Numeerinen integrointi

Koko: px
Aloita esitys sivulta:

Download "Numeerinen integrointi"

Transkriptio

1 Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen satunnaiset virheet kumoavat toisensa. Derivointiin sen sijaan liittyy lähes yhtäsuurten suureiden vähennyslasku, joka on virheitä vahvistava operaatio. Vrt. kuvankäsittelyn terävöintioperaatio, joka lisää kohinaa. Jos käsitellään havaintodataa, se voi olla syytä tasoittaa sopivalla suotimella tai kuvata aineistoon sovitettavalla funktiolla. Ei useinkaan tarpeen integroitaessa, välttämätöntä derivoitaessa. Funktio f on integroituva välillä [x 1 = a,x n = b], jos Riemannin summalla n 1 R = f(ξ i )h i, missä i=1 h i = x i+1 x i, ξ i [x i,x i+1 ], on raja-arvo, kun jaon silmä h = max i {h i } 0. Muuttamalla jakovälejä ja pisteiden ξ i valintaa saadaan erilaisia integrointimenetelmiä.

2 Jaetaan integroimisväli yhtä leveisiin viipaleisiin. Olkoon kunkin leveys h. 1) Lasketaan integroitava kunkin välin alkupisteessä: xn f(x) dx = h(f( ) + f( + h) f( + (n 1)h)). Esimerkki: I = 1 0 x dx. Oikea lopputulos on tietenkin 1/3. Lasketaan nyt integraalin likiarvo jakamalla integroimisväli neljään osaan. I 4 = 1 4 ( ) = Koska integroitava funktio on koko välillä kasvava ja funktio lasketaan välin alkupäässä, saadaan liian pieni arvo. ) Lasketaan arvo välin keskikohdalla xn f(x) dx = h(f( + h/) + f( + 3h/) +...). I 4 = 1 4 ( ) =

3 Puolisuunnikasmenetelmä Korvataan integroitava interpolointipolynomilla xn f(x) dx = xn P k (x) dx. Kun k = 1, saadaan yhdelle osavälille x1 f(x) dx = = h x1 (f 0 + s f 0 ) dx s=1 s=0 (f 0 + s f 0 ) ds = h(f f 0) ds = h (f 0 + (f 1 f 0 )) = h (f 0 + f 1 ). Integraali koko välin yli on f(x) dx = h (f 0 + f 1 + f f n 1 + f n ) = h (f() + f( + h) + f( + h) f( + (n 1)h) + f( + nh)).

4 Virhearvio Interpolointipolynomin virhe on korkeintaan samaa luokkaa kuin ensimmäinen poisjätetty termi. f 0 = f 1 f 0 h df dx f 0 = f 1 f 0 h d f dx. n f 0 h n dn f dx n Newtonin-Gregoryn interpolointipolynomin kolmas termi on missä ξ x s. s(s 1) f 0 = s(s 1) h f (ξ), Integroidaan tämä yhden osavälin yli, jolloin saadaan lokaali virhe: x1 s(s 1) h f (ξ) dx = h f (ξ)h 1 0 = 1 1 h3 f (ξ). s s ds Välejä on 1/h kappaletta, joten globaali virhe on luokkaa h f (ξ). Esimerkkitapauksen integraali on I 4 = 1 8 ( ) = Funktion toinen derivaatta on identtisesti, joten virharvion mukaan globaali virhe on korkeintaan 1 1 h f (ξ) = =

5 Simpsonin menetelmä Käytetään mutkikkaampia käyriä, jotka kuvaavat alkuperäistä funktiota vielä paremmin kuin suorat. Luonnollinen parannus on toisen asteen käyrä. Lasketaan ensin integraali yhden osavälin yli. Aikaisemman interpolointikaavan mukaan on f(x) f 0 + s f 0 + s(s 1) f 0. x f(x) dx = h x 0 ( f 0 + s f 0 + ( f 0 + s f 0 + = h(f 0 + f f 0 ) ) s(s 1) f 0 dx ) s(s 1) f 0 ds = h 3 (6f f 0 + f 0 ) Sijoitetaan tähän f 0 = f 1 f 0 f 0 = f 1 f 0 = (f f 1 ) (f 1 f 0 ) = f 0 f 1 + f. Integraali kahden jakoväli yli on x f(x) dx h 3 (f 0 + 4f 1 + f )).

6 Integraali koko välin yli on xn f(x) dx h 3 (f() + 4f( + h) + f( + h) + 4f( + 3h) + f( + 4h) f( + (n 1)h) + f( + nh). Jakovälejä oltava parillinen määrä. Kuten edellä voidaan laskea, että globaali virhe on luokkaa h 4????. Esimerkkitapaus: I 4 = 1 1 ( ) = = 1 3.

7 program simpson implicit none integer i do i=4,10 write(*,*) i, simpsonint(0.0, 1.0, i) end do contains real function f(x)! integroitava funktio real, intent(in) :: x f=x**4 end function real function simpsonint(a, b, n)! integroidaan funktio f(x) valin [a, b] yli Simpsonin! menetelmalla kayttamalla n jakovalia (n oltava parillinen) real, intent(in) :: a, b integer, intent(in) :: n real :: h, &! askelpituus s, s4! osasummat integer i if (*(n/) /= n) then write(*,*) jakovalien maaran oltava parillinen:,n simpsonint=0.0 return end if h = (b-a)/n s=0.0 s4=0.0 do i=1,n-1, s4=s4+f(a+i*h) end do do i=,n-, s=s+f(a+i*h) end do simpsonint = (h/3)*(f(a)+f(b)+*s+4*s4) end function end program jakovalien maaran oltava parillinen: E jakovalien maaran oltava parillinen: E jakovalien maaran oltava parillinen: E

8 Rombergin menetelmä Lasketaan integraali jollakin yksinkertaisella menetelmällä kahdella eri askelpituudella. Näiden arvojen avulla ekstrapoloidaan uusi tarkempi arvo. Olkoon I on integraalin tarkka arvo. Voidaan osoittaa, että puolisuunnikasmenetelmän arvo askelpituuden funktiona R 0 (h) on R 0 (h) = I + C h + C 4 h , missä kertoimet C i eivät riipu askelesta h. R 0 (h/) = I + C h h C , Lasketaan näistä lineaarikombinaatio R 1 (h) = 1 3 (4R 0(h/) R 0 (h)) = I + C 4h , Alkuperäinen menetelmä on kertalukua h, mutta niistä muodostettu kombinaatio kertalukua h 4. Jos aineistona askelpituudella h taulukoituja arvoja, lasketaan integraalit askelilla h ja h. Menetelmää voidaan jatkaa edelleen korkeampiin kertalukuihin.

9 Newtonin Cotesin menetelmät Kaikki edellä olleet integrointimenetelmät voidaan esittää muodossa I = w i f(x i ), missä (x i ),i = 0,...,n on jokin sopivasti valittu pistejoukko. Jos pisteet x i valitaan tasavälisesti, saadaan Newtonin Cotesin menetelminä tunnetut integrointimenetelmät. Kaikki edellä esiintyneet menetelmät kuuluvat tähän ryhmään. Edellä esitetyt menetelmät ovat yksinkertaisia ja helposti ohjelmoitavia. Moniin tarkoituksiin ne ovat täysin käyttökelpoisia. Suuri tarkkuus vaatii lyhyttä jakoväliä, mikä tekee menetelmistä melko hitaita.

10 Gaussin kvadratuuri Tilannetta voidaan parantaa valitsemalla jakopisteet x i jollakin muulla tavoin kuin tasavälisesti. Oletetaan, että funktio on korkeintaan n-asteinen polynomi. Yritetään löytää sellaiset pisteet x i ja kertoimet w i, että w i f(x i ) antaa polynomien integraaleille täsmälleen oikean arvon. Esimerkki: käytetään vain kahta pistettä. Valitaan vielä integroimisväli symmetriseksi, [ 1,1]. Jotta kaava toimisi oikein kaikille astetta n astetta oleville polynomeille, sen on annettava oikeat arvot myös funktioiden 1, x, x,..., x n integraaleille: dx = = w 1 + w, xdx = 0 = w 1 x 1 + w x, x dx = 3 = w 1x 1 + w x, x 3 dx = 0 = w 1 x w x 3, Tässä on neljä yhtälöä ja neljä tuntematonta, w 1, w, x 1 ja x. Toinen ja neljäs yhtälö toteutuu, jos valitaan x = x 1 ja w 1 = w. Silloin ensimmäisen yhtälön perusteella on w 1 = w = 1, ja kolmannesta yhtälöstä saadaan x 1 = x = 1/ 3.

11 Yleiset kolmannen asteen polynomit saadaan edellä esiintyneiden funktioiden lineaarikombinaatioina. Siten mielivaltaiselle korkeintaan kolmatta astetta olevalle polynomille p 3 pätee 1 1 ( ) ( 1 p 3 (x) dx = p p 3 1 ). 3 Kokeillaan 1 (x 3 + x + 1)dx = 1 1 x x3 3 + x = = ( ) 3 1 = Gaussin kahden pisteen kvadratuurilla: 1 1 (x 3 + x + 1)dx = = = ( ) Korkeampaa astetta oleville polynomeille saadaan vastaavat yhtälöt, joiden ratkaiseminen on työlästä. Pisteiden x i ratkaiseminen suoraan yhtälöryhmistä ei ole kovin käytännöllistä. Siksi polynomit esitetäänkin ensin jonkin ortogonaalin kantafunktiojoukon avulla. Jos pisteitä on n kappaletta, niiden paikat ovat Legendren polynomin P n (x) nollakohtia. P 0 (x) = 1, P 1 (x) = x, P (x) = 1 (3x 1), P 3 (x) = 1 (5x3 3x),. (n + 1)P n (x) = (n + 1)P n+1 (x) + np n 1 (x).

12 Esim. kolmen pisteen menetelmän pisteet saadaan yhtälöstä 5x 3 3x = 0, josta x 1 = 3/5 = , x = 0, x 1 = 3/5 = Näitä ei kannata ratkaista joka kerta uudestaan, vaan käytetään valmiiksi taulukoituja arvoja. Pistettä x i vastaava paino on w i = (1 x i )[P (x i )]. Polynomien derivaatat saadaan kaavoista P 0(x) = 0, P 1(x) = 1, P (x) = 3x, P 3(x) = 1 (15x 3),. P n+1(x) = P n 1(x) + (n + 1)P n (x).

13 Mielivaltainen integroimisväli voidaan muuntaa väliksi [-1, 1] sijoituksella y = b a t + b + a, jolloin integraali on b a dy = b a f(y) dy = b a dt, wi f(y i ), missä ( ) b a y i = x i + ( b + a ), Esimerkki: π/ sinxdx 0 Lasketaan tämä Gaussin kolmen pisteen menetelmällä. Integroimisvälin muunnos on y i = π 4 x i + π 4. Integraalin laskemiseen tarvitaan seuraavat suureet: i w i x i y i w i sin y i Integraalin arvo on (π/4) Integraalin tarkka arvo on 1. Kolmen pisteen integrointikaavalla saatiin tulos, jonka suhteellinen virhe on alle 10 5.

14 n x i w i

15 Useampiulotteiset integraalit Voidaan laskea soveltamalla yksiulotteista integrointia erikseen kuhunkin dimensioon. Esimerkiksi kaksiulotteinen integraali: b d f(x,y) dxdy a c = ( ) d w i f(x i,y) dy c = w i w j f(x i,y j ). Painoista ja pisteistä riippuen menetelmä voi tässä olla Gauss tai jokin Newton-Cotes. Kun dimensio suurempi kuin noin 5, kannattaa käyttää Monte Carlo -menetelmää.

16 Epäoleelliset integraalit Esimerkiksi 0 f(x) dx. Erilaisia mahdollisuuksia: 1) Tehdään muunnos [0, ] [a, b]. ) Jatketaan yhä pitemmälle, kunnes tulos ei enää muutu. 3) Integroidaan paloittain. Funktiolla todennäköisesti häntä, jossa arvot hyvin pieniä, joten voidaan käyttää pitkää askelta.

17 Monte Carlo -menetelmä Integraalin I = 1 0 f(x) dx suorakaidemenetelmällä laskettu arvo on n 1 i=0 f(x i ) n. Tämä on funktion keskiarvo välillä [0,1]. Yleisessä tapauksessa integraali on funktion keskiarvo kerrottuna välin pituudella. Periaatteessa sama tulos saadaan, jos integraali lasketaan satunnaisissa pisteissä t i, jotka jakautuvat tasaisesti integrointivälille: I = n 1 i=0 f(t i ) n. Tämä on satunnaismuuttuja, jonka odotusarvo on integraalin oikea arvo: EI = I, Kun N, I I. Jos on laskettava integraali A f dv jonkin mutkikkaan alueen yli, lasketaan B g dv, missä A B ja g(x) = f(x), jos x A ja 0 muuten. Integraalin likiarvo on I = g(x i ), missä satunnaisluvut x i ovat jakautuneet tasaisesti alueeseen B.

18 Esimerkiksi n-ulotteisen pallon tilavuuden laskeminen. Tuotetaan kuution sisälle tasaisesti jakautuneita pisteitä r i = (X 1,X,...,X n ). Nyt g(r i ) = 1, jos r i on pienempi kuin pallon säde ja 0 muuten. Summa g(r i ) lähenee pallon ja ympäröivän kuution tilavuuksien suhdetta. Virhe on suuruusluokkaa 1/ n. Laskentaa voidaan jatkaa tarpeen mukaan. Jos käytetään tavallista kiinteän laskentahilan menetelmää, koko homma on uusittava, jos tarkkuutta halutaan parantaa. Tarkkuus paranee hitaasti, joten menetelmä ei sovellu kaikkiin tehtäviin. Virhe ei riipu avaruuden dimensiosta, joten menetelmää kannattaa käyttää, kun on laskettava moniulotteisia integraaleja.

19 Havaintodatan integrointi Jos tasavälinen aineisto, voidaan käyttää mitä tahansa Newton-Cotes -tyyppistä menetelmää. Jos aineisto ei tasavälistä, korjataan menetelmiä niin, että askelpituus muuttuu; esimerkiksi puolisuunnikassääntö: f(x) dx = ( 1 (x 1 )f( ) + (x )f(x 1 ) +... ) + (x n x n )f(x n 1 ) + (x n x n 1 )f(x n ). Toinen mahdollisuus: sovitetaan aineistoon jokin funktio, jolloin voidaan käyttää mitä tahansa menetelmää tai laskea integraali analyyttisesti. Jos aineisto saadaan esimerkiksi simuloinnista tai on muuten raskas lakea, mutta voidaan laskea mielivaltaiselle pisteelle, kannattaa käyttää Gaussin menetelmää.

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 10 To 6.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 10 To 6.10.2011 p. 1/35 p. 1/35 Numeerinen integrointi Puolisuunnikassääntö b a f(x)dx = h 2 (f 0 + f

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi hum 8.0. Numeerinen integrointi Numeerisia integrointimenetelmiä on useita. Käsitellään tässä yhteydessä kuitenkin vain Gauss in integrointia, joka on elementtimenetelmän yhteydessä

Lisätiedot

Numeerinen integrointi ja derivointi

Numeerinen integrointi ja derivointi Numeerinen integrointi ja derivointi Keijo Ruotsalainen Division of Mathematics Interpolaatiokaavat Approksimoitava integraali I = b a f(x)dx. Tasavälinen hila: x i = a+ (b a)i n, i = 0,...,n Funktion

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 11 Ti 11.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 11 Ti 11.10.2011 p. 1/34 p. 1/34 Automaattiset integrointialgoritmit Numeerisen integroinnin tarkkuuteen

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37

Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37 Numeeriset menetelmät TIEA381 Luento 11 Kirsi Valjus Jyväskylän yliopisto Luento 11 () Numeeriset menetelmät 24.4.2013 1 / 37 Luennon 11 sisältö Numeerisesta integroinnista ja derivoinnista Adaptiiviset

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

Yhtälön ratkaiseminen

Yhtälön ratkaiseminen Yhtälön ratkaiseminen Suora iterointi Kirjoitetaan yhtälö muotoon x = f(x). Ensin päätellään jollakin tavoin jokin alkuarvo x 0 ja sijoitetaan yhtälön oikealle puolelle, jolloin saadaan tarkennettu ratkaisu

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Yhden muuttujan funktion minimointi

Yhden muuttujan funktion minimointi Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Funktioiden approksimointi ja interpolointi

Funktioiden approksimointi ja interpolointi Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 9 Ti 4.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 9 Ti 4.10.2011 p. 1/44 p. 1/44 Funktion approksimointi Etsitään p siten, että p f, mutta ei vaadita, että

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 5 Tasointegraalin laskeminen iemmin tutkimme ylä- ja alasummien antamia arvioita tasointegraalille f (x, ydxdy. Tässä siis funktio f (x, y integroidaan muuttujien x

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1 1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin

Lisätiedot

integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali

integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali integraali 1 Matta-projekti(Aalto yliopisto): Integraali (http://matta.hut.fi/matta2/isom/html/isomli8.html ) Johdatus korkeakoulumatematiikkaan (Tampereen teknillinen korkeakoulu): Integraali (http://matwww.ee.tut.fi/jkkm/integraa/integ01.htm

Lisätiedot

Määrätty integraali. Markus Helén. Mäntän lukio

Määrätty integraali. Markus Helén. Mäntän lukio Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 14 To 20.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 14 To 20.10.2011 p. 1/39 p. 1/39 Nopeat Fourier-muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 N

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA

DIFFERENTIAALI- JA INTEGRAALILASKENTA DIFFERENTIAALI- JA INTEGRAALILASKENTA Timo Mäkelä Tässä tekstissä esitellään yhden muuttujan reaaliarvoisten funktioiden differentiaalilaskentaa sekä sarjoja. Raja-arvot Raja-arvoja voidaan laskea käyttämällä

Lisätiedot

BM20A1501 Numeeriset menetelmät 1 - AIMO

BM20A1501 Numeeriset menetelmät 1 - AIMO 6. marraskuuta 2014 Opetusjärjestelyt Luennot + Harjoitukset pe 7.11.2014 10-14 2310, 14-17 7337 la 8.11.2014 9-12 2310, 12-16 7337 pe 14.11.2014 10-14 2310, 14-17 6216 la 15.11.2014 9-12 2310, 12-16 7337

Lisätiedot

Integroimistekniikkaa Integraalifunktio

Integroimistekniikkaa Integraalifunktio . Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri

Lisätiedot

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Luentoesimerkki: Riemannin integraali

Luentoesimerkki: Riemannin integraali Luentoesimerkki: Riemannin integraali Heikki Apiola, "New perpectives "-esitykseen lievästi muokattu Kurssi: Informaatioverkostot, keväällä Tässä (4..) käytetään "worksheet-modea", uudempaa "document mode"

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

Muotoinosa tulkitaan vasta suoritushtkellä.

Muotoinosa tulkitaan vasta suoritushtkellä. Syöttö ja tulostus write (*,*) x write (6,*) x write (*,00) x 00 format( x=,f8.3) write(*, ("x=",f8.3) ) x write(*,"( x=,f8.3)") x write(*, ( x=,f8.3) ) x character (len=80) :: form character (len=2) ::

Lisätiedot

(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R.

(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R. Calculus Kurssikoe..7. Laske (a) x sin x, (b) x x + x. (a) Merkitään u(x) = x ja v (x) = sin x, jolloin u (x) =, v(x) = cos x ja osittaisintegroimalla saadaan x sin x = u(x)v (x) = u(x)v(x) u (x)v(x) =

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

f[x i ] = f i, f[x i,..., x j ] = f[x i+1,..., x j ] f[x i,..., x j 1 ] x j x i T n+1 (x) = 2xT n (x) T n 1 (x), T 0 (x) = 1, T 1 (x) = x.

f[x i ] = f i, f[x i,..., x j ] = f[x i+1,..., x j ] f[x i,..., x j 1 ] x j x i T n+1 (x) = 2xT n (x) T n 1 (x), T 0 (x) = 1, T 1 (x) = x. Kaavakokoelma f[x i ] = f i, f[x i,..., x j ] = f[x i+,..., x j ] f[x i,..., x j ] x j x i T n+ (x) = 2xT n (x) T n (x), T (x) =, T (x) = x. n I,n = h f(t i + h 2 ), E,n = h2 (b a) f (2) (ξ). 24 i= I,n

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo

Lisätiedot

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu 2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

4 Integrointimenetelmiä

4 Integrointimenetelmiä 4 Integrointimenetelmiä 4. Määräämätön integraali Määritelmä 4.. Olkoon funktio f jatkuva välillä I. Tällöin funktion f integraalifunktioiden (välillä I) joukkoa sanotaan funktion f määräämättömäksi integraaliksi

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo.

Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo. Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo. Iterointi on menetelmä, missä jollakin likiarvolla voidaan määrittää jokin toinen,

Lisätiedot

cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo?

cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo? Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos Matlab-tehtäviä, käyrän sovitus -e Differentiaali- ja integraalilaskenta 1. Laske integraali 2π cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti.

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 /

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Johdatus f90/95 ohjelmointiin. H, R & R luvut 1-3

Johdatus f90/95 ohjelmointiin. H, R & R luvut 1-3 Johdatus f90/95 ohjelmointiin H, R & R luvut 1-3 Fortran-kieli ( 3.1-3) IBM 1954, FORmula TRANslator ISO/ANSI standardit f90, f95, f2003 tieteellinen & teknillinen laskenta rinnakkaislaskenta (HPF, openmp)

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Viivaintegraali: "Pac- Man" - tulkinta

Viivaintegraali: Pac- Man - tulkinta Viivaintegraali: "Pac- Man" - tulkinta Otetaan funk6o f(x,y), joka riippuu muu@ujista x ja y. Jokaiselle x,y tason pisteellä funk6olla on siis joku arvo. Tyypillisiä fysikaalis- kemiallisia esimerkkejä

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Differentiaaliyhtälöryhmä

Differentiaaliyhtälöryhmä Differentiaaliyhtälöryhmä Ensimmäisen kertaluvun differentiaaliyhtälöryhmä vaikkapa korkeamman kertaluvun yhtälöä vastaava normaaliryhmä voidaan ratkaista numeerisesti täsmälleen samanlaisilla kaavoilla

Lisätiedot

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty Pyramidi Integraalilaskenta harjoituskokeiden ratkaisut sivu 98 Päivitetty.5. Pyramidi Harjoituskokeet 6.5.7 Ensimmäinen julkaistu versio..7.7 Korjattu ulkoasua ja painovirheitä..8.7 Täydennetty ratkaisuja

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) dx dx dx Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x))dx dx = df(x) dx g(x)dx + f(x)

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Numeerinen analyysi Harjoitus 1 / Kevät 2017

Numeerinen analyysi Harjoitus 1 / Kevät 2017 Numeerinen analyysi Harjoitus 1 / Kevät 2017 Palautus viimeistään perjantaina 3.3. Tehtävä 1: Oheinen MATLAB-funktio toteuttaa eksponenttifunktion evaluoinnin. 1 function y = seriesexp ( x ) 2 oldsum =

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa Matlab-esittelyä 1 / 20 Luennon sisältö Digress: vakio-

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Harjoitustehtävien ratkaisut

Harjoitustehtävien ratkaisut Johdatus numeerisiin menetelmiin Harjoitustehtäviä. Esitä luvun 7 8 a) tarkka arvo desimaalilukuna b) kolmidesimaalinen likiarvo c) nolladesimaalinen likiarvo d) Likiarvo kahden merkitsevän numeron tarkkuudella

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 varuusintegraali iemmin laskimme yksiulotteisia integraaleja b a f (x)dx, jossa integrointialue on x-akselin väli [a, b]. Lisäksi laskimme kaksiulotteisia integraaleja

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

5 Differentiaaliyhtälöryhmät

5 Differentiaaliyhtälöryhmät 5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =

Lisätiedot