Numeerinen integrointi
|
|
- Tuomas Halonen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen satunnaiset virheet kumoavat toisensa. Derivointiin liittyy lähes yhtäsuurten suureiden vähennyslasku, joka on virheitä vahvistava operaatio. Vrt. kuvankäsittelyn terävöintioperaatio, joka lisää kohinaa. Jos käsitellään havaintodataa, se voi olla syytä tasoittaa tai esittää aineistoon sovitettavalla funktiolla. Ei useinkaan tarpeen integroitaessa, välttämätöntä derivoitaessa. Funktio f on integroituva välillä [x 1 = a,x n = b], jos Riemannin summalla n 1 R = f(ξ i )h i, missä i=1 h i = x i+1 x i, ξ i [x i,x i+1 ], on raja-arvo, kun jaon silmä h = max i {h i } 0. Muuttamalla jakovälejä ja pisteiden ξ i valintaa saadaan erilaisia integrointimenetelmiä.
2 Jaetaan integroimisväli yhtä leveisiin viipaleisiin. Olkoon kunkin leveys h. 1) Lasketaan integroitava kunkin välin alkupisteessä: xn x 0 f(x) dx = h(f(x 0 ) + f(x 0 + h) f(x 0 + (n 1)h)). Esimerkki: I = 1 0 x dx. Oikea arvo on 1/3. Lasketaan nyt integraalin likiarvo jakamalla integroimisväli neljään osaan. I 4 = 1 4 ( ) = Koska integroitava funktio on koko välillä kasvava ja funktio lasketaan välin alkupäässä, saadaan liian pieni arvo. ) Lasketaan arvo välin keskikohdalla xn x 0 f(x) dx = h(f(x 0 + h/) + f(x 0 + 3h/) +...). I 4 = 1 4 ( ) =
3 Puolisuunnikasmenetelmä Integroitava alue jaetaan puolisuunnikkaan muotoisiin viipaleisiin. f(x) dx = h f 0 + f 1 + h f 1 + f h f n 1 + f n = h (f 0 + f 1 + f f n 1 + f n ) = h (f(x 0) + f(x 0 + h) + f(x 0 + h) f(x 0 + (n 1)h) + f(x 0 + nh)). I 4 = 1 ( ) + 1 =
4 Simpsonin menetelmä Käytetään mutkikkaampia käyriä, jotka kuvaavat alkuperäistä funktiota vielä paremmin kuin suorat. Luonnollinen parannus on toisen asteen käyrä. Lasketaan ensin integraali yhden osavälin yli. Aikaisemman interpolointikaavan mukaan on f(x) f 0 + s f 0 + s(s 1) f 0. x x 0 f(x) dx = h x x 0 0 ( f 0 + s f 0 + ( f 0 + s f 0 + = h(f 0 + f f 0 ) ) s(s 1) f 0 dx ) s(s 1) f 0 ds = h 3 (6f f 0 + f 0 ) Sijoitetaan tähän f 0 = f 1 f 0 f 0 = f 1 f 0 = (f f 1 ) (f 1 f 0 ) = f 0 f 1 + f.
5 Integraali kahden jakovälin yli on x x 0 f(x) dx h 3 (f 0 + 4f 1 + f )). Integraali koko välin yli on xn x 0 f(x) dx h 3 (f(x 0) + 4f(x 0 + h) + f(x 0 + h) + 4f(x 0 + 3h) + f(x 0 + 4h) f(x 0 + (n 1)h) + f(x 0 + nh). Jakovälejä oltava parillinen määrä. Esimerkkitapaus: I 4 = 1 1 ( ) = = 1 3. Tässä integroitavaa approksimoitiin toisen asteen polynomilla. Koska integroitava itse on toista astetta, tulos on tarkka.
6 Virhearvio Interpolointipolynomin virhe on korkeintaan samaa luokkaa kuin ensimmäinen poisjätetty termi. f 0 = f 1 f 0 hf (x) f 0 = f 1 f 0 h f (x). n f 0 h n f (n) (x) Lineaarinen interpolaatio: virhe luokkaa h f (x). Kun tämä integroidaan yhden osavälin yli saadaan lokaali virhe. Välin leveys on h, joten integraali on luokkaa h 3 f (z), missä z on jokin välin piste. Välejä on 1/h kappaletta, joten globaali virhe on luokkaa h f (z). Simpsonin menetelmässä lokaali virhe on kertalukua h 3 ja globaali virhe h 4.
7 Rombergin menetelmä Lasketaan integraali jollakin yksinkertaisella menetelmällä kahdella eri askelpituudella. Näiden arvojen avulla ekstrapoloidaan uusi tarkempi arvo. Olkoon I on integraalin tarkka arvo. Voidaan osoittaa, että puolisuunnikasmenetelmän arvo askelpituuden funktiona R 0 (h) on R 0 (h) = I + C h + C 4 h , missä kertoimet C i eivät riipu askelesta h. R 0 (h/) = I + C h h C , Lasketaan näistä lineaarikombinaatio R 1 (h) = 1 3 (4R 0(h/) R 0 (h)) = I + C 4h , Alkuperäinen menetelmä on kertalukua h, mutta nistä muodostettu kombinaatio kertalukua h 4. Jos aineistona askelpituudella h taulukoituja arvoja, lasketaan integraalit askelilla h ja h. Menetelmää voidaan jatkaa edelleen korkeampiin kertalukuihin.
8 Newtonin Cotesin menetelmät Kaikki edellä olleet integrointimenetelmät voidaan esittää muodossa I = w i f(x i ), missä (x i ),i = 0,...,n on jokin sopivasti valittu pistejoukko. Jos pisteet x i valitaan tasavälisesti, saadaan Newtonin Cotesin menetelminä tunnetut integrointimenetelmät. Kaikki edellä esiintyneet menetelmät kuuluvat tähän ryhmään. Edellä esitetyt menetelmät ovat yksinkertaisia ja helposti ohjelmoitavia. Moniin tarkoituksiin ne ovat täysin käyttökelpoisia. Suuri tarkkuus vaatii lyhyttä jakoväliä, mikä tekee menetelmistä melko hitaita.
9 Gaussin kvadratuuri Tilannetta voidaan parantaa valitsemalla jakopisteet x i jollakin muulla tavoin kuin tasavälisesti. Oletetaan, että funktio on korkeintaan n-asteinen polynomi. Yritetään löytää sellaiset pisteet x i ja kertoimet w i, että w i f(x i ) antaa polynomien integraaleille täsmälleen oikean arvon. Esimerkki: käytetään vain kahta pistettä. Valitaan vielä integroimisväli symmetriseksi, [ 1,1]. Jotta kaava toimisi oikein kaikille astetta n astetta oleville polynomeille, sen on annettava oikeat arvot myös funktioiden 1, x, x,..., x n integraaleille: dx = = w 1 + w, xdx = 0 = w 1 x 1 + w x, x dx = 3 = w 1x 1 + w x, x 3 dx = 0 = w 1 x w x 3, Tässä on neljä yhtälöä ja neljä tuntematonta, w 1, w, x 1 ja x. Toinen ja neljäs yhtälö toteutuu, jos valitaan x = x 1 ja w 1 = w. Silloin ensimmäisen yhtälön perusteella on w 1 = w = 1, ja kolmannesta yhtälöstä saadaan x 1 = x = 1/ 3.
10 Yleiset kolmannen asteen polynomit saadaan edellä esiintyneiden funktioiden lineaarikombinaatioina. Siten mielivaltaiselle korkeintaan kolmatta astetta olevalle polynomille p 3 pätee 1 1 ( ) ( 1 p 3 (x) dx = p p 3 1 ). 3 Kokeillaan 1 (x 3 + x + 1)dx = 1 1 x x3 3 + x = 1 = ( ) = Gaussin kahden pisteen kvadratuurilla: 1 1 (x 3 + x + 1)dx = = = ( ) 3 1 Korkeampaa astetta oleville polynomeille saadaan vastaavat yhtälöt, joiden ratkaiseminen on työlästä. Pisteiden x i ratkaiseminen suoraan yhtälöryhmistä ei ole kovin käytännöllistä. Siksi polynomit esitetäänkin ensin jonkin ortogonaalin kantafunktiojoukon avulla.
11 Jos pisteitä on n kappaletta, niiden paikat ovat Legendren polynomin P n (x) nollakohtia. P 0 (x) = 1, P 1 (x) = x, P (x) = 1 (3x 1), P 3 (x) = 1 (5x3 3x),. (n + 1)xP n (x) = (n + 1)P n+1 (x) + np n 1 (x). Esim. kolmen pisteen menetelmän pisteet saadaan yhtälöstä 5x 3 3x = 0, josta x 1 = 3/5 = , x = 0, x 1 = 3/5 = Näitä ei kannata ratkaista joka kerta uudestaan, vaan käytetään valmiiksi taulukoituja arvoja. Pistettä x i vastaava paino on w i = (1 x i )[P (x i )]. Polynomien derivaatat saadaan kaavoista P 0(x) = 0, P 1(x) = 1, P (x) = 3x, P 3(x) = 1 (15x 3),. P n+1(x) = P n 1(x) + (n + 1)P n (x).
12 Mielivaltainen integroimisväli voidaan muuntaa väliksi [-1, 1] sijoituksella y = b a t + b + a, jolloin integraali on b a dy = b a f(y) dy = b a dt, wi f(y i ), missä ( ) b a y i = x i + ( b + a ), Esimerkki: π/ sinxdx 0 Lasketaan tämä Gaussin kolmen pisteen menetelmällä. Integroimisvälin muunnos on y i = π 4 x i + π 4. Integraalin laskemiseen tarvitaan seuraavat suureet: i w i x i y i w i sin y i Integraalin arvo on (π/4) Integraalin tarkka arvo on 1. Kolmen pisteen integrointikaavalla saatiin tulos, jonka suhteellinen virhe on alle 10 5.
13 n x i w i
14 Useampiulotteiset integraalit Voidaan laskea soveltamalla yksiulotteista integrointia erikseen kuhunkin dimensioon. Esimerkiksi kaksiulotteinen integraali: b d f(x,y) dxdy a c = ( ) d w i f(x i,y) dy c = w i w j f(x i,y j ). Painoista ja pisteistä riippuen menetelmä voi tässä olla Gauss tai jokin Newton-Cotes. Kun dimensio suurempi kuin noin 5, kannattaa käyttää Monte Carlo -menetelmää.
15 Monte Carlo -menetelmä Integraalin I = 1 0 f(x) dx suorakaidemenetelmällä laskettu arvo on n 1 i=0 f(x i ) n. Tämä on funktion keskiarvo välillä [0,1]. Yleisessä tapauksessa integraali on funktion keskiarvo kerrottuna välin pituudella. Periaatteessa sama tulos saadaan, jos integraali lasketaan satunnaisissa pisteissä t i, jotka jakautuvat tasaisesti integrointivälille: I = n 1 i=0 f(t i ) n. Tämä on satunnaismuuttuja, jonka odotusarvo on integraalin oikea arvo: EI = I, Kun N, I I. Jos on laskettava integraali A f dv jonkin mutkikkaan alueen yli, lasketaan B g dv, missä A B ja g(x) = f(x), jos x A ja 0 muuten. Integraalin likiarvo on I = g(x i ), missä satunnaisluvut x i ovat jakautuneet tasaisesti alueeseen B.
16 Esimerkiksi n-ulotteisen pallon tilavuuden laskeminen. Tuotetaan kuution sisälle tasaisesti jakautuneita pisteitä r i = (X 1,X,...,X n ). Nyt g(r i ) = 1, jos r i on pienempi kuin pallon säde ja 0 muuten. Summa g(r i ) lähenee pallon ja ympäröivän kuution tilavuuksien suhdetta. Tuloksen virhe 1/ N. Laskentaa voidaan jatkaa tarpeen mukaan. Jos käytetään tavallista kiinteän laskentahilan menetelmää, koko homma on uusittava, jos tarkkuutta halutaan parantaa. Tarkkuus paranee hitaasti, joten menetelmä ei sovellu kaikkiin tehtäviin. Virhe ei riipu avaruuden dimensiosta, joten menetelmää kannattaa käyttää, kun on laskettava moniulotteisia integraaleja.
17 Havaintodatan integrointi Jos tasavälinen aineisto, voidaan käyttää mitä tahansa Newton-Cotes -tyyppistä menetelmää. Jos aineisto ei tasavälistä, korjataan menetelmiä niin, että askelpituus muuttuu; esimerkiksi puolisuunnikassääntö: f(x) dx = ( 1 (x 1 x 0 )f(x 0 ) + (x x 0 )f(x 1 ) +... ) + (x n x n )f(x n 1 ) + (x n x n 1 )f(x n ). Toinen mahdollisuus: sovitetaan aineistoon jokin funktio, jolloin voidaan käyttää mitä tahansa menetelmää tai laskea integraali analyyttisesti. Jos aineisto saadaan esimerkiksi simuloinnista tai on muuten raskas lakea, mutta voidaan laskea mielivaltaiselle pisteelle, kannattaa käyttää Gaussin menetelmää.
18 Numeerinen derivointi Esim. Newtonin-Gregoryn -interpolointipolynomi: f(x s ) P n (x s ) = f 0 + s f 0 + Tämän avulla saadaan ( ) s f ( ) s n f 0. n f (x s ) P n(x s ) = d ds P n(x s ) ds dx = d ds P n(x s ) 1 h = 1 ( f 0 + s 1 ) f h Kun s = 0, saadaan f (x 0 ) = 1 h ( f 0 1 f f 0... ± 1n n f 0 ) Tämän virhe on luokkaa 1 n + 1 hn f (n+1) (ξ). Symmetrisempiä versioita: f (x 0 ) = 1 h (f 1 f 1 ). f (x 0 ) = 1 1h (f 8f 1 + 8f 1 f ). Jos kyseessä mittausdata, jossa kohinaa, se on ensin tasoitettava esimerkiksi sovittamalla siihen pienimmän neliösumman käyrä.
19 Satunnaisluvuista Kankaala (1993): Monte Carlo Simulations, CSC Research Reports R03/93, CSC. Press, Teukolsky, Vetterling, Flannery: Numerical Recipes, Cambridge University Press. We guarantee that each number is random individually, but we don t guarantee that more than one of them is random. Satunnaislukujen (oikeammin pseudosatunnaislukujen) jono on deterministinen. Samoilla alkuarvoilla saadaan aina sama lukujono. Alkuarvo voidaan yleensä valita. Lineaarinen kongruenssimenetelmä X i+1 = ax i + b(mod m),a,b,m N Luvut toistuvat viimeistään m numeron kuluttua. Jos vakiot on valittu huonosti, jakso voi olla paljon lyhempi. Peräkkäisten lukujen korrelaatio: Jos valitaan n lukua kerrallaan esittämään pisteen paikkaa n-ulotteisessa avaruudessa, pisteet eivät täytä koko avaruutta, vaan sijoittuvat n 1-ulotteisille hypertasoille, joita on korkeintaan m 1/k kappaletta, usein paljon vähemmän. Satunnaisluvun vähiten merkitsevät bitit ovat vähiten satunnaisia. Satunnaislukua ei pidä paloitella osiin; osat eivät ole yhtä satunnaisia.
20 Fortran 90:ssä satunnaislukuja voi tuottaa aliohjelmalla call random_number (v) Tässä v on taulukko, joka täytetään satunnaisluvuilla. Luvut jakautuvat tasaisesti välille [0, 1). Satunnaislukugeneraattori voidaan alustaa call random_seed (n) missä n on kokonaisluku. Muodostetaan satunnaislukuvektorista x kokonaislukujen jono int(k*x). - Lukujen pitää jakautua tasaisesti: kukin luku esiintyy todennäköisyydellä 1/K eli noin n/k kertaa (voidaan testata χ -testillä) - Jokaisen peräkkäisistä luvuista muodostetun lukuparin (a,b) pitää esiintyä todennäköisyydellä K kertaa, jne. - luvut X i ja X i+k eivät korreloi keskenään millään k > 1.
21 Muut jakaumat Kertymäfunktio F(x) ilmoittaa todennäköisyyden, että satunnaismuuttujan X arvo on korkeintaan x: F(x) = P(X x). Kertymäfunktio on kasvava funktio (ei välttämättä aidosti kasvava). Jos X on tasaisesti jakautunut välille [0, 1] ja Y ratkaistaan yhtälöstä F(Y ) = X, saadaan muuttuja Y, joka noudattaa annettua jakaumaa: Y = F 1 (X). Jos kertymäfunktion käänteisfunktio on helposti laskettavissa, sen avulla saadaan haluttua jakaumaa noudattavia satunnaislukuja.
22 Normaalijakauma (0,1)-normaalijakauman tiheysfunktio f(x) = 1 π e x /. Normaalijakautuneiden satunnaislukujen tuottamiseen on useita keinoja: 1) Ratkaistaan numeerisesti kertymäfunktion käänteisfunktio. Hieman työlästä. ) Satunnaismuuttujien summa lähenee normaalijakaumaa, joten normaalijakautuneita satunnaislukuja saadaan laskemalla yhteen muutamia tasaisesti jakautuneita satunnaislukuja. 3) Box-Mullerin menetelmä. Olkoot x 1 ja x jakautuneet tasaisesti välille [0,1]. Silloin y 1 = lnx 1 cos πx, y = lnx 1 sin πx, ovat kumpikin normaalijakautuneita.
23 Satunnaiskulku (random walk) Esimerkiksi säteilyn eteneminen väliaineessa. Tunnetaan keskimääräinen vapaa matka. Säteen kulkema matka ennen sen osumista hiukkaseen noudattaa eksponenttijakaumaa. Sironneen säteen suuntajakauma saadaan sirontafunktiosta. Ulostulevan säteilyn karkea jakauma saadaan jo pienehköllä säteiden määrällä. Jakaumaa voidaan tarkentaa tilanteen mukaan.
24 Dynaaminen muuttujien varaus Taulukon koko voi riippua syöttötiedoista. Aliohjelmassa tarvittavan aputaulukon koko tiedetään vasta aliohjelmaa kutsuttaessa. Fortran 77: - varataan iso taulukko, joka riittää pahimmassakin tapauksessa, tai - kutsuva ohjelma välittää aliohjelmille tarvittavat työtilat parametreina Fortran90: taulukot voidaan varata dynaamisesti suoritusaikana. Aliohjelman taulukon tila varataan aliohjelmaan tultaessa. Koko voi olla muuttuja: subroutine zz(x,n) integer, intent(in) :: n real, dimension (n) :: x... real, dimension(n,n) :: matrix... Jos taulukon koko saadaan selville vasta suoritusaikana (pääohjelmassa, aliohjelman keskellä), se voidaan varata dynaamisesti: real, allocatable, dimension (:,:) :: matrix... read(*,*) n allocate(matrix(n,n))... Funktiolla allocated voidan tutkia, onko taulukolle varattu tilaa: if (.not. allocated(matrix)) & allocate(matrix(1:10, -10:10)) Aliohjelman paikalliset muuttujat katoavat aliohjelman päättyessä. Tila voidaan vapauttaa myös eksplisiittisesti: deallocate(matrix)
Numeerinen integrointi
Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen
k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu
LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja
Numeeriset menetelmät
Numeeriset menetelmät Luento 10 To 6.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 10 To 6.10.2011 p. 1/35 p. 1/35 Numeerinen integrointi Puolisuunnikassääntö b a f(x)dx = h 2 (f 0 + f
Numeeriset menetelmät
Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion
Numeerinen integrointi
Numeerinen integrointi hum 8.0. Numeerinen integrointi Numeerisia integrointimenetelmiä on useita. Käsitellään tässä yhteydessä kuitenkin vain Gauss in integrointia, joka on elementtimenetelmän yhteydessä
Numeerinen integrointi ja derivointi
Numeerinen integrointi ja derivointi Keijo Ruotsalainen Division of Mathematics Interpolaatiokaavat Approksimoitava integraali I = b a f(x)dx. Tasavälinen hila: x i = a+ (b a)i n, i = 0,...,n Funktion
Jatkuvat satunnaismuuttujat
Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
Numeeriset menetelmät
Numeeriset menetelmät Luento 11 Ti 11.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 11 Ti 11.10.2011 p. 1/34 p. 1/34 Automaattiset integrointialgoritmit Numeerisen integroinnin tarkkuuteen
13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden
Numeeriset menetelmät Pekka Vienonen
Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin
MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37
Numeeriset menetelmät TIEA381 Luento 11 Kirsi Valjus Jyväskylän yliopisto Luento 11 () Numeeriset menetelmät 24.4.2013 1 / 37 Luennon 11 sisältö Numeerisesta integroinnista ja derivoinnista Adaptiiviset
H5 Malliratkaisut - Tehtävä 1
H5 Malliratkaisut - Tehtävä Eelis Mielonen 30. syyskuuta 07 a) 3a (ax + b)3/ + C b) a cos(ax + b) + C a) Tässä tehtävässä päästään harjoittelemaan lukiosta tuttua integrointimenetelmää. Ensimmäisessä kohdassa
Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit
MS-A22 i erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit Antti Rasila Aalto-yliopisto Syksy 25 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 25 / 8 Tasointegraali Olkoon R
Numeeriset menetelmät
Numeeriset menetelmät Luento 12 To 13.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 12 To 13.10.2011 p. 1/38 p. 1/38 Tavalliset differentiaaliyhtälöt Yhtälöissä tuntematon funktio Tavalliset
Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Numeeriset menetelmät TIEA381. Luento 7. Kirsi Valjus. Jyväskylän yliopisto. Luento 7 () Numeeriset menetelmät / 43
Numeeriset menetelmät TIEA381 Luento 7 Kirsi Valjus Jyväskylän yliopisto Luento 7 () Numeeriset menetelmät 10.4.2013 1 / 43 Luennon 7 sisältö Interpolointi ja approksimointi Interpolaatiovirheestä Paloittainen
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
jakokulmassa x 4 x 8 x 3x
Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet
ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa
Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +
a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 Tehtävä 8 on tällä kertaa pakollinen. Aloittakaapa siitä. 1. Kun tässä tehtävässä sanotaan sopii mahdollisimman hyvin, sillä tarkoitetaan
Viikon aiheet. Funktion lineaarinen approksimointi
Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy
Yhden muuttujan funktion minimointi
Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai
Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:
Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti
w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy 215 1 / 24 Skalaarikenttä Olkoon R
x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi
Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2
Funktioiden approksimointi ja interpolointi
Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3
Numeeriset menetelmät
Numeeriset menetelmät Luento 8 To 29.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 8 To 29.9.2011 p. 1/36 p. 1/36 Interpolointi kuutiosplinillä Osavälit: I i = [t i 1,t i ], i = 1,2,...,n
Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K. a) Polynomi P() = 3 + 8 on jaollinen polynomilla Q() = 3, jos = 3 on polynomin P nollakohta, eli P(3) = 0. P(3) = 3 3 3 + 8 3 = 54 08 + 54 = 0. Polynomi P on jaollinen polynomilla Q. b) Jaetaan
, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä
Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =
MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa
8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,
Numeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:
. Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona
Satunnaislukujen generointi
Satunnaislukujen generointi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Satunnaislukujen generointi 1/27 Kevät 2003 Lähteet Knuth, D., The Art of Computer Programming,
x 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
Numeeriset menetelmät
Numeeriset menetelmät Luento 9 Ti 4.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 9 Ti 4.10.2011 p. 1/44 p. 1/44 Funktion approksimointi Etsitään p siten, että p f, mutta ei vaadita, että
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
Integrointi ja sovellukset
Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,
infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1
infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.
Muutoksen arviointi differentiaalin avulla
Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin
Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt
Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.
Luento 2: Liikkeen kuvausta
Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
Matematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat TKK (c) Ilkka Mellin (2006) 1 Moniulotteiset satunnaismuuttujat ja
MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin
Yhtälön ratkaiseminen
Yhtälön ratkaiseminen Suora iterointi Kirjoitetaan yhtälö muotoon x = f(x). Ensin päätellään jollakin tavoin jokin alkuarvo x 0 ja sijoitetaan yhtälön oikealle puolelle, jolloin saadaan tarkennettu ratkaisu
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A
4.3 Moniulotteinen Riemannin integraali
4.3 Moniulotteinen Riemannin integraali Tässä luvussa opitaan miten integroidaan usean muuttujan reaaliarvoista tai vektoriarvoista funktiota, millaisten joukkojen yli jatkuvaa funktiota voi integroida,
Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1
Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla
integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali
integraali 1 Matta-projekti(Aalto yliopisto): Integraali (http://matta.hut.fi/matta2/isom/html/isomli8.html ) Johdatus korkeakoulumatematiikkaan (Tampereen teknillinen korkeakoulu): Integraali (http://matwww.ee.tut.fi/jkkm/integraa/integ01.htm
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 5 Tasointegraalin laskeminen iemmin tutkimme ylä- ja alasummien antamia arvioita tasointegraalille f (x, ydxdy. Tässä siis funktio f (x, y integroidaan muuttujien x
Matematiikka B1 - avoin yliopisto
28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1
1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ..07 HYVÄN VASTAUKSEN PIIRTEITÄ Tutkintoaineen sensorikokous on hyväksynyt seuraavat hyvän vastauksen piirteet. Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty.
Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt
Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka
Derivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
Luku 4. Derivoituvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774
Numeeriset menetelmät
Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma
Harjoitustehtävien ratkaisut
Johdatus numeerisiin menetelmiin Harjoitustehtäviä. Esitä luvun 7 8 a) tarkka arvo desimaalilukuna b) kolmidesimaalinen likiarvo c) nolladesimaalinen likiarvo d) Likiarvo kahden merkitsevän numeron tarkkuudella
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z
peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.
Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,
4 Yleinen potenssifunktio ja polynomifunktio
4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako
Kopulafunktiot. Joonas Ollila 12. lokakuuta 2011
Kopulafunktiot Joonas Ollila 12. lokakuuta 2011 Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään. Kopula-sanan alkuperä Kopula tarkoittaa
Integroimistekniikkaa Integraalifunktio
. Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri
Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.
24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien
cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo?
Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos Matlab-tehtäviä, käyrän sovitus -e Differentiaali- ja integraalilaskenta 1. Laske integraali 2π cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti.
Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
(0 desimaalia, 2 merkitsevää numeroa).
NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx