljä aurikoista päivää? Ratkaisu. Tässä tapauksessa X 0 = 3. Kysytty t o P(X 4 = 3, X 3 = 3, X 2 = 3, X = 3 X 0 = 3). Miksi? Huomaa, että P(A B C) = P(A C)P(B A C). Näi olle saadaa P(X 4 = 3, X 3 = 3, X 2 = 3, X = 3 X 0 = 3) = = P(X 3 = 3, X 2 = 3, X = 3 X 0 = 3)P(X 4 = 3 X 3 = 3, X 2 = 3, X = 3, X 0 = 3) = P(X 2 = 3, X = 3 X 0 = 3)P(X 3 = 3 X 2 = 3, X = 3, X 0 = 3)P (3, 3) = P(X = 3 X 0 = 3)P(X 2 = 3 X = 3, X 0 = 3)P (3, 3)P (3, 3) = P (3, 3)P (3, 3)P (3, 3)P (3, 3) = (P (3, 3)) 4 = (c) Laske viiko 38 ( ) lauatai ja suutai säätiloje jakaumat, ku oletetaa, että kyseise viiko maaataia o pilvistä. Kumpaa viikolopu päivää sataa todeäköisimmi? 5 / 7
6 Matematiika ja systeemiaalyysi laitos Ratkaisu. Merkitää X 0 = 2 sitä, että kyseise viiko maaataia o pilvistä. Näi olle alkutilajakauma o µ 0 = [0 0]. Kysytyt tilajakaumat ovat µ 5 = [P(X 5 = ) P(X 5 = 2) P(X 5 = 3)], µ 6 = [P(X 6 = ) P(X 6 = 2) P(X 6 = 3)]. Tietokoee avulla saadaa P 5 = , P 6 = Tästä ähdää, että µ 5 = µ 0 P 5 = [ ], µ 6 = µ 0 P 6 = [ ]. Huomaa, että µ 5 () > µ 6 (), jote lauataia sataa todeäköisimmi. (Voidaa saoa, että lauataia sekä suutaia sataa melkei samalla todeäköisyydellä) Lisäys. Erityisesti matriisi P 6 kaikki rivit ovat lähes samat. Näi olle käytäössä riippumatta maaatai säätilasta suutaia paistaa t:llä 0.857, o pilvistä t:llä ja sataa t:llä Likimai samat rivit saadaa myös P 7 :lle, P 8 :lle je. Tämä o k.o. Markov-ketju alkutilasta riippumato rajajakauma ja kurssi seuraava aihe. Rajajakauma voidaa myös tulkita syyskuu pitkä aikaväli sääkeskiarvoa. B4 Tarkastellaa seuraavaa yksikertaista geeie periytyvyysmallia. Oletetaa, että yksilö tiety piirtee määrää geeipari, joka kumpiki osae voi olla kahta mahdollista alleelia, A tai a. Mahdolliset yhdistelmät eli geotyypit ovat siis AA (domioiva homotsygootti), Aa (heterotsygootti ) ja aa (resessiivie homotsygootti). Seurataa yhde domioivaa homotsygoottia geotyyppiä AA oleva yksilö jälkeläisiä kymmeessä sukupolvessa. Oletetaa, että tämä yksilö saa jälkeläise heterotsygooti (Aa) yksilö kassa, tämä jälkeläie saa edellee jälkeläise heterotsygooti (Aa) yksilö kassa, ja ii edellee kymmeetee sukupolvee asti. Periöllisyydestä tiedetää seuraavaa. Geotyyppie AA ja Aa vahempie jälkeläie o todeäköisyydellä geotyyppiä 2 AA, muute Aa. Geotyyppie aa ja Aa vahempie jälkeläie o todeäköisyydellä 2 geotyyppiä aa, muute Aa. Kahde geotyyppiä Aa oleva vahemma jälkeläie o todeäköisyydellä geotyyppiä AA, todeäköisyydellä geotyyppiä Aa ja todeäköisyydellä geotyyppiä aa Yhdistelmä aa geeettisesti ekvivaletti yhdistelmä Aa kassa, jote emme erottele äitä. 6 / 7
7 Matematiika ja systeemiaalyysi laitos (a) Muodosta ylläoleva perusteella tilajouko {AA, Aa, aa} Markov-ketju siirtymämatriisi, joka kuvaa jälkeläiste geotyyppejä sukupolvittai. Ratkaisu. Tilajouko {AA, Aa, aa} Markov-ketju siirtymämatriisi sekä siirtymäkaavio ovat 0 P = /4 /4. 0 AA Aa aa /4 (b) Laske malli esiityvyysmatriisi M 0. Ratkaisu. Tietokoee avulla saadaa 0 M 0 = s=0 P s /4 = I + P + P P = (c) Selvitä esiityvyysmatriisi avulla odotusarvo sille, kuika moi domioiva homotsygooti (AA) yksilö jälkeläie kymmeetee sukupolvee asti o resessiivistä homotsygoottia tyyppiä (aa). Ratkaisu. Tila aa esiityvyys aikavälillä [0, 0] o Tästä ähdää, että 0 N aa (0) = (X s = aa). s=0 E(N aa (0) X 0 = AA) = M 0 (AA, aa) = Lisäys. Tämä tehtävä malli o yksikertaistettu sikäli, että siiä tutkitaa vai yhtä geeiä ja tutkitu lija ulkopuolie geotyyppi o oletettu vakioksi Aa. Periytyvyyttä mallietaa kuiteki todellisuudessaki samahekisiä satuaisprosesseia. 7 / 7
Markov-ketjun hetkittäinen käyttäytyminen
Matematiika ja systeemiaalyysi laitos 1B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava
LisätiedotMarkov-ketjut pitkällä aikavälillä
2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton; oppia tunnistamaan, milloin
LisätiedotMarkov-ketjut pitkällä aikavälillä
MS-C2111 Stokastiset prosessit 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton;
LisätiedotErilaisia Markov-ketjuja
MS-C2 Stokastiset prosessit Syksy 207 3A Erilaisia Markov-ketjuja Tuntitehtävät 3A Lepakoiden rengastaja (tai kuponkien keräilijä) Lepakkoluolassa on lepakkoa, joista jokainen lentää luolasta ulos joka
LisätiedotJatkuva-aikaisten Markov-prosessien aikakehitys
5A Jatkuva-aikaisten Markov-prosessien aikakehitys Tämän harjoituksen tavoitteena on harjoitella jatkuva-aikaisiin Markov-prosesseihin liittyviä hetkittäisiä jakaumia ja tutkia niien muutoksia ajassa.
LisätiedotMarkov-kustannusmallit ja kulkuajat
2B Markov-kustannusmallit ja kulkuajat Tämän harjoituksen tavoitteena on oppia laskemaan Markov-kustannusmallien kustannuskertymiä ja -vauhteja, ketjujen odotettuja kulkuaikoja sekä todennäköisyyksiä osua
LisätiedotJatkuva-aikaisia Markov-prosesseja
5B Jatkuva-aikaisia Markov-prosesseja Tämän harjoituksen tavoitteena on harjoitella jatkuva-aikaisiin Markov-prosesseihin liittyviä hetkittäisiä jakaumia ja tasapainojakaumia. Laskuharjoitukseen kannattaa
Lisätiedot1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä
LisätiedotS Laskennallinen systeemibiologia
S-4250 Laskeallie systeemibiologia Harjoitus Mittaustuloksea o saatu havaitoparia (x, y ),, (x, y ) Muuttuja y käyttäytymistä voidaa selittää muuttuja x avulla esimerkiksi yksikertaise lieaarise riippuvuude
Lisätiedot1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
Lisätiedot8. laskuharjoituskierros, vko 11, ratkaisut
Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse
LisätiedotMarkov-kustannusmallit ja kulkuajat
2B Markov-kustannusmallit ja kulkuajat Tämän harjoituksen tavoitteena on oppia laskemaan Markov-kustannusmallien kustannuskertymiä ja -vauhteja, ketjujen odotettuja kulkuaikoja sekä todennäköisyyksiä osua
LisätiedotTilastollinen todennäköisyys
Tilastollie todeäköisyys TOD.NÄK JA TILASTOT, MAA10 Klassisessa todeäköisyydessä oli ehdot: äärellisyys ja symmetrisyys. Tämä tilae o usei mahdoto ts. alkeistapauksia o usei ääretö määrä tai e eivät ole
Lisätiedot10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.
10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).
LisätiedotJatkuvan aikavälin stokastisia prosesseja
6A Jatkuvan aikavälin stokastisia prosesse Tämän harjoituksen tavoitteena on tutustua uusiutumisprosesseihin tkuva-aikaisiin Markovprosesseihin harjoitella laskemaan niihin liittyviä hetkittäisiä kaumia
LisätiedotEsimerkki: Tietoliikennekytkin
Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)
Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,
LisätiedotT Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen
T-1.1 Datasta tietoo, syksy 5 Laskuharjoitus.1., ratkaisuja Joui Seppäe 1. Simuloidaa tasoittaista algoritmia. Esimmäisessä vaiheessa ehdokkaia ovat kaikki yhde muuttuja joukot {a}, {b}, {c} ja {d}. Aaltosulkeide
LisätiedotSMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi
SMG-400 Sähkömageettiste järjestelmie lämmösiirto Ehdotukset harjoitukse 6 ratkaisuiksi Tarkastellaa suljetu järjestelmä tehotasaaioa joka o P + P P = P i g out st Oletetaa että verkotetussa alueessa jossa
LisätiedotLIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3
LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi
LisätiedotInsinöörimatematiikka IA
Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Lisätiedot****************************************************************** ****************************************************************** 7 Esim.
8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi
Lisätiedot= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1
35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,
LisätiedotMatematiikan tukikurssi
Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa
LisätiedotLuento 6 Luotettavuus Koherentit järjestelmät
Lueto 6 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi ja-erik.holmberg@aalto.fi Määritelmä Tarkasteltava yksikö luotettavuus
LisätiedotMATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku
LisätiedotTilastollinen päättely II, kevät 2017 Harjoitus 3B
Tilastollie päättely II, kevät 7 Harjoitus 3B Heikki Korpela 3. maaliskuuta 7 Tehtävä. Jatkoa harjoitukse B tehtävii -3. Oletetaa, että x i c kaikilla i, ku c > o vakio. Näytä, että ˆβ, T ja T ovat tarketuvia.
Lisätiedot( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.
Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä
LisätiedotRATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan
RATKAISUT 8 17 8 a) Paraabelie y x ja y x + x + 1 leikkauspisteet saadaa määritettyä, ku esi ratkaistaa yhtälö x x + x + 1, eli x x, joka o yhtäpitävä yhtälö x x. Toise astee yhtälö ratkaisukaavalla saadaa
LisätiedotLuento 7 Luotettavuus Koherentit järjestelmät
Lueto 7 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio Aalto-yliopisto perustieteide korkeakoulu PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi Määritelmä Tarkasteltava
LisätiedotMatematiikan tukikurssi
Matematiika tukikurssi Kurssikerta 3 1 Lisää iduktiota Jatketaa iduktio tarkastelua esimerki avulla. Yritetää löytää kaava : esimmäise (positiivise) parittoma luvu summalle eli summalle 1 + 3 + 5 + 7 +...
LisätiedotOsa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut
Lisätiedot811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu
83A Tietoraketeet ja algoritmit 06-07, Harjoitus ratkaisu Harjoitukse aiheea o algoritmie oikeellisuus. Tehtävä. Kahvipurkkiogelma. Kahvipurkissa P o valkoisia ja mustia kahvipapuja, yhteesä vähitää kaksi
LisätiedotTilastollinen päättömyys, kevät 2017 Harjoitus 5b
Tilastollie päättömyys, kevät 07 Harjoitus b Heikki Korpela 3. helmikuuta 07 Tehtävä. a Olkoot Y,..., Y Bθ. Johda uskottavuusosamäärä testisuuree ry, Waldi testisuuree wy ja Rao pistemäärätestisuuree uy
LisätiedotMS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
LisätiedotJohdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma
LisätiedotKertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Aalyysi I Harjoitus 5. 0. 2009 alkavalle viikolle Ratkaisuehdotuksia ( sivua) (Rami Luisto) Laskuharjoituksista saa pistettä, jos laskettu vähitää 50 tehtävää; 3 pistettä,
LisätiedotOtantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä
Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria
LisätiedotMarkov-ketjuja suurilla tila-avaruuksilla
3B Markov-ketjuja suurilla tila-avaruuksilla Tuntitehtävät 3B1 Sekoaako korttipakka sekoittamalla? Olkoon S kaikkien 52 kortin korttipakan mahdollisten järjestysten joukko. (a) Perustele, miksi joukossa
LisätiedotMat Lineaarinen ohjelmointi
Mat-2.340 Lieaarie ohjelmoiti 20.9.2007 Lueto 2 Lieaarialgebraa ja geometriaa (kirja.5, 2.) S ysteemiaalyysi Tekillie korkeakoulu Lieaarie ohjelmoiti - Syksy 2007 / Lieaarialgebraa Notaatiota Kääteismatriisi
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMat Sovellettu todennäköisyyslasku A. Diskreetit jakaumat Jatkuvat jakaumat. Avainsanat:
Mat-2.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Diskeetit jakaumat Jatkuvat jakaumat Biomijakauma, Ekspoettijakauma, Jatkuva tasaie jakauma, Ketymäfuktio, Mediaai, Negatiivie biomijakauma,
Lisätiedot1 p p P (X 0 = 0) P (X 0 = 1) =
Mat-2.3 Stokastiset rosessit Syksy 2007 Laskuharjoitustehtävät 3 Poroudas/Kokkala. Tarkastellaan Markov-ketjua, jonka tilajoukko on {0, } ja tilansiirtotodennäköisyysmatriisi P Olkoon alkujakauma α 0 a
LisätiedotValintahetket ja pysäytetyt martingaalit
4B Valintahetket ja pysäytetyt martingaalit Tämän harjoituksen tavoitteena on oppia tunnistamaan, mitkä satunnaishetket ovat valintahetkiä ja oppia laskemaan lukuarvoja ja estimaatteja satunnaisprosessien
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
LisätiedotHY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var
Lisätiedot3.6. Geometrisen summan sovelluksia
Tyypillie geometrise summa sovellusalue o taloude rahoituslaskut mutta vai tyypillie. Tammikuu alussa 988 vahemmat avaavat pitkäaikaistili Esikoisellee. Tiliehdot ovat seuraavat. Korko kiiteä 3,85 % pa
LisätiedotOtantajakauman käyttö päättelyssä
Keskiarvo otatajakauma Toisistaa tietämättä kaksi tutkijaa tutkii samaa ilmiötä, jossa perusjoukko koostuu kuudesta tutkittavasta ja tarkoituksea o laskea keskiarvo A: Kokoaistutkimus B: Otatatutkimus
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot3 10 ei ole rationaaliluku.
Harjoitukset / 011 RATKAISUT Lukuteoria 1. Etsi Eratostheee seulalla samatie kaikki lukua 400 pieemmät alkuluvut. (Tai ohjelmoi tietokoeesi etsimää paljo lisää.) Kirjoita rivii kaikki luvut 1-00. Poista
Lisätiedot6.1 Riippumattomat satunnaismuuttujat
Luku 6 Otatajakaumie teoria 6.1 Riippumattomat satuaismuuttujat Muistamme edellisistä luvuista, että satuaismuuttujat X 1 ja X 2 ovat riippumattomat (määritelmät 4.6 ja 5.5), jos f(x 1, x 2 ) f 1 (x 1
LisätiedotTehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 0, MALLIRATKAISUT Tehtävä. Voidaako seuraavat luvut esittää kahde eliö summia? Jos voidaa, ii kuika moella eri tavalla? (i) = 45 (ii) = 770. Ratkaisu. (i) Jaetaa
LisätiedotStokastiset prosessit. Lasse Leskelä Aalto-yliopisto
Stokastiset prosessit Lasse Leskelä Aalto-yliopisto 7. elokuuta 2018 Sisältö 1 Satunnaisluvut ja satunnaisvektorit 5 1.1 Todennäköisyysjakauma...................... 5 1.2 Satunnaismuuttuja.........................
LisätiedotSolmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)
Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa
LisätiedotSTOKASTISET PROSESSIT Peruskäsitteitä
J. Virtamo 38.3143 Jonoteoria / Stokastiset prosessit 1 STOKASTISET PROSESSIT Peruskäsitteitä Usein tarkasteltava järjestelmä kehittyy ajan mukana ja meitä kiinnostaa sen dynaaminen, yleensä satunnaisuutta
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
Lisätiedottilavuudessa dr dk hetkellä t olevien elektronien
Semiklassie johtavuusmalli Metalleissa vastus aiheutuu virrakuljettajie törmäyksistä, joita karakterisoi relaksaatioaika τ Oletetaa, että ifiitesimaalisella aikavälillä dt elektroi törmäystodeäköisyys
LisätiedotTilastolliset luottamusvälit
Luku 8 Tilastolliset luottamusvälit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 8.1 Piste-estimaatti ja väliestimaatti Edellisessä luvussa opittii määrittämää parametreille estimaatteja suurimma uskottavuude
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
Lisätiedot2.3.1. Aritmeettinen jono
.3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
LisätiedotEhdollinen todennäköisyys
Ehdollie todeäköisyys Kerrataa muutama todeäköisyyslaskea laskusäätö. Tapahtuma E komplemettitapahtuma E o "E ei tapahdu". Koska todeäköisyyksie summa o 1, P ( E = 1 P (E. Joskus o helpompi laskea komplemettitapahtuma
LisätiedotEX1 EX 2 EX =
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var X,
LisätiedotMatematiikka ja teknologia, kevät 2011
Matematiikka ja teknologia, kevät 2011 Peter Hästö 27. tammikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:
LisätiedotPoisson-prosessien ominaisuuksia ja esimerkkilaskuja
5B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Alla on kuhunkin tehtävään esitetty malliratkaisut punaisella sekä malliratkaisujen lisämateriaalit sinisellä. Tuntitehtävät 5B1 Teemu Selänne on
LisätiedotGeneroivat funktiot, Poisson- ja eksponenttijakaumat
4A Generoivat funktiot, Poisson- ja eksponenttijakaumat Tämän harjoituksen tavoitteena on edelleen tutustua generoivien funktioiden sovelluksiin ja lisäksi harjoitella ratkaisemaan Poisson- ja eksponenttijakaumiin
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotDiskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k =
Diskreeti Matematiika Paja Ratkaisuja viikolle 4. (7.4-8.4) Jeremias Berg. Osoita iduktiolla että k = ( + ) Ratkaisu: Kute kaikissa iduktiotodistuksissa meidä täytyy siis osoittaa asiaa. Ns. perustapaus,
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
LisätiedotMartingaalit ja informaatioprosessit
4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu
Lisätiedot811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu
81112A Tietoraketeet ja algoritmit, 217-218, Harjoitus 4, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä 4.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje
Lisätiedot1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden
LisätiedotParametrien oppiminen
38 Parametrie oppimie Tilastollise malli (Bayes-verkko rakee o kiiitetty, se umeeriste parametrie (ehdolliste todeäköisyyksie arvot pyritää määräämää Oletamme havaitoe oleva täydellisiä; s.o., okaise datapistee
LisätiedotTilastollinen päättömyys, kevät 2017 Harjoitus 6A
Tilastollie päättömyys, kevät 07 Harjoitus 6A Heikki Korpela 8. helmikuuta 07 Tehtävä. Moistee teht. 5.. Olkoo Y,..., Y riippumato otos ekspoettiperhee jakaumasta, joka ptf/tf o muotoa fy i ; θ cθhye φθtyi
LisätiedotMat Sovellettu todennäköisyyslasku A
TKK / Ssteemiaalsi laboratorio Mat-2.9 Sovellettu todeäköisslasku A Nordlud Harjoitus 6 (vko 43/23) (Aihe: sekamalli, hteisjakaumia, Laiie luvut 6. 6.3, 8. 8.9). Tässä o edellise viiko laskareissa luvattu
Lisätiedotxe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x)
BM20A580 Differetiaalilasketa ja sovellukset Harjoitus 3, Syksy 206. Laske seuraavat itegraalit si(4t + )dt (b) x(x 2 + 00) 000 dx (c) x exp(ix )dx 2. Mitä o y, ku (x ) 2 + y 2 = 2 2, etäpä y? Vastaukset
LisätiedotMääritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
Lisätiedot2.8. Kannanvaihto R n :ssä
28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit
LisätiedotTalousmatematiikan perusteet: Luento 9. Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo
Talousmatematiikan perusteet: Luento 9 Matriisien peruskäsitteet Yksinkertaiset laskutoimitukset Transponointi Matriisitulo Viime luennolta Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotTILASTOT: johdantoa ja käsitteitä
TILASTOT: johdatoa ja käsitteitä TOD.NÄK JA TILASTOT, MAA10 Tilastotietee tehtävää o esittää ja tulkita tutkimuskohteesee liittyvää havaitoaieistoa eli tilastoaieistoa. Tutkitaa valittua joukkoa ja se
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Lineaarikuvaukset Lineaarikuvaus Olkoot U ja V
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus
Lisätiedotj = I A = 108 A m 2. (1) u kg m m 3, (2) v =
764A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 6 Kevät 28. Tehtävä: Aiemmi olemme laskeeet kupari johtavuuselektroie tiheydeksi 8.5 28 m. Kuparijohdossa, joka poikkipita-ala o mm 2, kulkee A: virta. Arvioi Drude
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö
LisätiedotMatematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun
LisätiedotSeuraavat peruslauseet 1-8 voidaan helposti todistaa integraalin määritelmästä. Integroimisjoukko R oletetaan rajoitetuksi Jordanmitalliseksi
Laaja matematiikka 5 Kevät 200 2. Itegraali omiaisuuksia Seuraavat peruslauseet -8 voidaa helposti todistaa itegraali määritelmästä. Itegroimisjoukko oletetaa rajoitetuksi Jordamitalliseksi joukoksi. Lause
LisätiedotTodennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.
Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma
LisätiedotMatriisit. Määritelmä 1 Reaaliluvuista a ij, missä i = 1,..., k ja j = 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A =
1 / 21 Määritelmä 1 Reaaliluvuista a ij, missä i 1,..., k ja j 1,..., n, muodostettua kaaviota a 11 a 12 a 1n a 21 a 22 a 2n A... a k1 a k2 a kn sanotaan k n matriisiksi. Usein merkitään A [a ij ]. Lukuja
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma
LisätiedotJohdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat
LisätiedotT Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi
T-79.179 Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi 12. maaliskuuta 2002 T-79.179: Stokastinen analyysi 8-1 Stokastinen analyysi, miksi? Tavallinen Petri-verkkojen saavutettavuusanalyysi
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin
Lisätiedot3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset
32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta
LisätiedotMatematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut
Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus, malliratkaisut 1.-5.9.009 1. Muodosta joukot A B, A B ja A\B sekä laske niiden alkioiden lukumäärät (mikäli kyseessä on äärellinen
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
Lisätiedot