797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

Koko: px
Aloita esitys sivulta:

Download "797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola"

Transkriptio

1 797 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava

2 24 Ongelmanratkaisu yhtälön avulla Yhtälön avulla voidaan ratkaista erilaisia ongelmia. Kun kysyttyä asiaa merkitään tuntemattomalla, voidaan tiedossa olevista asioista muodostaa usein kaksi keskenään yhtä suurta lauseketta. Muodostetun yhtälön avulla voidaan sen jälkeen ratkaista kysytty asia. Ongelmanratkaisuohjeita: 1. Perehdy ongelmaan huolellisesti. Piirrä tarvittaessa mallikuva. 2. Merkitse kysyttyä asiaa tuntemattomalla. 3. Muodosta tiedossa olevista asioista yhtälö. 4. Ratkaise yhtälö. 5. Tarkista ongelman ratkaisu. 6. Vastaa annettuun kysymykseen ja kirjoita vastaus sanallisessa muodossa. Muista yksiköt. EsimErkki 1 Kun lukuun lisätään 5, saadaan tulokseksi 17. Mikä luku on kyseessä? Ratkaisu Merkitään kysyttyä lukua tuntemattomalla. Tehtävänannon perusteella lukujen ja 5 summa on 17, joten yhtälöksi saadaan + 5 = = 17 = 17-5 = 12 Tarkistus: = 17 Vastaus: Kysytty luku on Jokaisella salibandyjoukkeen 17 pelaajasta on oma pallo. Jos varastosta löytyy 5 palloa, hukassa on

3 EsimErkki 2 Matti-eno on kolme kertaa niin vanha kuin Vili. Heidän yhteenlaskettu ikänsä on 64 vuotta. Laske Matin ja Vilin iät. Ratkaisu Merkitään Vilin ikää tuntemattomalla. Tällöin Matin ikä on 3. Tehtävänannon perusteella heidän ikiensä summa on 64 vuotta, joten yhtälöksi saadaan + 3 = = 64 4 = 64 : 4 4 = = 16 Luku kolminkertaisena on 3. Vilin ikä on 16 vuotta ja Matin ikä 3 16 vuotta = 48 vuotta. Tarkistus: = 64 Vastaus: Vilin ikä on 16 vuotta ja Matin ikä 48 vuotta. HarjoitustEHtävät 1. Muodosta ja ratkaise yhtälö. a) Kun lukuun lisätään kaksi, saadaan tulokseksi viisi. Yhtälö on + 2 = = = 5-2 = 3 b) Kun luvusta vähennetään yhdeksän, saadaan tulokseksi 17. Yhtälö on. 2. Muodosta ja ratkaise yhtälö. a) Kun luku kerrotaan kuudella, saadaan tulokseksi 30. Yhtälö on. b) Kun lukuun lisätään seitsemän, saadaan tulokseksi kolme. Yhtälö on. 181

4 3. Muodosta mallista yhtälö ja ratkaise se. a) Yhtälö on. b) Yhtälö on. 5. Muodosta ja ratkaise yhtälö. a) Lukujen 3 ja tulo on 21. Yhtälö on. b) Lukujen ja 4 osamäärä on -6. Yhtälö on. 6. Lauralla ja Marialla on bändien fanipinssejä yhteensä 18. Lauralla on + 2 pinssiä eli 2 pinssiä enemmän kuin Marialla. Kuinka monta pinssiä kummallakin on? + ( + 2) = Muodosta ja ratkaise yhtälö. a) Lukujen ja 5 summa on 16. Yhtälö on. b) Lukujen ja 7 erotus on 14. Yhtälö on. Vastaus: 7. Mernalla ja Midiyalla on yhteensä 27 euroa. Mernalla on 5 euroa vähemmän kuin Midiyalla. Kuinka paljon rahaa kummallakin on? + ( - 5) = 27 Vastaus: 182

5 kotitehtävät 8. Muodosta ja ratkaise yhtälö. a) Kun lukuun lisätään 9, saadaan summaksi Mikä luku on kyseessä? Kun luvusta vähennetään 35, saadaan tulokseksi = = 16-9 = 7 b) Kun luvusta vähennetään 13, saadaan erotukseksi 43. Yhtälö on. Vastaus: 11. Muodosta ja ratkaise yhtälö. Veetin koulu matka on 1,7 km lyhyempi kuin Ilmarin. Mikä on Veetin koulumatkan pituus, kun heidän koulumatkansa on yhteensä 7,1 km? 9. Mikä luku on kyseessä? Kun lukuun lisätään 7, saadaan tulokseksi 20. Vastaus: 12. Antin äiti Kirsi on 28 vuotta vanhempi kuin Antti. Heidän yhteenlaskettu ikänsä on 54 vuotta. Kuinka vanhoja Antti ja Kirsi ovat? P U L M A Lentokone lähtee Helsingistä klo 7.00 paikkaan X, jossa kello on tällöin Lentokone palaa takaisin Helsinkiin klo Paluumatka kestää 30 minuuttia kauemmin kuin menomatka, ja kone viipyy perillä 2 tuntia. Mihin aikaan (paikallista aikaa) lentokone lähtee paikasta X paluumatkalle Helsinkiin? Vastaus: 183

6 25 Yhtälön käyttöä Käytännön ongelmasta muodostettava yhtälö ja sen ratkaisu riippuvat siitä, mikä valitaan tuntemattomaksi. Kirjainlausekkeet on syytä merkitä selkeästi esimerkiksi taulukkoon. Ongelman ratkaisu on tuntemattoman valinnasta riippumatta kuitenkin sama. EsimErkki 1 Johannes pyöräilee mummolaan. Hän palaa eri reittiä takaisin, ja paluumatka on 9 km pidempi kuin menomatka. Yhteensä matkan pituus on 35 km. Kuinka pitkä on paluumatka? Ratkaisu, tapa 1 Menomatkan pituus kilometreinä on ja paluumatkan pituus + 9. Edestakaisesta matkasta saadaan yhtälö + ( + 9) = = = 35 2 = = 26 = 13 :2 Menomatka (km) Paluumatka (km) + 9 Saatu yhtälön ratkaisu on menomatkan pituus. Paluumatkan pituus on 13 km + 9 km = 22 km. Vastaus: Paluumatkan pituus on 22 km. Ratkaisu, tapa 2 Paluumatkan pituus kilometreinä on ja menomatkan pituus - 9. Näistä saadaan yhtälö + ( 9) = = = 35 2 = = 44 :2 = 22 Menomatka (km) 9 Vastaus: Paluumatkan pituus on 22 km. Paluumatka (km) 184

7 HarjoitustEHtävät 1. Riikan kahvi maksoi 1,50 euroa enemmän kuin Saran. Kahvit maksoivat yhteensä 7,50 euroa. Kuinka paljon Riikan kahvi maksoi? Saran kahvi ( ) Riikan kahvi ( ) + 1,50 + ( + 1,50) = 7, ,50 = 7,50 3. Aino, Jenni ja Linda jakavat 35 euroa siten, että Aino saa 5 euroa enemmän kuin Jenni ja Linda 3 euroa vähemmän kuin Jenni. Kuinka paljon Aino, Linda ja Jenni saavat? Linda ( ) Jenni ( ) Aino ( ) ( + 3) + ( ) = 35 = Saran kahvi ( ) Riikan kahvi ( ) + 1,50 + 1,50 = Vastaus:. 2. Kalle on kolme kertaa niin vanha kuin Ville. Poikien ikäero on 10 vuotta. Kuinka vanhoja pojat ovat? Ville Kalle = 10 Vastaus:. Linda ( ) Jenni ( ) Aino ( ) = = Vastaus:. 185

8 4. Millalla, Marilla ja Artulla on rahaa yhteensä 72 euroa. Millalla on kolme kertaa ja Marilla kaksi kertaa niin paljon kuin Artulla. Kuinka paljon Millalla, Marilla ja Artulla on rahaa? Arttu ( ) Mari ( ) Milla ( ) Niilo sai uuden polkupyörän ja pyöräilykypärän, jotka maksoivat yhteensä 520 euroa. Pyörä oli 380 euroa kalliimpi kuin kypärä. Kuinka paljon Niilon pyörä maksoi? Kypärä ( ) Pyörä ( ) Arttu ( ) Mari ( ) Milla ( ) = 3 = Vastaus:. Kypärä ( ) Pyörä ( ) = Vastaus:. kotitehtävät 6. Emilia ja Aarni saavat kotitöiden tekemisestä yhteensä 12 euroa. Emilia saa kaksi euroa enemmän kuin Aarni. Kuinka monta euroa Emilia saa? 7. Kati ja Anna vaelsivat kahden päivän aikana 27 km. Ensimmäisenä päivänä he vaelsivat 7 km pidemmän matkan kuin toisena päivänä. Kuinka pitkän matkan he vaelsivat ensimmäisenä päivänä? P U L M A 8. Julia osti kaupasta cd:n ja dvd:n. Ostokset maksoivat yhteensä 36 euroa. Kuinka paljon levyt maksoivat, kun cd oli 6 euroa halvempi kuin dvd? Kahden luvun summa on 50 ja erotus 18. Mitkä luvut ovat kyseessä? 186

9 Ekstra Kuvion sivujen laskeminen yhtälön avulla EsimErkki 2 Määritä kolmion sivujen pituudet, kun kolmion piiri on 28 m. Ratkaisu Sivujen pituuksien summa on 28, joten saadaan seuraava yhtälö: 2 + ( 2) + ( + 3) = = = 28 3 = = 27 :3 3 = = Sivujen pituudet ovat 9 m, 9 m - 2 m = 7 m ja 9 m + 3 m = 12 m. Tarkistus: 9 m + 7 m + 12 m = 28 m Vastaus: Sivujen pituudet ovat 9 m, 7 m ja 12 m. 9. Määritä kolmion sivujen pituudet, kun kolmion piiri on 30 cm. 11. Kolmion ja suorakulmion piirit ovat yhtä suuret. Määritä kummankin kuvion sivujen pituudet. + 3, , Suorakulmion piiri on 40 cm. Laske sivujen pituudet. a) y + 4 y b) Pienemmän suorakulmion piiri on 14 cm pienempi kuin suuremman. Laske suorakulmioiden sivujen pituudet

10 26 Kertaus 15 Yhtäsuuruuksia 1. Kuinka monta punaista neliötä on laitet tava toisen vaa an oikealle puolelle, jotta vaaka olisi tasapainossa? Kirjoita vastaus ympyrään. 18 Yhtälön ratkaiseminen laskemalla 5. Ratkaise yhtälö. a) + 10 = b) - 14 = Päättele :llä merkityn punnuksen massa, kun vaaka on tasapainossa. kg kg kg kg 16 Yhtälö 3. Mitä yhtälöä vaakamalli esittää? Termien vähentäminen ja lisääminen 6. Ratkaise yhtälö. a) = 6-5 b) = = + 17 Yhtälön ratkaisun etsiminen 4. Päättele yhtälön ratkaisu. a) 4-5 = b) = 9 3 c) 3-6 =

11 20 Termien siirtäminen 7. Ratkaise yhtälö. a) - 5 = 16 b) = c) = Yhtälön ratkaiseminen jakamalla 8. Ratkaise yhtälö. a) 9 = 18 : 9 b) -5 = 10 : (-5) 22 Yhtälön ratkaiseminen kertomalla 9. Ratkaise yhtälö. a) = 4 3 b) = Erilaisia yhtälöitä 10. Ratkaise yhtälö. 4 ( + 5) = Ongelmanratkaisu yhtälön avulla 11. Muodosta yhtälö ja ratkaise sen avulla, mikä luku on kyseessä. Kun luku kerrotaan luvulla 5 ja siihen lisätään 3, saadaan Yhtälön käyttöä 12. Niko kulutti musiikkiostoksiinsa yhteensä 75 euroa. Hän käytti metallimusiikkiin 31 euroa enemmän kuin poppiin. Kuinka paljon hän käytti rahaa metallimusiikkiin? Kokoavia tehtäviä 13. Ratkaise yhtälö. a) 5-1 = 19 b) 4-8 = c) = 3-6 d) = Ratkaise yhtälö. a) 6-6 = 7-6 b) = c) 2-24 = -10 d) = Mikä on kyseinen luku? a) Kun luku kerrotaan luvulla 5 ja tuloon lisätään luku 8, saadaan summaksi 43. b) Kun luku kerrotaan luvulla 2 ja tulosta vähennetään luku 15, saadaan luku viisinkertaisena. 189

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 798 matematiikka E Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Otavan asiakaspalvelu Puh. 0800 17117

Lisätiedot

Luku 4 Yhtälönratkaisun harjoittelua

Luku 4 Yhtälönratkaisun harjoittelua Luku 4 Yhtälönratkaisun harjoittelua 4.1. Yhtälönratkaisu tehtäviä Tehtävä 4.1.1 Ratkaise yhtälöistä tuntematon muuttuja käyttäen oppimiasi muunnoksia. Valitse sarja. Sarja 1) 6 5 37 = 0 Kun eräs luku

Lisätiedot

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29.

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29. 1 Yhdenmuotoisuus Keskenään samanmuotoisia kuviota kutsutaan yhdenmuotoisiksi kuvioiksi. Yhdenmuotoisten kuvioiden toisiaan vastaavia kulmia kutsutaan vastinkulmiksi ja toisiaan vastaavia osia vastinosiksi.

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan!

Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan! Aiemmin opittu Perusopetuksen opetussuunnitelman mukaan seuraavat lukuihin ja laskutoimituksiin liittyvät sisällöt on käsitelty vuosiluokilla 3 5: kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Benjamin, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi,

Lisätiedot

Tasapainotehta via vaakamallin avulla

Tasapainotehta via vaakamallin avulla Tasapainotehta via vaakamallin avulla Aihepiiri Luokka-aste Kesto Tarvittavat materiaalit / välineet Asiasanat Lausekkeet ja yhtälöt 7.-8. luokka 20 30 minuuttia Piirtoheitin, 2 kalvoa, erimuotoisia paloja

Lisätiedot

[MATEMATIIKKA, KURSSI 8]

[MATEMATIIKKA, KURSSI 8] 2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

Kenguru 2015 Benjamin (6. ja 7. luokka)

Kenguru 2015 Benjamin (6. ja 7. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Aihe: Yhtälön käyttö soveltamisessa ja ongelmanratkaisussa

Aihe: Yhtälön käyttö soveltamisessa ja ongelmanratkaisussa Harjoituksia 9 Aihe: Yhtälön käyttö soveltamisessa ja ongelmanratkaisussa 1. Kirjoita yhtälö ja ratkaise x. a) lukujen x ja 6 summa on yhtä suuri kuin lukujen x ja 4 tulo. b) Kun luku x kerrotaan kolmella

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + = Mikä X? Esimerkki: Merkitse yhtä puuta kirjaimella ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3 + 2 = 5 + = 5 + = 1. Merkitse yhtä päärynää kirjaimella ja kirjoita yhtälöksi? Mikä tulee vastaukseksi?

Lisätiedot

Kenguru 2013 Cadet (8. ja 9. luokka)

Kenguru 2013 Cadet (8. ja 9. luokka) sivu 1 / 12 3 pistettä 1. Annalla on neliöistä koostuva ruutupaperiarkki. Hän leikkaa paperista ruutujen viivoja pitkin mahdollisimman monta oikeanpuoleisessa kuvassa näkyvää kuviota. Kuinka monta ruutua

Lisätiedot

Kenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka

Kenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka 3 pisteen tehtävät Kenguru Ecolier, ratkaisut (1 / 5) 1. Missä kenguru on? (A) Ympyrässä ja kolmiossa, mutta ei neliössä. (B) Ympyrässä ja neliössä, mutta ei kolmiossa. (C) Kolmiossa ja neliössä, mutta

Lisätiedot

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon. MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise

Lisätiedot

Oulun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut

Oulun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut Oulun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Kolmen peräkkäisen kokonaisluvun summa on 42. Luvuista keskimmäinen on a) 13 b) 14 c) 15 d) 16. Ratkaisu. Jos luvut

Lisätiedot

PERUSKOULUSTA PITKÄLLE

PERUSKOULUSTA PITKÄLLE Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS

Lisätiedot

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka)

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka) sivu / 2 IKET VSTUSVIHTEHDT N LLEVIIVTTU. 3 pistettä. Minkä laskun tulos on suurin? () 20 (B) 20 (C) 20 (D) + 20 (E) : 20 20 20, 20, 20 20 20 202 ( suurin ) ja : 20 0,0005 2. Hamsteri Fridolin suuntaa

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 PROSENTTILASKENTA Prosentti on 1/100 tai 0,01. Esimerkki 40. Lukuarvo % 0,42 42 0,013 1,3 1,002 100,2 1/25 100/25=4 23/45 51,1

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Kertausosan ratkaisut. 1. Kulma α on 37 suurempi kuin kulma eli 37. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli

Kertausosan ratkaisut. 1. Kulma α on 37 suurempi kuin kulma eli 37. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli Kertausosa 1. Kulma α on 7 suurempi kuin kulma eli 7. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli 180 7 180 14 : 71,5 Siis 7 71,5 7 108, 5 Vastaus: 108,5, 71, 5. Kuvaan merkityt kulmat

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

Kenguru Benjamin (6. ja 7. luokka) sivu 1 / 5

Kenguru Benjamin (6. ja 7. luokka) sivu 1 / 5 Kenguru Benjamin (6. ja 7. luokka) sivu 1 / 5 3 pisteen tehtävät 1) Mikä on pienin? A) 2 + 0 + 0 + 8 B) 200 : 8 C) 2 0 0 8 D) 200 8 E) 8 + 0 + 0 2 2) Millä voidaan korvata, jotta seuraava yhtälö olisi

Lisätiedot

Kenguru 2006 sivu 1 Ecolier 4. ja 5. luokka ratkaisut

Kenguru 2006 sivu 1 Ecolier 4. ja 5. luokka ratkaisut Kenguru 2006 sivu 1 3:n pisteen tehtävät 1. Pirita piirtää kolmea erilaista tikkuukkoa samassa järjestyksessä peräkkäin. Mikä tikku-ukko tulee seuraavaksi? A) B) C) D) E) 2. Mikä on laskun 2 0 0 6 + 2006

Lisätiedot

Kenguru Écolier (4. ja 5. luokka) sivu 1/5

Kenguru Écolier (4. ja 5. luokka) sivu 1/5 Kenguru Écolier (4. ja 5. luokka) sivu 1/5 3 pisteen tehtävät 1. Miettisen perhe syö 3 ateriaa päivässä. Kuinka monta ateriaa he syövät viikon aikana? A) 7 B) 18 C) 21 D) 28 E) 37 2. Aikuisten pääsylippu

Lisätiedot

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo?

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo? Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 4.2.2011 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Esitä myös lasku, kuvio, päätelmä tai muu lyhyt perustelu.

Lisätiedot

Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet?

Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet? 1 Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet? Tapa 1 Merkitään toista osaa x:llä, toista y:llä ja piirretään asiaa

Lisätiedot

Cadets 2004 - Sivu 1 RATKAISUT

Cadets 2004 - Sivu 1 RATKAISUT Cadets 2004 - Sivu 1 3 pistettä 1/ Laske 2004 4 200 A 400800 B 400000 C 1204 1200 E 2804 2004 4 200= 2004 800= 1204 2/ Tasasivuista kolmiota AC kierretään vastapäivään pisteen A ympäri. Kuinka monta astetta

Lisätiedot

MAA1 päässälaskut. Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et).

MAA1 päässälaskut. Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et). MAA1 päässälaskut Nimi: Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et). 1. 4 (-5) + (-3) (-6) 2. 1 3 2 5 3 2 3. 5 8 6 7 4. 3 2 3 2 : 3 3 5. 1 0 1 1 1 2 1 3 2 2 2 6. 2 3 3 7. 2 1203 8 400

Lisätiedot

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½. MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö

Lisätiedot

Kenguru 2014 Ecolier (4. ja 5. luokka)

Kenguru 2014 Ecolier (4. ja 5. luokka) sivu 1 / 11 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Matematiikan didaktiikka, osa II Algebra

Matematiikan didaktiikka, osa II Algebra Matematiikan didaktiikka, osa II Algebra Sarenius Kasvatustieteiden tiedekunta, Oulun yksikkö Mitä on algebra? Algebra on aritmetiikan yleistys. Algebrassa siirrytään operoimaan lukujen sijaan niiden ominaisuuksilla.

Lisätiedot

Kenguru 2013 Ecolier sivu 1 / 8 (4. ja 5. luokka)

Kenguru 2013 Ecolier sivu 1 / 8 (4. ja 5. luokka) Kenguru 2013 Ecolier sivu 1 / 8 3 pistettä 1. Missä kuviossa mustia kenguruita on enemmän kuin valkoisia kenguruita? Kuvassa D on 5 mustaa kengurua ja 4 valkoista. 2. Nelli haluaa rakentaa samanlaisen

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Ecolier, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos

Lisätiedot

Kenguru 2015 Benjamin (6. ja 7. luokka)

Kenguru 2015 Benjamin (6. ja 7. luokka) sivu 1 / 12 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:...

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:... MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. Sarjat: LAITA MERKKI OMAAN SARJAASI. Tekniikka ja liikenne:..

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Kenguru 2013 Ecolier sivu 1 / 6 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2013 Ecolier sivu 1 / 6 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2013 Ecolier sivu 1 / 6 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Kenguru 2012 Benjamin sivu 1 / 8 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2012 Benjamin sivu 1 / 8 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2012 Benjamin sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma OuLUMA - Jussi Tyni OuLUMA, sivu 1 Ihastellaan muotoja Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma Luokkataso: lukio Välineet: kynä, paperia, laskin Tavoitteet: Tarkoitus on arkielämään

Lisätiedot

15. Suorakulmaisen kolmion geometria

15. Suorakulmaisen kolmion geometria 15. Suorakulmaisen kolmion geometria 15.1 Yleistä kolmioista - kolmion kulmien summa on 180⁰ α α + β + γ = 180⁰ β γ 5.1.1 Tasasivuinen kolmio - jos kaikki kolmion sivut ovat yhtä pitkät, on kolmio tasasivuinen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus Ensimmäisen asteen yhtälö: :n korkein eksponentti = 1 + 5 = 4( 3) Toisen asteen yhtälö: :n korkein eksponentti = 3 5 + 4 = 0 Kolmannen asteen yhtälö: :n korkein

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

Hippokisat 3.8.2011 Hankasalmi

Hippokisat 3.8.2011 Hankasalmi Hippokisat 3.8.2011 Hankasalmi Tytöt 5.v 40m 1. Helmi Moisio 10.0 2. Nella Suuronen 10.0 3. Jenniina Pöyhönen 10.4 4. Kira Karjalainen 10.6 5. Anna Kuronen 11.1 6. Seela Säntti 11.3 7. Viivi Kytöjoki 11.6

Lisätiedot

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4 Mb03 Koe 2..20 Kuopion Lyseon lukio (KK) sivu /4 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Laske 20 12 11 21. Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut a) 31 b) 0 c) 9 d) 31 Ratkaisu. Suoralla laskulla 20 12 11 21 = 240 231 = 9. (2) Kahden peräkkäisen

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Cadet, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos

Lisätiedot

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26

Lisätiedot

LAPUAN VIRKIÄN ENNÄTYKSET - 2015

LAPUAN VIRKIÄN ENNÄTYKSET - 2015 LAPUAN VIRKIÄN ENNÄTYKSET - 2015 MIEHET 100 m 11,10 Joonas Kokko 2015 200 m 22,55 Joonas Kokko 2015 400 m 48,53 Jukka Latva-Rasku -97 800 m 1.51,78 Pekka Passinen -94 1000 m 2.26,94 Ville Hautala -91 1500

Lisätiedot

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia Kolmioitten harjoituksia Piirrä kolmio, jonka sivujen pituudet ovat 4cm, 5 cm ja 10 cm. Minkä yleisen kolmion sivujen pituuksia ja niitten eroja koskevan johtopäätöksen vedät? Määritä huippukulman α suuruus,

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2016 Nimi: Henkilötunnus: VASTAUSOHJEET 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan klo

Lisätiedot

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 015 Lhen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Tekijät: Olli Karkkulainen ja Markku Parkkonen Ratkaisut on laadittu TI-Nspire CAS -tietokoneohjelmalla kättäen Muistiinpanot -sovellusta.

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Arviointia ja laskemista

Arviointia ja laskemista 9 Arviointia ja laskemista Arkielämässä joudutaan joskus arvioimaan eri tietoja ilman tarkkaa laskemista. Tällöin lukuja voidaan pyöristää ennen laskemista, jolloin saatu tulos on arvio. Lähtöarvojen pyöristyksen

Lisätiedot

AVOIN MATEMATIIKKA Osio 2: pinta-aloja

AVOIN MATEMATIIKKA Osio 2: pinta-aloja Marika Toivola ja Tiina Härkönen AVOIN MATEMATIIKKA Osio : pinta-aloja Sisältö on lisensoitu avoimella CC BY 3.0 -lisenssillä. 1 SI-järjestelmä ja ISO Päivittäiseen elämäämme liittyy paljon mittaamista.

Lisätiedot

5.2 Ensimmäisen asteen yhtälö

5.2 Ensimmäisen asteen yhtälö 5. Ensimmäisen asteen ytälö 5. Ensimmäisen asteen yhtälö Aloitetaan antamalla nimi yhtälön osille. Nyt annettavat nimet eivät riipu yhtälön tyypistä tai asteesta. Tarkastellaan seuraavaa yhtälöä. Emme

Lisätiedot

Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6

Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6 Kenguru Benjamin (6. ja 7. luokka) ratkaisut sivu 1 / 6 3 pisteen tehtävät 1) Mikä on pienin? A) 2 + 0 + 0 + 8 B) 200 : 8 C) 2 0 0 8 D) 200 8 E) 8 + 0 + 0 2 2) Millä voidaan korvata, jotta seuraava yhtälö

Lisätiedot

AMMATIKKA top 16.11.2006

AMMATIKKA top 16.11.2006 AMMATIKKA top 16.11.2006 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nimi Oppilaitos Koulutusala Luokka Sarjat: MERKITSE OMA SARJA 1. Tekniikka ja liikenne: O 2.

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 15.11.2012 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot Calculus Lukio MAA9 Trigoometriset fuktiot ja lukujoot Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Trigoometriset fuktiot ja lukujoot (MAA9) Pikatesti

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2010 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan

Lisätiedot

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma. Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C

Lisätiedot

Päivi Kiviluoma Kimmo Nyrhinen Pirita Perälä Pekka Rokka Maria Salminen Timo Tapiainen. Mirjami Manninen. Nimi: Luokka:

Päivi Kiviluoma Kimmo Nyrhinen Pirita Perälä Pekka Rokka Maria Salminen Timo Tapiainen. Mirjami Manninen. Nimi: Luokka: 3a Päivi Kiviluoma Kimmo Nyrhinen Pirita Perälä Pekka Rokka Maria Salminen Timo Tapiainen KUVITUS Mirjami Manninen Nimi: Luokka: Helsingissä Kustannusosakeyhtiö Otava Sisällys 1. jakso Yhteen- ja vähennyslasku

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

Kenguru 2014 Cadet (8. ja 9. luokka)

Kenguru 2014 Cadet (8. ja 9. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

Murtolukujen peruslaskutoimitukset Cuisenairen lukusauvoilla

Murtolukujen peruslaskutoimitukset Cuisenairen lukusauvoilla Murtolukujen peruslaskutoimitukset Cuisenairen lukusauvoilla 1. Tehtävänanto Pohdi kuinka opettaisit yläasteen oppilaille murtolukujen peruslaskutoimitukset { +, -, *, / } Cuisenairen lukusauvoja apuna

Lisätiedot

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo. 13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05

Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Neure - tehtäväluettelo 1 / 5 14.12.2005, 17:05 Matematiikka Huom! Mikäli tehtävällä ei vielä ole molempia teknisiä koodeja, tarkoittaa se sitä, että tehtävä ei ole vielä valmis jaettavaksi käyttöön, vaan

Lisätiedot

1.2 Yhtälön avulla ratkaistavat probleemat

1.2 Yhtälön avulla ratkaistavat probleemat 1.2 Yhtälön avulla ratkaistavat probleemat Kun matemaattista probleemaa lähdetään ratkaisemaan yhtälöä hyväksi käyttäen, tilanne on vaikeampi kuin ratkaistaessa yhtälöä mekaanisesti. Nyt on näet itse laadittava

Lisätiedot

Kenguru 2014 Ecolier ratkaisut (4. ja 5. luokka)

Kenguru 2014 Ecolier ratkaisut (4. ja 5. luokka) sivu 1 / 13 3 pistettä 1. Mikä oheisista kuvista esittää ison tähtikuvion keskiosaa? Isossa tähtikuviossa on 9 sakaraa. 2. Kauppias Koikkalainen on maalannut liikkeensä ikkunaan kukkakuvion. Miltä kukkakuvio

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MTEMTIIKN KOE mmatiisen kouutuksen kaikkien aojen yhteinen matematiikan vamiuksien kipaiu Nimi: Oppiaitos:.. Kouutusaa:... Luokka:.. Sarjat: LIT MERKKI OMN SRJSI. Tekniikka ja iikenne:... Matkaiu-,ravitsemus-

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

KOKEITA KURSSI 1. 1. Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01

KOKEITA KURSSI 1. 1. Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01 KOKEITA KURSSI kurssi (A). Laske. Kirjoita ainakin yksi vдlivaihe. 9 a) :. Merkitse ja laske. a) Lukujen ja tulosta vдhennetддn. Luvusta vдhennetддn lukujen ja erotus. Lukujen ja summan kolmasosa kerrotaan

Lisätiedot

SUOMEN ITF TAEKWON-DO RY

SUOMEN ITF TAEKWON-DO RY SUOMEN MESTARUUSKILPAILUT 2012, OULU 11.-12.2. liikesarjat, naiset 1.dan liikesarjat, miehet 1.dan 1. Julia Pätsi, Taekwon-Do Akatemia 1. Samuli Rossi, Taekwon-Do Akatemia 2. Jutta Jakkila, Taekwon-Do

Lisätiedot

Opettaja: Eija Vuorinen keskiviikko 22.2. klo 8.00-10.50 luokka: 104

Opettaja: Eija Vuorinen keskiviikko 22.2. klo 8.00-10.50 luokka: 104 NOKIAN LUKIO/KERTAUSTILAISUUDET kevät 2012 Äidinkieli: Opettaja: Eija Vuorinen keskiviikko 22.2. klo 8.00-10.50 luokka: 104 Haakana Marianne Kaikkonen Johanna Kalliokoski Tytti Koskinen Suvi Lahdenpohja

Lisätiedot

Kenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5

Kenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5 Kenguru 2010 Benjamin (6. ja 7. luokka) sivu 1 / 5 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:. AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka

Lisätiedot

Kimmo Koskinen, Rolf Malmelin, Ulla Laitinen ja Anni Salmela

Kimmo Koskinen, Rolf Malmelin, Ulla Laitinen ja Anni Salmela Olipa kerran köyhä maanviljelijä Kimmo Koskinen, Rolf Malmelin, Ulla Laitinen ja Anni Salmela 1 1 Johdanto Tässä raportissa esittelemme ratkaisukeinon ongelmalle, joka on suunnattu 7 12-vuotiaille oppilaille

Lisätiedot

Lähtö Sarja Matka Nro Nimi Seura. Miehet 10 vuotta 3 km p =======================

Lähtö Sarja Matka Nro Nimi Seura. Miehet 10 vuotta 3 km p ======================= Miehet 10 vuotta 3 km p 11.00.00 M10 3 km 1 Elmeri Konstari Jämsänkosken Ilves 11.00.00 M10 3 km 2 Konsta Peltola Keuruun Kisailijat 11.00.00 M10 3 km 3 Elias Ronkainen Jämsänkosken Ilves 11.00.00 M10

Lisätiedot

TULOSSEURANTA 2011 2012 TAPANILAN ERÄ / Yleisurheilu

TULOSSEURANTA 2011 2012 TAPANILAN ERÄ / Yleisurheilu 400 m 1 000 m 1 500 m 3 000 m 5 000 m 10 000 m 1/2 maraton maraton aj. aj. 110 m aj. 1 500 m ej. 3 000 m ej. aj. 400 m aj. 3 000m käv. 5 000 m käv. Kuula Kiekko Keihäs Moukari Ottelut Cooper Tulosseuranta

Lisätiedot

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473 Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson

Lisätiedot

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio Monikulmiot 1/5 Sisältö Monikulmio Monikulmioksi kutsutaan tasokuviota, jota rajaa perättäisten janojen muodostama monikulmion piiri. Janat ovat monikulmion sivuja, niiden päätepisteet monikulmion kärkipisteitä.

Lisätiedot

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Analttinen geometria Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Analttinen geometria (MAA) Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria. 5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41

Lisätiedot