jakokulmassa x 4 x 8 x 3x

Koko: px
Aloita esitys sivulta:

Download "jakokulmassa x 4 x 8 x 3x"

Transkriptio

1 Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat Suoritetaan jakolasku jakokulmassa ± ± 4 4 ± 4 4 ± ± ± 6 Vastaus: Vastaus jakoytälönä on = ( )

2 74. Jaetaan polynomi 5 binomilla ± ± ± Vastaus: Jakojäännös on Jaetaan polynomi 4 binomilla ± ± 4 4 ± ± Vastaus: Jakojäännös on

3 76. Polynomin 4 f( ) = + jako tekijöiin [ ] f( ) = + = ( ) = ( )( + ) = ( ) ( + ) 4 Polynomin nollakodat f( ) = 0 ( ) ( + ) = 0 = 0 tai + = 0 = = Vastaus: Polynomin nollakodat ovat = ja =. Polynomin jako tekijöiin on f( ) = ( ) ( + ). 77. Polynomi f Nollakodat f( ) = = 0 ( ) = Määritetään madolliset rationaalijuuret Luvun a 0 = 6 kaikki tekijät: ±, ±, ±, ± 6 Luvun a n = kaikki tekijät: ±, ± b0 Madolliset rationaalijuuret sievennettynä ±, ±, ±, ± 6, ±, ± bn Kokeillaan = : + 4 6= + 4 6= = : = + + = 4 4 Koska = toteuttaa ytälön, niin se on ytälön juuri ja polynomi + on jaollinen binomilla +, joka voidaan saattaa muotoon +. Suoritetaan jakolasku jakokulmassa ± ± Ytälön ratkaisu eli polynomin nollakodat 55

4 + 4 6= 0 (+ )( ) = 0 + = 0 tai = 0 = = =± Vastaus: Polynomin jako tekijöiin on f( ) = (+ )( + )( ).. Jatkuvuuslauseita 78. Funktio f() = + on jatkuva välillä ja derivoituva välillä < <. Suljetulla välillä jatkuva funktio saavuttaa suurimman ja pienimmän arvonsa tällä välillä. Koska funktio f on derivoituva, suurin ja pienin arvo sijaitsevat joko välin päätepisteissä tai derivaatan nollakodissa. Välin päätepisteet Funktion f() = + arvot välin päätepisteissä. f( ) = ( ) ( ) + = f() = + = Derivaatan nollakodat Funktio f() = + Derivaatta f () = 6 6 Derivaatan nollakodat f () = = 0 6( ) = 0 6 = 0 tai = 0 = 0 = Välin päätepiste Funktion f() = + arvot derivaatan nollakodissa f(0) = = Vastaus: Funktion suurin arvo välillä on ja pienin Funktio f( ) =,, on jatkuva välillä [0, 5] ja derivoituva välillä ] [ + 0,5. Suljetulla välillä jatkuva funktio saavuttaa suurimman ja pienimmän arvonsa tällä välillä. Koska funktio f on derivoituva, suurin ja pienin arvo sijaitsevat joko välin päätepisteissä tai derivaatan nollakodissa. 56

5 Välin päätepisteet + Funktion f( ) = arvot välin päätepisteissä f (0) = = f (5) = = 4 5+ Derivaatan nollakodat + Funktio f( ) = + ( + ) ( + ) + Derivaatta f () = = ( + ) ( + ) Derivaatan nollakodat f () = = ( + ) + = 0 ± 4 ( ) = 6 = = Ei Käy + 6 = = + + Funktion f() = f( ) = arvo derivaatan nollakodassa f () = = + + Vastaus: Funktion suurin arvo välillä [0,5] on 4 ja pienin. 80. Funktio f( ) = + + ( + ) ( + ) Derivaatta f () = = ( + ) ( + ) Tutkitaan funktiota g ( ) =.Funktio g ( ) = on jatkuva välillä [0, 9] ja ( + ) ( + ) derivoituva välillä ] [ 0,9. Nimittäjän nollakota on =. Suljetulla välillä jatkuva funktio saavuttaa suurimman ja pienimmän arvonsa tällä välillä. Koska funktio f on derivoituva, suurin ja pienin arvo sijaitsevat joko välin päätepisteissä tai derivaatan nollakodissa. 57

6 Välin päätepisteet Funktion g ( ) = arvot välin päätepisteissä ( + ) g(0) = = (0 + ) g(9) = = (9 + ) 50 Derivaatan nollakodat Funktio g ( ) = = ( + ) ( + ) 4 Derivaatta g () = ( )( + ) = ( + ) Derivaatan nollakodat f () = 0 4 = 0 ( + ) 4= 0 Ei nollakotia Vastaus: Funktion derivaatan suurin arvo välillä [0,9] on ja pienin a)ytälö tan = + tan = 0 π π π Tutkitaan funktiota f() = tan, + n π eli + n 6 π Funktiolla on välillä [0,] kota = 0, , jossa sitä ei ole määritelty. 6 Derivaatta f () = 0, joten funktio f() on kasvava. cos f(0) = tan 0 0 = < 0 f(0,5) = tan ( 0,5) 0,5 =,6 > 0 Koska funktio on jatkuva ja funktion arvot välin [0; 0,5] päätepisteissä ovat erimerkkiset, funktiolla on nollakota välillä ]0; 0,5[. Tämä väli sisältyy väliin [0,], joten ytälöllä on ratkaisu välillä [0,]. b) Ytälö ln = e 00 ln e + 00 = 0 Tutkitaan funktiota f() = ln e + 00 Funktio on jatkuva ja derivoituva, kun > 0. Derivaatta f () = e = e 58

7 Derivaatan nollakodat f () = 0 e = 0 = e e = e = 0 Nollakotien ratkaisu ei onnistu analyyttisesti. 0,00 0,00 Koska f (0,00) = e = 000 e > 0 ja f () = e = e < 0, 0,00 derivaatalla on välillä ] 0, [ ainakin yksi nollakota. Tutkitaan derivaattafunktion f () = e = e kulkua. Derivaatan derivaatta f () = e = 9e < 0, sillä > 0 ja e > 0, kun > 0. Täten derivaatta f () on aidosti väenevä, joten sillä on korkeintaan yksi nollakota välillä 0,. ] [ Kotien ja perusteella derivaatalla on täsmälleen yksi nollakota välillä ] 0, [. Koska derivaatta saa aluksi positiivisia arvoja ja sitten negatiivisia arvoja, on itse funktio aluksi kasvava ja sitten väenevä. Lasketaan funktion arvoja f 0 = ln 0 e + 00 = ln0 e = 000 ln0 e < 0 f() = ln e > Koska funktio on jatkuva ja funktion arvot välin 0, päätepisteissä ovat 000 erimerkkiset, funktiolla on nollakota välillä 0,. Tämä väli sisältyy väliin [0,], joten ytälöllä on ratkaisu välillä [0,]. Vastaus: Ytälöllä a) on juuri b) on juuri välillä [0,]. 8. Osoitetaan, että funktiolla f() = ln on ainakin yksi nollakota. Funktio f() = ln on jatkuva, kun > 0. f() = ln = < 0 f(0) = 0 ln 0 5,69 > 0 Koska funktion arvot välin [;5,69] päätepisteissä ovat erimerkkiset, funktiolla on Bolzanon lauseen perusteella välillä ] ; 5, 69 [ ainakin yksi nollakota. 59

8 8. Osoitetaan, että funktiolla f() = on täsmälleen yksi nollakota. Funktio f() = on polynomifunktiona jatkuva kaikkialla. f(0) = = 8 > 0 f( ) = 5 ( ) + ( ) + 8 = 8 < 0 Koska funktion arvot välin [,0] päätepisteissä ovat erimerkkiset, funktiolla on Bolzanon,0 ainakin yksi nollakota. lauseen perusteella välillä ] [ Funktio f() = on polynomifunktiona derivoituva kaikkialla Derivaatta f () = > 0 Funktio on aidosti kasvava, joten funktiolla f() = on korkeintaan yksi nollakota. Kodista ja seuraa, että funktiolla f() = on täsmälleen yksi nollakota.. Absoluuttinen ja suteellinen vire 84. Lukujen a ja b likiarvojen a, ja b,789 summan ja erotuksen osamäärä a+ b, +, 789 = = 4, , a b,,789 Vastaus: Lukujen summan ja erotuksen osamäärä on 4,. 85. Luvun 7 = asemasta käytetään likiarvoa 0, ,0 a) Luvun suteellinen vire = 0,4... 4% ,0 7 0, 0 b) Lausekkeen suteellinen vire Vastaus: Suteellinen vire on a) 4 % b) 5 %. = 0, % 60

9 86. Määritä tulon ab suteellinen vire, kun Luvut a =,4 ± 0, ja b = 0,7 ± 0, Δ( ab) Δa Δb 0, 0, Tulon ab suteellinen vire + + 0,57... < 6% ab a b, 4 0, 7 Vastaus: Tulon ab suteellinen vire 6 %. 4. Funktion nollakotien ratkaiseminen numeerisesti 87. Funktion f() = ln nollakota puolitusmenetelmällä f() Nollakota välillä, ,00000, ,695 ], [,50000,0945 ], 5; [, ,6908 ], 75; [, ,006 ], 75;,875 [,850 0,479 ], 85;,875 [,8475 0,6945 ],8475;,875[,8598 0,0888 ],8598;,875[,8679 0,096 ],8679;,875[ Nollakota on välillä ],8679;,875 [, joten kaden desimaalin tarkkuudella se on =,87. Vastaus: Nollakota on, Ytälö = = 0 Tutkitaan funktiota f() = Funktion yksi nollakota on = 0. Funktion f() = nollakota sekanttimenetelmää käyttäen. b a Uusi välin päätepiste c = a f( a) f( b) f( a) a b c f(a) f(b), , ,0854, ,4456, ,0854,576 0,4456 0,70060,0854,576,077 0, , ,576,077, , , ,077,46666, , , ,46666,47804, , ,000000,47804,47796, , ,

10 Nollakota on välillä ], 47804;, 47796[, joten viiden desimaalin tarkkuudella se on =,47. Vastaus: Ytälön ratkaisu on, a) Funktio f() = 5 Kiintopisteet f() = 5 = 6 = 0 ( 6) = 0 = 0 tai = 6 b) Funktio g() = Kiintopisteet g() = = = 0 ( ) = 0 = 0 tai = 0 = = ± Vastaus: Funktion kiintopisteet ovat a) 0 ja 6 b), 0 ja. 90. Funktio f() = e Kiintopisteet f() = 0 e = 0 = e Iterointifunktio g() = e Alkuarvo 0 = 4 Nollakota kiintopistemenetelmällä n n f( n ) 0 4, ,986846,986846,949965,949965,94766,94766, , , ,94756, ,947509, , , Likiarvojen jono suppenee koti lukua, , joten kuuden desimaalin tarkkuudella se on =,9475. Vastaus: Nollakota on,

11 9. Funktio f() = ln = ( ) ln Derivaatta f () = ( ) = Newtonin menetelmän iteroimiskaava f( n ) n ln n+ = n = n f '( ) n Alkuarvo 0 = Nollakota Newtonin menetelmällä n n n n n n + 0, ,59677,59677,758986,758986,799559,799559, ,799556, Likiarvojen jono suppenee koti lukua,799556, joten viiden desimaalin tarkkuudella se on =,7996. Vastaus: Nollakota on, Ytälö 7 = + 7 = 0 Tutkitaan funktiota f() = 7 Derivaatta f () = 7 6 Newtonin menetelmän iteroimiskaava 7 f( n) n n n+ = n = n 6 f '( n ) 7n n Alkuarvo 0 = Nollakota Newtonin menetelmällä n n n + 0, , , ,68705,68705, , ,9578 4,9578, ,90905, ,908988,

12 Likiarvojen jono suppenee koti lukua,908988, joten kuuden desimaalin tarkkuudella se on =,9090. Vastaus: Ytälön juuri on, Luku = 4 on ytälön = 4 eli 4 = 0 ratkaisu. Funktio f() = 4 Derivaatta f () = Newtonin menetelmän iteroimiskaava f( n) n 4 n+ = n = n f '( n ) n Nollakota Newtonin menetelmällä Alkuarvo 0 = n n n + 0, , , , , ,59,59, , , , , Likiarvojen jono suppenee koti lukua, , joten seitsemän desimaalin tarkkuudella se on =, Vastaus: Luvun 4 likiarvo seitsemän desimaalin tarkkuudella on, Numeerinen derivointi 94. Funktio f() = Kota 0 = 4 e ( + ) f( 0 + ) f( 0) e e Etenevää erotusosamäärä f '( 0 ) E+ ( ) = = f( 0) f( 0 ) e e Takeneva erotusosamäärä f '( 0 ) E ( ) = = Taulukoidaan arvot E + () E () 0, 6, , ,0, , ,00 0,9886 0,8576 0,000 0, , ,0000 0, , Vastaus: Taulukossa 64 ( )

13 95. Funktio f() = ln (sin ) Kota 0 = Etenevää erotusosamäärä Takeneva erotusosamäärä Taulukoidaan arvot ( + ) f( 0 + ) f( 0) e e f '( 0 ) E+ ( ) = = f '( ) E ( ) 0 f( ) f( ) e e 0 0 = = ( ) E + () Vire E () Vire 0, 0, , , , ,00 0, , , , ,0000 0, , , , , , , , , Vastaus: Taulukossa 96. Funktio f() = Kota 0 = Keskeisdifferenssi Taulukoidaan arvot f '( ) K( ) = = + f( + ) f( ) ( + ) ( ) Vastaus: Taulukossa e 97. Funktio f() = ln Kota 0 = K() 0, 0, ,0 0, ,00 0, ,000 0, ,0000 0, ( + ) f( 0 + ) f( 0) e e Etenevää erotusosamäärä f '( 0 ) E+ ( ) = = f( 0) f( 0 ) e e Takeneva erotusosamäärä f '( 0 ) E ( ) = = f ( 0 + ) f( 0 ) Keskeisdifferenssi f '( 0 ) K( ) = 65 ( )

14 Taulukoidaan arvot E + () E () K(), , , ,,76659,0886, ,0, , , ,00,746589,79505, ,000, ,74804, ,0000,75549, , Vastaus: Taulukossa a) Lauseke f( ) = Taulukoidaan likiarvot. n = + 0 n f(),,6,00, ,0000, ,000000, , b) Olkoon funktio f() = Tällöin f() = = 8 Funktio f() = on derivoituvaa Raja arvo 8 f( ) f() lim f( ) = lim = lim = f '() Funktion derivaatta f () = Derivaatan arvo f () = = Vastaus: a) Taulukossa b) Raja-arvo on lim f ( ) =. 6. Pinta-alan numeerinen määrittäminen 99. Funktion f() = kuvaajan ja -akselin rajoittaman alueen pinta-alan likiarvo välillä [0,] käyttäen keskipistesääntöä, kun n = = = [ ( ) ]+ [ ( ) ] [ ( ) ] [ ( ) ] 0,

15 Suteellinen vire 0, % 0,78% Vastaus: 0,67875 ja 0,78 % 00. Sekä puolisuunnikassäännön että Simpsonin säännön avulla viiden desimaalin tarkkuudella avulla käyrän y = ja -akselin rajoittaman alueen pinta-alan likiarvo välillä [0,], ja a) n = 4 b) n = 0. a) Puolisuunnikassäännöllä f() = n = 4 0 = = 4 4 f() = 0 4 0,975 0,75 4 0,475 0 A = [ f( 0) + f( ) f( n ) + f( n)] = ( + 0, , , ) 4 =0,6565 Simpsonin säännöllä f() = n = 4 0 = =

16 f() = 0 4 0,975 0,75 4 0,475 0 A = [ f( 0) + 4 f( ) + f( ) + 4 f( ) f( n ) + f( n)] = 4 ( + 4 0, , , ) = 0, b) f() = n = 0 0 = = 0 0 f() = Puolisuunnikassääntö Simpsonin sääntö 0, , 0, , ,99 0, 0, , ,96 0, 0,9000 0, ,9 0,4 0, , ,84 0,5 0, , ,75 0,6 0, , ,64 0,7 0,5000 0, ,5 0,8 0,6000 0,6000 0,6 0,9 0,9000 0, ,9,0 0, yt. 6, ,0000 Puolisuunnikassäännöllä A = 6,65000=0,

17 Simpsonin säännöllä A = 0 0,0 = 0,66667 Huomataan, että Simpsonin säännöllä saadaan tarkka arvo. Vastaus: a) Puolisuunnikassäännöllä 0,6565 ja Simpsonin säännöllä 0,66667 b) Puolisuunnikassäännöllä 0,66500 ja Simpsonin säännöllä 0, Funktion f() = 0, (,5 )( e 8( ) ) kuvaajan ja -akselin rajoittaman alueen pintaalan likiarvo välillä [0,] käyttäen puolisuunnikassääntöä. n = 5 0 = = 5 5 f() = 0, (,5 )( e 8( ) ) 0 0 5, , , , A= [ f( 0) + f( ) f( n ) + f( n)] = ( 0 +, , ,80+ 0, ) 5 0,6999 Vastaus: 0, Käyrän y = + e ja -akselin väliin jäävän alueen pinta-alan likiarvo, kun ja n = 4. Puolisuunnikassäännöllä f() = + e n = 4 69

18 ( ) = = 0,75 4 f() = + e -,788-0,5,684 0,5 0,75,5,96 8,55 A= [ f( 0) + f( ) f( n ) + f( n)] = 0, 75 (, 788 +, , 75+, ,55) 6, Likiarvon suteellinen vire verrattuna tietokoneella saatuun arvoon 6,. 6, , 8, 6% 6, Simpsonin säännöllä A= [ f( 0) + 4 f( ) + f( ) + 4 f( ) f( n ) + f( n)] 0,75 = (, , ,75 + 4,96 + 8,55) 6,700 Likiarvon suteellinen vire verrattuna tietokoneella saatuun arvoon 6,. 6, 700 6, 0,066% 6, Vastaus: 6, (vire 8,6 %) ja 6,700 (vire 0,066 %) 7. Approksimointi 0. Funktion f() = f() = f () = 6 f () = 4, kodassa = Taylorin polynomi asteluvulla ja n. 70

19 4! f () = 5 f (n) ( )! () = ( ) n n + n + f ''( ) f '''( ) P ( ) = f( ) + f '( )( + ) + ( + ) + ( + )!! 6 4! = ( + ) + ( + ) ( + ) 4 5 ( )!( )!( ) = + ( + ) + ( + ) + 4( + ) Funktion f() n. asteen Taylorin polynomi kodassa = f ''( ) f ( ) n Pn ( ) = f( ) + f '( )( + ) + ( + ) ( + )! n! 6 4! ( n + )! = ( + ) + ( + ) ( + ) ( + ) 4 5 n+ ( )!( )!( ) n!( ) = + ( + ) + ( + ) + 4( + ) ( n+ )( + ) Vastaus: + (+) + (+) + 4 (+) ja + (+) + (+) + 4 (+) (n + ) (+) n n ( n) n 04. Funktion f() = +, kodassa = 0 Taylorin polynomi asteluvulla. f() = + f () = + f () = (+ ) f () = 5 (+ ) f ''(0) f '''(0) P ( ) = f(0) + f '(0) + +!! = !! = + + Vastaus: + + 7

20 05. Funktion f() = f() = f () = ( ) f () = 4 ( ) f () = ( ) 7 f ''(0) f '''(0) P ( ) = f(0) + f '(0) + +!! 5 = + + +! 4! 8 5 = Vastaus: , kodassa = 0 Taylorin polynomi asteluvulla. 06. Funktion f() = e Taylorin polynomi kodassa = 0 asteluvulla n. f() = e f () = e e f () = e (e e ) = e + e f () = e + e e = e e f (4) () = e (e e ) = 4e + e f (n) () = n + n ( ) ne + ( ) e Funktion f() n. asteen Taylorin polynomi kodassa = 0 ( n) f ''(0) f (0) n Pn ( ) = f(0) + f '(0) ! n! n+ n ( ) n + ( ) 0 = 0 + ( 0) !! n! n+ n = ( )! ( n )! 4 n+ n Vastaus: ( )!! ( n )! n 7

21 07. a) Funktion f() = ( + ) k Taylorin polynomi kodassa = 0 asteluvulla n. f() = ( + ) k f '() = k( + ) k f ''() = k(k )( + ) k... f (n) () = k(k )(k )...(k n+)( + ) k n ( n) f ''(0) f (0) Pn ( ) = f(0) + f '(0) ! n! k k k n k k kk ( ) kk ( )( k ) kk ( )( k )...( k n+ ) n = + k !! n! kk ( ) kk ( )( k ) kk ( )( k )...( k n+ ) n = + k !! n! b) Taylorin polynomin asteluku, kun k = 6 ja vire kodassa = 0, on pienempi kuin 0 4. Funktion f() = ( + ) 6 (n + ):nnen derivaatan lauseke f (n) 6 () = (6 n+ )!( + ) n f (n + ) 5 () = (6 n)!( + ) n Taylorin polynomin vire arvolla = 0, n ( n+ ) f () t n+ Rn+ ( ) = ( a) = 0, ; a = 0;0 < t < ( n + )! ( n+ ) f () t = (0, 0) f ( t ) = (6 n )!( + t ) ( n + )! 5 n (6 n)!( + t) = 0, ( n + )! n+ ( n+ ) 5 n n+ R n+ 5 n (6 n)!( + t) n+ = 0, 0 < t < 0, ( n + )! 5 n (6 n)!( + 0) < 0, ( n + )! (6 n)! = 0, ( n + )! n+ n+ Edon mukaan R n+ < 0 (6 n)! 0, < 0 ( n + )! 4 n+ 4 Taulukoidaan lausekkeen (6 n)! 0, ( n + )! n+ arvoja, kun n kasvaa. 7

22 n n n+ (6 )! 0, ( n + )! 0, , , , Huomataan, että kun asteluku n on, on vire pienempi kuin 0 4. kk ( ) kk ( )( k ) kk ( )( k )...( k n+ ) n Vastaus: a) + k b)!! n! asteluku n on väintään. Harjoituskoe 4. a) Suoritetaan jakolasku ( + ):( + ) jakokulmassa ± ± 4 4 Vastaus jakoytälönä ( + ) = ( )( + ) + 4 b) Funktio f( ) = lauseke ensimmäisen asteen tekijöiin. Nollakodat f( ) = = 0 Määritetään madolliset rationaalijuuret Luvun a 0 = 5 kaikki tekijät: ±, ± 5 Luvun a n = kaikki tekijät: ±, ± b0 Madolliset rationaalijuuret b sievennettynä 5 ±, ± 5, ±, ± n Kokeillaan = : 5 + 5= 5 + 5= 0 Koska = toteuttaa ytälön, niin se on ytälön juuri ja polynomi jaollinen binomilla. Suoritetaan jakolasku jakokulmassa on 74

23 ± ± ± Ytälön ratkaisu eli polynomin nollakodat 5 + 5= 0 ( )( 5) = 0 = 0 tai 5 = 0 ( ) ± ( ) 4 ( 5) = = 64 = = = = 6 Funktion jako tekijöiin on f( ) = ( + )( )( 5). Vastaus: a) 4 ( ) ( )( ) 4 + = + + b) f( ) = ( + )( )( 5). a) Ytälö = ln + ln = 0 Tutkitaan funktiota f( ) = + ln, > 0 Funktio f( ) = + ln on jatkuva, kun > 0. f () = + ln = > 0 f (9) = 9 + ln 9 = + ln 9 > 0 Koska funktion arvot välin [,9] päätepisteissä ovat erimerkkiset, funktiolla on Bolzanon lauseen perusteella välillä ], 9 [ ainakin yksi nollakota. Funktio Derivaatta f () = f( ) = + ln = + ln on derivoituva, kun > 0. ) + + = + = > 0, kun > 0. 75

24 Funktio on aidosti kasvava, joten funktiolla f( ) = + ln on korkeintaan yksi nollakota. Kodista ja seuraa, että funktiolla f( ) = + ln on täsmälleen yksi nollakota, joten ytälöllä = ln on täsmälleen yksi juuri. b) Ratkaistaan ytälö + ln = 0 Tutkitaan funktiota f( ) = + ln + Derivaatta f () = Newtonin menetelmän iteroimiskaava f( n) n + ln n n+ = n = n f '( n ) n + n Nollakota Newtonin menetelmällä Alkuarvo 0 = n n n + 0, ,874907,874907,87796,87796,87767,87767,87767 Likiarvojen jono suppenee koti lukua,87767, joten kaden desimaalin tarkkuudella se on =,88. Newtonin menetelmässä määrätään funktion kuvaajalle tangentti alkuarvon osoittamaan kotaan. Tämän jälkeen lasketaan tangentin ja akselin leikkauspiste, jota käytetään uutena alkuarvona. Tätä toistetaan kunnes nollakota on saatu määrättyä vaadittavalla tarkkuudella. Vastaus: Ytälön juuri on,88.. Funktio f( ) = Muuttujan arvo =,45 Pyöristetty arvo,5 Absoluuttinen vire,45,5 = 0,04875 < 0,0, 45,5 Suteellinen vire = 0,009...,%, 45 Vastaus: Absoluuttinen vire on 0,0 ja suteellinen vire, %. 76

25 4. Kappaleen putoamista tutkittaessa saatiin seuraavanlaiset tulokset: Aika (s) Matka (m) 0 0 0, 0,6 0, 0, 0, 0,40 0,4 0,80 0,5, a) Piirretään koordinaatistoon kuvaaja matka ajan funktiona.,4, matka (m) 0,8 0,6 0,4 0, 0 0 0, 0, 0, 0,4 0,5 0,6 aika (s) Määritetään taulukon avulla. asteen malli riippuvuuden välille. Toisen asteen polynomifunktio y = a + b + c Kuvaaja kulkee pisteiden (0,0), (0,; 0,) ja (0,4; 0,80) kautta. 0= a 0 + b 0+ c 0, = a 0, + b 0, + c 0,8 = a 0, 4 + b 0, 4 + c 0 = c 0, = 0,04a+ 0, b+ c 0,8 = 0,6a+ 0, 4b+ c Sijoitetaan ylimmän ytälön c = 0 muiin ytälöiin. 0,04a+ 0, b = 0, 0,6a+ 0, 4b = 0,8 Ylemmästä ytälöstä saadaan a = 5,5 5b. Sijoitetaan alempaan ytälöön. 0,6(5,5 5b) + 0,4b = 0,8 0,4b = 0,04 :( 0,4) b = 0, Lasketaan a: a = 5,5 5b = 5,5 5 0, = 4,75 Toisen asteen malli riippuvuuden välille on y = 4,75 + 0, b) Hetkellinen nopeus y () = 9,5 + 0, Hetkellinen nopeus, kun aikaa on kulunut alusta 0,0 s: y (0,0) = 9,5 0, + 0, =,05 Nopeus graafisesti 77

26 y,, y = 4,75 + 0, 0,9 0,8 0,7 0,6 0,5 0,4 0, 0, y =,05 0,0475 0, 0,05 0, 0,5 0, 0,5 0, 0,5 0,4 0,45 0,5 0,55 Tangentti kulkee pisteiden (0,05; 0) ja (0,5; 0,48) kautta. 0, 48 0 Nopeus on tangentin kulmakerroin k t =, 0,5 0, 45 Vastaus: a) Toisen asteen malli on y = 4,75 + 0,. b) Nopeus on, m/s. 5. Lasketaan Taylorin polynomia käyttäen luvun e kaksidesimaalinen likiarvo. Funktio f() = e Taylorin polynomi kodassa = a f() = f(a) + f (a)( a) +! f (a) ( a) +! f (a) ( a) + Derivaatat ja termit kodassa = 0 n Derivaatta Arvo f() = e f (0) = e 0 = f () = e f (0) = f () = e f (0) = 4 f () = e f (0) = 5 f (4) () = e f (4) (0) = Taylorin polynomi, kun a = 0 f() = f(0) + f (0)( 0) +! f (0) ( 0) +! f (0) ( 0) + 4! f (4) ( 0)( 0) 4 + = f(0) + f (0) +! f (0) +! f (0) + 4! f (4) ( 0) 4 + = + +! +! + 4!

27 Funktion arvo, kun = e = f() = + +! +! + 4! 4 + Taulukoidaan arvoja Termi Arvo 0, 4 0, , , , , , , Termien summa 7, Vastaus: Kaksidesimaalinen likiarvo on 7,9. 6. a) Jodetaan Newtonin menetelmän iteroimiskaava f( ) = 0 0 f '( 0 ). Oletetaan, että funktio f on jatkuva ja derivoituva nollakodan läeisyydessä. Määritettäessä funktion f nollakotaa Newtonin menetelmällä aloitetaan läellä nollakotaa olevasta alkuarvosta = 0. Määritetään tään kotaan käyrälle y = f() tangentti ja lasketaan tangentin ja -akselin leikkauspiste =. Valitaan tämä uudeksi alkukodaksi ja määritetään käyrälle y = f() tään kotaan tangentti, jonka leikkauspiste -akselin kanssa lasketaan. Näin jatkamalla saadaan funktion nollakodan likiarvo yvin nopeasti laskettua. Newtonin menetelmässä on tärkeää, että iteroinnin alkuarvo on riittävän läellä nollakotaa. Varsinkin jaksollisten funktioiden tapauksessa voi käydä niin, että aluttua nollakotaa ei löydetä vaan päädytään joonkin muuun nollakotaan. 79

28 y y = f() 0 Määritetään funktion f() nollakota. Valitaan kota = 0. Käyrän y = f() kotaan = 0 piirretyn tangentin ytälö y y 0 = k t ( 0 ) y 0 = f( 0 ), k t = f ( 0 ) y f( 0 ) = f ( 0 )( 0 ) y = f ( 0 )( 0 ) + f( 0 ) Tangentin ja -akselin leikkauspiste saadaan sijoittamalla y = 0 tangentin ytälöön. y = f ( 0 )( 0 ) + f( 0 ) y = 0 f ( 0 )( 0 ) + f( 0 ) = 0 f ( 0 )( 0 ) = f( 0 ) : f ( 0 ) 0 f( 0 ) 0 = f '( 0 ) f ( 0 ) = 0 f '( 0 ) Valitaan saatu kota uudeksi alkukodaksi 0 ja toistetaan edellä olevat toimenpiteet. f( 0 ) Tällä tavalla saadaan aina seuraava nollakodan likiarvo kaavalla = 0 f '( ). b) Määritä Newtonin menetelmää käyttäen funktion f( ) = ln+ e nollakota neljän desimaalin tarkkuudella. Funktio f( ) = ln+ e Derivaatta f () = e + + e = Newtonin menetelmän iteroimiskaava n f( n) lnn + e n+ = n = n f '( ) n n e n + n Nollakota Newtonin menetelmällä Alkuarvo 0 = 0 80

29 n n n + 0, , , , , , , , , , , , Likiarvojen jono suppenee koti lukua 0,698744, joten kaden desimaalin tarkkuudella se on = 0,699. Vastaus: Nollakota on 0, Funktio f ( ) = + e Derivaatta keskeisdifferenssiä käyttäen kolmen desimaalin tarkkuudella Funktio f() = + Kota 0 = Keskeisdifferenssi f( 0 + ) f( 0 ) ( + ) + e ( ) + e f '( 0 ) K( ) = = Taulukoidaan arvot K() 0,, ,0, ,00, ,000,89687 Vastaus: Taulukosta nädään, että likiarvo on,896. ( + ) ( ) 8. Pinta-ala Simpsonin säännöllä käyttäen neljää jakoväliä. Simpsonin säännöllä Funktio f( ) = Nollakodat f() = 0 = 0 ( ) = 0 = 0 tai = 0 = ± Kuvaaja 8

30 y 4 f() = Jakovälit n = 4 0 Jakovälin pituus = = 4 4 Pinta-ala välillä [,0] f() = 0 4 0,85 0,75 4 0, A = [ f( 0) + 4 f( ) + f( ) + 4 f( ) f( n ) + f( n)] = 4 ( ,85 + 0, , ) = 0, 5 Symmetrian perusteella ala on 0,5 = 0,5 Vastaus: Ala on 0,5. 8

31 Harjoituskoe. Funktio f() = ln( + ) Taylorin polynomi f() = f(a) + f (a)( a) +! f (a) ( a) +! f (a) ( a) + 4! f (4) (a)( a) 4 + Derivaatat ja termit kodassa = 0 n Derivaatta Arvo Termi f() = ln( + ) f (0) = ln(0 + ) = 0 0 f () = = ( + ) f (0) = + 0+ = f () = ( + ) = f (0) = ( + ) (0 + ) = 4 f () = ( + ) = f (0) = = ( + ) (0 + ) 5 f (4) 4 6 () = 6( + ) = f (4) 6 (0) = = ( + ) (0 + ) 4 Vastaus: Taylorin polynomin viisi ensimmäistä termiä kodassa = 0 ovat 0,,, ja a) Luvut a =,6 ± 0,00 ja b =, ± 0,. Lausekkeen a + b arvo a + b =,6 +, = 4,6 Lausekkeen a + b pienin arvo a + b =,59 +,8 =,959 Vire 4,6,959 = 0,0 Lausekkeen a + b suurin arvo a + b =,6 +,4 = 4,56 Vire 4,56 4,6 = 0,0 Lausekkeen a + b arvo virerajoineen a + b = 4, ± 0, Lausekkeen ab arvo ab =,6, = 4,58 Lausekkeen ab pienin arvo ab =,59,8 =,886 Vire 4,58,886 = 0,659 Lausekkeen ab suurin arvo ab =,6,4 = 5,9 Vire 5,9 4,58 = 0,65 Lausekkeen ab arvo virerajoineen ab = 4,5 ± 0,7 b) Funktio + f( ) = 8

32 Suteellinen vire 5 +,+ f ( 5) f (,) 5, = = 0, ,% f ( 5) Vastaus: a) a + b = 4, ± 0, ja ab = 4,5 ± 0,7 b), %. Jaetaan polynomi jaetaan trinomilla + jakokulmassa ± ± Vastaus: Jakojäännös on ± ± ± 6 6± Ytälö = 0 Vakiotermin 6 tekijät ±, ±, ±, ±6 Korkeimman asteen termin tekijät ± Madolliset rationaalilukunollakodat ±, ±, ±, ±6 Sijoittamalla =, saadaan = 0, joten on polynomin f() tekijä. Suoritetaan jakolasku jakokulmassa ± 5 5 ± ± 6 0 Ratkaistaan nollakodat = 0 ( )( ) = 0 = 0 tai = 0 = + 84

33 ± = 5 = = 5+ = = Vastaus: Juuret ovat, ja. ln 5. Funktio f() = Kota 0 = f( 0 + ) f( 0 ) ( + ) ( ) Keskeisdifferenssi f '( 0 ) K( ) = = Taulukoidaan arvot K(), ,0000, , , , Vastaus: Taulukossa ln( + ) ln( ) 6. Käyrä y = + 4 Käyrän ja ja -akselin leikkauspisteet y = = 0 ( + 4) = 0 = 0 tai = 4 Käyrän ja ja -akselin väliin jäävän alueen alan likiarvo Simpsonin säännön avulla jakamalla väli kadeksaan osaan. Pinta-ala A = [ f( 0) + 4 f( ) + f( ) + 4 f( ) f( n ) + f( n)] n Välin leveys = = = 0,5 n 8 Taulukoidaan arvot. f() Summan termit 0,0 0,00 0,00 0,5,75 7,00,0,00 6,00,5,75 5,00,0 4,00 8,00,5,75 5,00,0,00 6,00,5,75 7,00 4,0 0,00 0,00 Yteensä 64 85

34 Pinta-ala 0,5 A= [ f( 0) + 4 f( ) + f( ) + 4 f( ) f( n ) + f( n)] = 64 0,7 Vastaus: Pinta-ala on 0,7. 7. Osoitetaan, että ytälöllä + = on täsmälleen yksi juuri. Ytälö + = + = 0 Tutkitaan funktiota f() = + on täsmälleen yksi nollakota. Funktio f() = + on polynomifunktiona jatkuva kaikkialla. f(0) = = < 0 f() = + = > 0 Koska funktion arvot välin [0,] päätepisteissä ovat erimerkkiset, funktiolla on Bolzanon lauseen perusteella välillä ]0,[ ainakin yksi nollakota. Funktio f() = + on polynomifunktiona derivoituva kaikkialla Derivaatta f () = > 0 Funktio on aidosti kasvava, joten funktiolla f() = + on korkeintaan yksi nollakota. Kodista ja seuraa, että funktiolla f() = + on täsmälleen yksi nollakota. Funktion f() = + nollakota sekanttimenetelmää käyttäen. b a Uusi välin päätepiste c = a f( a) f( b) f( a) a b c f(a) f(b) 0, , , , , , , ,66664, , , , , , , , , , , , , , , , , , , , , , , , , , , Nollakota on välillä ] 0,68578; 0,68780 [, joten neljän desimaalin tarkkuudella se on = 0,68. Vastaus: Ytälön juuri on 0,68. 86

35 8. Ytälö = 0 Tutkitaan funktiota f() = f() = y Derivaatta f () = Newtonin menetelmän iteroimiskaava f( n) 0n 0n + 0n n+ = n = n f '( n ) 0n 40n + 0 Alkuarvo 0 = 0,5 Nollakota Newtonin menetelmällä n n n + 0 0, , , , , , , , , , Likiarvojen jono suppenee koti lukua 0, , joten kuuden desimaalin tarkkuudella se on = 0, Vastaus: Ytälön keskimmäinen juuri on 0,

36 Harjoituskoe ± ± ± Vastaus: = 0 Rymitellään ( ) ( ) = 0 ( )( ) = 0 = 0 tai = 0 = ± = Vastaus: ± tai. aika (t) matka (m),8,87,4 5,66 7,99 9,,44,8 5,9 7 4,6 9 88

37 5 0 5 y =,609 0,49 0,555 R = 0, asteen malli mopon kulkeman ajan (s) ja matkan (m) riippuvuuden välillä f() =,609 0,49 0,555 Mopon kulkema matka sekunnin kuluttua lädöstä. f() =,609 0,49 0,555,6 (m) Vastaus: f() =,609 0,49 0,555 ja,6 m 4. f() = 4 f '() = 4 f ''() = f '''() = 4 f (4) () = 4 f (5) () = 0 f( ) = ( ) 4 = f '( ) = 4 ( ) = 4 f ''( ) = ( ) = f '''( ) = 4 ( )= 4 f (4) ( ) = 4 f (5) ( ) = 0 Monomi 4 Taylorin polynomin avulla binomin + kasvavien potenssien lausekkeena. Koska 5. ja sitä suuremmat derivaatat saavat arvon nolla, riittää muodostaa 4. asteen Taylorin polynomi kodassa =. (4) f ''( ) f '''( ) f ( ) 4 P4 ( ) = f( ) + f '( )( + ) + ( + ) + ( + ) + ( + )!! 4! = 4( + ) + ( + ) + ( + ) + ( + )!! 4! 4 = 4( + ) + 6( + ) 4( + ) + ( + ) Vastaus: 4( + ) + 6( + ) 4( + ) + ( + ) 4 89

38 5. Luvun likiarvo viiden desimaalin tarkkuudella Newtonin menetelmää käyttäen. n+ = n n n Vastaus:,599 f ( ) n f '( ), ,,, ,68889,5995 5,5995,599 6,599,5990 7,5990,5990 n 6. Funktion f() = ( + ) derivaatan likiarvo keskeisdifferenssiä käyttäen kodassa = muutoksen arvoilla ; 0,000 0; 0, ja 0, f ( 0 + ) f( 0 ) Derivaatan likiarvo f '( 0 ) = Taulukoidaan derivaatan likiarvoja. d f () 0, , , , , , , , Käyrän y = + ja -akselin väliin välillä [0,4] jäävän alueen alan likiarvo Simpsonin säännön avulla, kun n = 8. f() = + n = = = 8 f() = + 0 0,5,06066,444,5,0965,5 4, ,950,5 6,68 4 8,

39 A= [ f( 0) + 4 f( ) + f( ) + 4 f( ) f( n ) + f( n)] = ( + 4, , , , , , , 0658),9887 Likiarvon suteellinen vire, kun tietokoneella saatu tulos on,989., 989,9887 0, 0 %, 989 Vastaus:,9887 ja 0,0 % 8. ) f() = f (0) = f () = f () = 9 Koska funktio on jatkuva ja se vaitaa välillä [0,] merkkinsä kertaa, on tällä välillä väintään nollakotaa. ) f '() = 5 ln5 9 5 ln5 9 = = ln 5 9 ln = ln 5 =, ln 5 Kulkukaavio f () f (),454 min f '(0)< 0 f '() > 0 Kulkukaaviosta nädään, että funktio on aidosti väenevä, kun <,454..., joten tällä välillä on korkeintaan nollakota. Kulkukaaviosta nädään, että funktio on aidosti kasvava, kun >,454..., joten tällä välillä on korkeintaan nollakota. Kodista ) ja ) seuraa, että funktiolla f() = on tasan nollakotaa. Määritetään pienemmän nollakodan likiarvo sekanttimenetelmää käyttäen kaden desimaalin tarkkuudella. 9

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Laudatur 7. Opettajan aineisto. Derivaatta MAA 7. Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola. Helsingissä Kustannusosakeyhtiö Otava

Laudatur 7. Opettajan aineisto. Derivaatta MAA 7. Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola. Helsingissä Kustannusosakeyhtiö Otava Laudatur 7 Derivaatta MAA 7 Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola Opettajan aineisto Helsingissä Kustannusosakeyhtiö Otava SISÄLLYS Ratkaisut kirjan tehtäviin... Kokeita...57 Otavan asiakaspalvelu

Lisätiedot

Harjoitustehtävien ratkaisut

Harjoitustehtävien ratkaisut Johdatus numeerisiin menetelmiin Harjoitustehtäviä. Esitä luvun 7 8 a) tarkka arvo desimaalilukuna b) kolmidesimaalinen likiarvo c) nolladesimaalinen likiarvo d) Likiarvo kahden merkitsevän numeron tarkkuudella

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen?

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen? YLIOPPILASTUTKINTO- LAUTAKUNTA 3.3.0 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a) Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan.

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. MAA Koe..05 Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko. konseptin yläreunaan. A-osio. Ilman laskinta! MAOL:in taulukkokirja saa olla käytössä. Laske kaikki tehtävät. Vastaa tälle paperille.

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

3. Yhtälön numeeristen ratkaisujen etsimisestä

3. Yhtälön numeeristen ratkaisujen etsimisestä Olkoon funktio f x jatkuva jollain välillä [a;b]. Jos on olemassa sellainen luku c, että a < c < b ja f a f b 0, niin on olemassa sellainen luku c, että a < c < b ja f c =0. Tämän Bolzanon lauseen mukaan

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

1.1. YHDISTETTY FUNKTIO

1.1. YHDISTETTY FUNKTIO 1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty Pyramidi Integraalilaskenta harjoituskokeiden ratkaisut sivu 98 Päivitetty.5. Pyramidi Harjoituskokeet 6.5.7 Ensimmäinen julkaistu versio..7.7 Korjattu ulkoasua ja painovirheitä..8.7 Täydennetty ratkaisuja

Lisätiedot

k-kantaisen eksponenttifunktion ominaisuuksia

k-kantaisen eksponenttifunktion ominaisuuksia 3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö. MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni. a) Derivoi f ( ) 3e 5 Mikä on funktion f () = ln(5 ) 00 määrittelyjoukko. c) Derivoi g( t) 4ln( t t ). Käyrälle g( ) e 8 piirretään tangentti pisteeseen,

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 8906 HYVÄN VASTAUKSEN PIIRTEITÄ Tutkintoaineen sensorikokous on hyväksynyt seuraavat hyvän vastauksen piirteet Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty

Lisätiedot

Laskentaa kirjaimilla

Laskentaa kirjaimilla MAB1 Polynomit Laskentaa kirjaimilla Tähän asti olemme laskeneet luvuilla, jotka on esitetty numeroiden avulla. Matematiikan säännöt, laskentamenetelmät, kaavat samoin kuin fysiikan ja itse asiassa kaikkien

Lisätiedot

Yhtälön ratkaiseminen

Yhtälön ratkaiseminen Yhtälön ratkaiseminen Suora iterointi Kirjoitetaan yhtälö muotoon x = f(x). Ensin päätellään jollakin tavoin jokin alkuarvo x 0 ja sijoitetaan yhtälön oikealle puolelle, jolloin saadaan tarkennettu ratkaisu

Lisätiedot

Matemaattisten menetelmien hallinnan tason testi.

Matemaattisten menetelmien hallinnan tason testi. Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

MAA7 HARJOITUSTEHTÄVIÄ

MAA7 HARJOITUSTEHTÄVIÄ MAA7 HARJOITUSTEHTÄVIÄ Selvitä, mitä -akselin väliä tarkoittavat merkinnät: a) < b) U(, ) c) 4 < 0 0 Ilmoita väli a) 4 < < b) ] 5, 765[ tavalla 7 tehtävän a)-kohdan mukaisella kana, kana 0 Palautetaan

Lisätiedot

Materiaalia, ohjeita, videoita sekä lisätietoja opettajille tarjottavasta koulutuksesta osoitteessa:

Materiaalia, ohjeita, videoita sekä lisätietoja opettajille tarjottavasta koulutuksesta osoitteessa: Kevään 06 Pitkän matematiikan YO-kokeen TI-Nspie CAS -atkaisut Nämä atkaisut tety alusta loppuun TI-Nspie CX CAS -ojelmistolla ja tallennettu lopuksi PDF -muotoon. Takoituksena on avainnollistaa, miten

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Casion fx-cg20 ylioppilaskirjoituksissa apuna

Casion fx-cg20 ylioppilaskirjoituksissa apuna Casion fx-cg20 ylioppilaskirjoituksissa apuna Grafiikkalaskin on oivallinen apuväline ongelmien ratkaisun tukena. Sen avulla voi piirtää kuvaajat, ratkaista yhtälöt ja yhtälöryhmät, suorittaa funktioanalyysin

Lisätiedot

Casion fx-cg20 ylioppilaskirjoituksissa apuna

Casion fx-cg20 ylioppilaskirjoituksissa apuna Casion fx-cg20 ylioppilaskirjoituksissa apuna Grafiikkalaskin on oivallinen apuväline ongelmien ratkaisun tukena. Sen avulla voi piirtää kuvaajat, ratkaista yhtälöt ja yhtälöryhmät, suorittaa funktioanalyysin

Lisätiedot

NELIÖJUURI. Neliöjuuren laskusääntöjä

NELIÖJUURI. Neliöjuuren laskusääntöjä NELIÖJUURI POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA2 Tarkoittaa positiivista tai nollaa Määritelmä, neliöjuuri: Luvun a R neliöjuuri, merkitään a, on se ei-negatiivinen luku, jonka neliö (eli toiseen potenssiin

Lisätiedot

cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo?

cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo? Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos Matlab-tehtäviä, käyrän sovitus -e Differentiaali- ja integraalilaskenta 1. Laske integraali 2π cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti.

Lisätiedot

2 x 5 4x + x 2, [ 100,2].

2 x 5 4x + x 2, [ 100,2]. 7. Derivaatan sovellutuksia 7.1. Derivaatta tangentin kulmakertoimena 6. Määritä a, b ja c siten, että käyrät y = x + ax + b ja y = cx x sivuavat toisiaan pisteessä (1,). a = 0, b =, c = 4. 6. Määritä

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia? Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon. MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnedinta ei sido ylioppilastutkintolautakunnan arvostelua Lopullisessa arvostelussa

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

2. Polynomien jakamisesta tekijöihin

2. Polynomien jakamisesta tekijöihin Imaginaariluvut mielikuvitustako Koska yhtälön x 2 x 1=0 diskriminantti on negatiivinen, ei yhtälöllä ole reaalilukuratkaisua Tästä taas seuraa, että yhtälöä vastaava paraabeli y=x 2 x 1 ei leikkaa y-akselia

Lisätiedot

Derivaatta 1/6 Sisältö ESITIEDOT: reaalifunktiot, funktion raja-arvo

Derivaatta 1/6 Sisältö ESITIEDOT: reaalifunktiot, funktion raja-arvo Derivaatta 1/6 Sisältö Derivaatan määritelmä funktio Olkoon kiinteä tarkastelupiste. Reaalimuuttujan reaaliarvoisen funktion f deri- (reaali-) vaatta tässä pisteessä merkitään f () voidaan luonnetia kadella

Lisätiedot

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5 A1. Tehdään taulukko luumun massoista ja pitoisuuksista ennen ja jälkeen kuivatuksen. Muistetaan, että kuivatuksessa haihtuu vain vettä. Näin ollen sokerin ja muun aineen massa on sama molemmilla riveillä.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa

Lisätiedot

Luentoesimerkki: Riemannin integraali

Luentoesimerkki: Riemannin integraali Luentoesimerkki: Riemannin integraali Heikki Apiola, "New perpectives "-esitykseen lievästi muokattu Kurssi: Informaatioverkostot, keväällä Tässä (4..) käytetään "worksheet-modea", uudempaa "document mode"

Lisätiedot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto: 4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x

Lisätiedot

Laudatur 2. Opettajan aineisto. Polynomifunktiot MAA2. Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola. Helsingissä Kustannusosakeyhtiö Otava

Laudatur 2. Opettajan aineisto. Polynomifunktiot MAA2. Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola. Helsingissä Kustannusosakeyhtiö Otava Laudatur Polynomifunktiot MAA Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola Opettajan aineisto Helsingissä Kustannusosakeyhtiö Otava Toimittaja: Sanna Mäkitalo Taitto: Tekijät. painos Painovuosi

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

Derivaatan sovelluksia

Derivaatan sovelluksia Derivaatan sovelluksia Derivaatta muutosnopeuden mittarina Tehdään monisteen esimerkistä 5 hiukan mutkikkaampi versio Olete- taan, että meillä on mpräpohjaisen kartion muotoinen astia, johon virtaa vettä

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

plot(f(x), x=-5..5, y=-10..10)

plot(f(x), x=-5..5, y=-10..10) [] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

7. PINTA-ALAFUNKTIO. A(x) a x b

7. PINTA-ALAFUNKTIO. A(x) a x b 7. PINTA-ALAFUNKTIO Edellä on käsitelty annetun funktion integraalifunktion määrittämiseen liittyviä asioita kurssille asetettuja vaatimuksia jonkin verran ylittäenkin. Jodantoosassa muistanet mainitun,

Lisätiedot

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

Kokelaan sukunimi ja kaikki etunimet selväsi kirjoitetuna. Kaava 1 b =2a 2 b =0,5a 3 b =1,5a 4 b = 1a. 4 5 b =4a 6 b = 5a

Kokelaan sukunimi ja kaikki etunimet selväsi kirjoitetuna. Kaava 1 b =2a 2 b =0,5a 3 b =1,5a 4 b = 1a. 4 5 b =4a 6 b = 5a 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 28.9.2016 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

2.2 Neliöjuuri ja sitä koskevat laskusäännöt

2.2 Neliöjuuri ja sitä koskevat laskusäännöt . Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri

Lisätiedot

(x 0 ) = lim. Derivoimissääntöjä. Oletetaan, että funktiot f ja g ovat derivoituvia ja c R on vakio. 1. Dc = 0 (vakiofunktion derivaatta) 2.

(x 0 ) = lim. Derivoimissääntöjä. Oletetaan, että funktiot f ja g ovat derivoituvia ja c R on vakio. 1. Dc = 0 (vakiofunktion derivaatta) 2. Derivaatta kuvaa funktion hetkellistä kasvunopeutta. Geometrisesti tulkittuna funktion derivaatta kohdassa x 0 on funktion kuvaajalle kohtaan x 0 piirretyn tangentin kulmakerroin. Funktio f on derivoituva

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4 Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x

Lisätiedot