Matematiikka B1 - avoin yliopisto
|
|
- Anja Ahonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 28. elokuuta 2012
2 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät
3 Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan tangenttitaso ja normaali Korkeamman kertaluvun osittaisderivaatat Ketjusääntö Lineaarinen approksimaatio Gradientti ja suunnattu derivaatta Taylor-polynomi ja approksimointi
4 Kurssin sisältö 2/2 Ääriarvot Lagrangen menetelmä Pienimmän neliösumman menetelmä Newtonin menetelmä
5 Sisältö Osittaisderivointi 1 Osittaisderivointi 2
6 Sisältö Osittaisderivointi 1 Osittaisderivointi 2
7 Usean muuttujan funktioista 1/2 Lieriön tilavuus on V on V = πr 2 h, r > 0, h > 0. V on KAHDEN toisistaan riippumattoman muuttujan r ja h funktio. V(r,h) = πr 2 h, D(V) = {(r,h) R 2 r > 0,h > 0} Määritelmä n:n muuttujan reaaliarvoinen funktio f liittää jokaiseen pisteeseen (x 1,...,x n ) D(f) R n täsmälleen yhden arvon f(x 1,...,x n ) = y
8 Usean muuttujan funktioista 2/2 Kahden muuttujan funktion f kuvaaja z = f(x,y) on R 3 :n pistejoukko (x,y,f(x,y)), missä (x,y) D(f) R 2. Kuvaaja on R 3 :n pinta Esimerkki Määritä se funktio f, jonka kuvaaja on pisteiden (2,0,0), (0,4,0), (0, 0, 3) rajoittama kolmionpinta Esimerkki Funktion f(x,y) = 9 x 2 y 2 Määrittelyjoukko ja graafi
9 Tasa-arvokäyrät Tasa-arvokäyrät ovat funktion f(x,y) kuvaajan ja tason z = c xy-tasoon piirrettyjä leikkauskäyriä f(x,y) = c, missä c on vakio kullakin käyrällä (korkeuskäyriä) Esimerkki Funktion f(x,y) = 9 x 2 y 2 tasa-arvokäyrät
10 Raja-arvo Osittaisderivointi Määritelmä lim f(x,y) = L jokaiselle ǫ > 0 on olemassa δ(ǫ) > 0 (x,y) (a,b) siten, että f(x,y) L < ǫ aina kun 0 < (x a) 2 +(y b) 2 < δ L ei saa riippua lähestymisen valinnasta Esimerkki Määritä lim (x,y) (0,0) xy x 2 +y 2
11 Jatkuvuus Osittaisderivointi Määritelmä Funktio f(x,y) on jatkuva pisteessä (a,b) f(x,y) = f(a,b) Esimerkki lim (x,y) (a,b) Miten funktio f(x,y) = x4 y 4 x y tulisi määritellä suoralla y = x, jotta siitä tulisi jatkuva koko R 3
12 Osittaisderivaatta Määritelmä Osittaisderivaatta f 1 (a,b) ilmoittaa funktion f(x,y) muutosnopeuden tasossa y = b pisteessä (a,b,f(a,b)) ja f 2 (a,b) vastaavasti x = a pisteessä (a,b,f(a,b)) Funktion f(x, y, z) 1. kertaluvun osittaisderivaatta muuttujan y suhteen merkitään mm. f y, f 2, f y, D 2 f, D y f
13 Pinnan tangenttitaso ja normaali Funktion f(x,y) kuvaajan z = f(x,y) normaalivektori pisteessä (a,b,f(a,b)) on n = f 1 (a,b)ī +f 2 (a,b) j k eli Normaalivektori n = (f 1 (a,b),f 2 (a,b), 1) Tangenttitason yhtälö z = f(a,b)+f 1 (a,b)(x a)+f 2 (a,b)(y b) Normaalin yhtälö x a f 1 (a,b) = y b f 2 (a,b) = z f(a,b) 1
14 Korkeamman kertaluvun osittaisderivaatat Jos funktion f(x,y) 1. kertaluvun osittaisderivaattoja f 1 (x,y) ja f 2 (x,y) osittaisderivoidaan edelleen x:n ja y:n suhteen, saadaan neljä 2. kertaluvun osittaisderivaattaa: f 11 (x,y), f 22 (x,y), f 12 (x,y), f 21 (x,y) Jos z = f(x,y), niin 2 z x 2 = z x x = f 11(x,y) 2 z y 2 = z y y = f 22(x,y) 2 z x y = ( ) z = f 21 (x,y) x y 2 z y x = ( ) z = f 12 (x,y) y x
15 Ketjusääntö Osittaisderivointi Ketjusääntö yhden muuttujan yhdistetylle funktiolle on: d dx f(g(x)) = f (g(x))g (x) Usean muuttujan yhdistetty funktiota koskeva derivoimissääntö: Jos z = f(x,y) ja f(x,y):llä on jatkuvat osittaiderivaatat ja jos x ja y ovat derivoituvia t:n funktioita, niin dz dt = z dx x dt + z dy y dt
16 Lineaarinen approksimaatio Kahden muuttujan funktion likiarvon määrittäminen tangenttitason avulla: Pisteen (a, b) ympäristössä jatkuvan funktion f kuvaajan pisteeseen (a, b, f(a, b)) piirretyn tangenttitason yhtälö on z(x,y) = f(a,b)+f 1 (a,b)(x a)+f 2 (a,b)(y b) jos (x,y) on lähellä (a,b):tä niin f(x,y) z(x,y) eli f(x,y) f(a,b)+f 1 (a,b)(x a)+f 2 (a,b)(y b) Esimerkki Arvioi likimääräisesti funktion f(x,y) = x 3 +e 3y arvoa pisteessä (1.1, 2.01) pisteeseen (1, 2) kautta kulkevan tangenttitason avulla
17 Differentiaali Osittaisderivointi Olkoon f n:n muuttujan funktio f(x 1,x 2,...,x n ), jolla on kaikki osittaisderivaatat f x 1, f x 2,..., f x n. Tällöin f:n kokonaisdifferentiaali df on df = f x 1 dx 1 + f x 2 dx f x n dx n Jos muuttujien x 1,x 2,...,x n mittaus- tai arviointivirhe on x 1, x 2,..., x n :n suuruinen, niin kokonaisvirhe [ ] [ ] [ ] f f f [ f] = x 1 + x x n x 1 x 2 x n
18 Gradientti Osittaisderivointi Määritelmä Funktion f(x,y) osittaisderivaattojen f 1 (x,y) ja f 2 (x,y) muodostamaa vektoria sanotaan GRADIENTIKSI ja merkitään f(x,y) = f 1 (x,y)ī +f 2 (x,y) j Gradientti f(a, b) on normaalivektori pisteen (a, b) kautta kulkevalle funktion f tasa-arvokäyrälle.
19 Gradientin ominaisuuksia pisteessä (a, b) 1 Pisteessä (a,b) funktio f kasvaa nopeiten f(a, b):n suuntaan ja suurin kasvunopeus on f(a,b) 2 Pisteessä (a,b) funktio f vähenee nopeiten f(a, b):n suuntaan ja suurin vähenemisnopeus on f(a, b) 3 Funktion f muutosnopeus pisteessä (a, b) on nolla pisteen (a, b) kautta kulkevan f:n tasa-arvokäyrän tangenttisuoran suuntaan
20 Suunnattu derivaatta Suunnattu derivaatta D v f(a,b) ilmoittaa, mikä on funktion v f(x, y) muutosnopeus pisteessä (a, b) annetun xy-tason vektorin v suuntaan Määritelmä Esimerkki Dˆv f(a,b) = ˆv f(a,b) Laske funktion f(x,y) = y 4 +2xy 3 +x 2 y 2 muutosnopeus pisteessä (0,1) vektorin v = ī + j suuntaan
21 Taylor-polynomi ja approksimointi Mitä korkeampi on pisteen (a, b) ympäristössä jatkuvan funktion f(x, y) taylor-polynomin P n (x,y) = n j=0 ( 1 h j! x +k ) j f(a,b), y { h = x a k = y b asteluku n, sitä tarkemmin polynomi approksimoi funktiota f(x, y) pisteen (a,b) läheisyydessä f(x,y) P n (x,y)
22 Sisältö Osittaisderivointi 1 Osittaisderivointi 2
23 Ääriarvot Osittaisderivointi Jatkuvasti derivoituvalla funktiolla f(x, y) voi olla lokaali tai absoluuttinen ääriarvo pisteessä (a,b) D(f) vain jos (a,b) on Kriittinen piste eli f(a,b) = 0 D(f):n reunapiste f(a, b) on funktion lokaali maksimiarvo (minimiarvo), jos pisteen (a,b) jossakin ympäristössä f(x,y) f(a,b) (f(x,y) f(a,b)) ja f(a, b) on funktion f absoluuttinen maksimiarvo (minimiarvo), jos jokaiselle (x,y) D(f) pätee f(x,y) f(a,b) (f(x,y) f(a,b))
24 Ääriarvot sisäpisteissä ja niiden luokittelu 1 { Etsitään kriittiset pisteet yhtälöryhmästä fx = 0 f y = 0 f = 0 2 Lasketaan kussakin kriittisessäpisteessä (a,b) : D = f xx f yy (f xy ) 2 (a) D > 0 ja f xx < 0, niin (a,b) on lokaali maksimipiste (b) D > 0 ja f xx > 0, niin (a,b) on lokaali minimipiste (c) D < 0, niin (a,b) on satulapiste (d) D = 0, niin on käytettävä muita keinoja (ei informaatiota)
25 Määrittelyjoukko on suljettu ja rajoitettu R 2 :n osajoukko Tutkitaan erikseen funktion sisäpisteet ja määrittelyalueen reuna Esimerkki Etsi funktion f(x,y) = 2xy pienin ja suurin arvo joukossa A = {(x,y) x 2 +y 2 4}
26 Sidotut ääriarvot Kahden muuttujan funktioiden sidotuilla ääriarvoilla tarkoitetaan sellaisia ääriarvoja, jotka funktio saa määrittelyjoukkoonsa sisältyvällä käyrällä Määritelmä Lagrangen menetelmä etsii ääriarvoja funktiolle f(x, y) rajoitteella g(x,y) = 0 seuraavasti Mikäli rajoitteita on useampia: L(x,y,λ) = f(x,y)+λg(x,y) L(x,y,λ,µ) = f(x,y)+λg(x,y)+µh(x,y)
27 Pienimmän neliösumman menetelmä Määritelmä Määrätään funktion f(x) parametrit siten, että summa S = n (y i f(x i )) 2 i=1 on pienin Esimerkki Etsi vakioiden a ja b arvot siten, että suora y = ax +b parhaiten liittyy data-pisteisiin (0, 2.10),(1, 1.92),(2, 1.84),(3, 1.71) ja (4, 1.64)
Matematiikka B1 - TUDI
Osittaisderivointi Osittaisderivaatan sovellukset Matematiikka B1 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Osittaisderivointi Osittaisderivaatan sovellukset Kurssin
LisätiedotBM20A0300, Matematiikka KoTiB1
BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja
Lisätiedot2 Osittaisderivaattojen sovelluksia
2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
LisätiedotMatematiikan peruskurssi (MATY020) Harjoitus 10 to
Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin
LisätiedotDerivaatta: funktion approksimaatio lineaarikuvauksella.
Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen
Lisätiedotläheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?
BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila
LisätiedotOletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on
Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä
Lisätiedot, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen
LisätiedotMatematiikan perusteet taloustieteilij oille I
Matematiikan perusteet taloustieteilijöille I Harjoitukset syksy 2006 1. Laskeskele ja sieventele a) 3 27 b) 27 2 3 c) 27 1 3 d) x 2 4 (x 8 3 ) 3 y 8 e) (x 3) 2 f) (x 3)(x +3) g) 3 3 (2x i + 1) kun, x
LisätiedotBM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 3. luento 17.11.2017 Neuroverkon opettaminen (ohjattu oppiminen) Neuroverkkoa opetetaan syöte-tavoite-pareilla
LisätiedotJouni Sampo. 5. helmikuuta 2014
B1 Jouni Sampo 5. helmikuuta 2014 Sisältö 1 Usean muuttujan funktioista 2 1.1 Raja arvot ja jatkuvuus............................... 2 1.2 Osittaisderivaatat................................... 4 1.3 Normaalivektori,
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen
LisätiedotKuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
LisätiedotAntti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
LisätiedotPisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta
Laskukarnevaali Matematiikka B. fx, y, z) = x sin z + x y, etsi f,, ) Osittaisderivaatat ovat f f x = sin z + xy, y = x, f z = x cos z Pisteessä,,) osittaisderivaatoilla on arvot 4, ja. Täten f,, ) = 4i
Lisätiedot1.7 Gradientti ja suunnatut derivaatat
1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset
Lisätiedota) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:
6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,
Lisätiedotf(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
Lisätiedot3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =
BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot
LisätiedotTalousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta
Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion
Lisätiedotf(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.
Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
LisätiedotViikon aiheet. Funktion lineaarinen approksimointi
Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen
LisätiedotTalousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta
Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
LisätiedotAnalyysi I (sivuaineopiskelijoille)
Analyysi I (sivuaineopiskelijoille) Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2017 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 19 1 of 18 Kahden muuttujan funktioista
LisätiedotJohdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti
LisätiedotOletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I
Usean muuttujan funktiot MS-A7 Differentiaali- ja integraalilaskenta (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto Raja-arvot 3 Jatkuvat funktiot 4 Osittaisderivaatat 5 Derivaatta eli gradientti.
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotMATEMATIIKAN PERUSKURSSI II
MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 26. Tutki, suppenevatko seuraavat lukujonot: a) d) ( 9k 7 ) 3k + 2 4k 2, b) 5k + 7 k (4x + ) 3 dx, e) ( 2 ln(k 3 ) k 3e k ), c) cos(3πx) dx, f) k 3 9x 2 +
Lisätiedot12. Hessen matriisi. Ääriarvoteoriaa
179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä
LisätiedotRatkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1
1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
LisätiedotMat Matematiikan peruskurssi C2
Mat-1.110 Matematiikan peruskurssi C Petri Latvala 18. helmikuuta 007 Sisältö 1 Useamman muuttujan funktiot ja niiden differentiaalilasku 1.1 Useamman muuttujan funktion jatkuvuus ja derivoituvuus... 1.
LisätiedotDifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet
ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
Lisätiedot763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 2012
763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 01 1 Sisältö: 1 Differentiaalilaskentaa Integraalilaskentaa 3 Vektorit 4 Potenssisarjoja 5 Kompleksiluvut 6 Differentiaaliyhtälöistä
LisätiedotSelvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x
Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden
LisätiedotMatematiikan tukikurssi. Toinen välikoe
Matematiikan tukikurssi Toinen välikoe 1 Sisältö 1 Useamman muuttujan funktion raja-arvo 1 2 Useamman muuttujan funktion jatkuvuus 7 3 Osittaisderivaatat ja gradientti 8 4 Vektoriarvoiset funktiot 9 5
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).
Lisätiedot= + + = 4. Derivointi useammassa ulottuvuudessa
30 VEKTORIANALYYSI Lento 4 4. Derivointi seammassa lottvdessa Osittaisderivaatta. Kerrataan alksi osittaisderivaatan käsite. Fnktio f= f( r) = f( xyz,, ) on kolmen mttjan fnktio, jonka arvo yleensä mtt,
LisätiedotVektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.
Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen
LisätiedotVektorilaskenta, tentti
Vektorilaskenta, tentti 27102017 Tentin kesto n 3 tuntia Vastaa NELJÄÄN tehtävään Jos vastaat kaikkiin, niin neljä PARASTA otetaan huomioon Kuvat vievät tilaa, joten muista kurkistaa paperin toiselle puolelle
LisätiedotMATEMATIIKAN ALKEET II (YE19B), SYKSY 2011
MATEMATIIKAN ALKEET II (YE19B), SYKSY 011 Sisältö 1. Matriisin definiittisyys 1. Konkaavit ja konveksit funktiot 3 3. Ääriarvotehtävien toisen kertaluvun riittävät ehdot 7 3.1. Rajoittamaton ääriarvotehtävä
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I
Usean muuttujan funktiot MS-A007 Differentiaali- ja integraalilaskenta (Chem) Yhteenveto ja esimerkkejä ym., osa G. Gripenberg Aalto-yliopisto Raja-arvot 3 Jatkuvat funktiot 4 Osittaisderivaatat 5 Derivaatta
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I
MS-A007 Differentiaali- ja integraalilaskenta (Chem) Yhteenveto ja esimerkkejä ym., osa G. Gripenberg Aalto-yliopisto 1. tammikuuta 016 G. Gripenberg (Aalto-yliopisto) MS-A007 Differentiaali- ja integraalilaskenta
LisätiedotMatematiikka B3 - Avoin yliopisto
2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja
LisätiedotLuento 9: Newtonin iteraation sovellus: optimointiongelma
Luento 9: Newtonin iteraation sovellus: optimointiongelma ilman rajoitusehtoja Optimointiongelmassa tehtävänä on löytää annetun reaaliarvoisen jatkuvan funktion f(x 1,x,,x n ) maksimi tai minimi jossain
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 2. luento 10.11.2017 Keinotekoiset neuroverkot Neuroverkko koostuu syöte- ja ulostulokerroksesta
LisätiedotYLE11, MATEMATIIKKAA TALOUSTIETEILIJÖILLE
YLE11, MATEMATIIKKAA TALOUSTIETEILIJÖILLE Tämä luentomoniste on koottu useista lähteistä, joista tärkeimmät lienevät Sydsæter & Hammond (008). Essential Mathematics for Economic Analysis, Sydsæter, Hammond,
LisätiedotMapu 1. Laskuharjoitus 3, Tehtävä 1
Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0
Lisätiedot2.6 Funktioiden kuvaajat ja tasa-arvojoukot
2.6 Funktioiden kuvaajat ja tasa-arvojoukot Olkoon I R väli. Yhden muuttujan funktion g : I R kuvaaja eli graafi on avaruuden R 2 osajoukko {(x, y) R 2 : x I, y = g(x)}. 1 0 1 2 3 1 0.5 0 0.5 1 Kuva 2.1:
LisätiedotDemonstraatioharjoitus 1, pe 17.1
Mat-.4 Matematiikan peruskurssi S, kevät 00 Demonstraatioharjoitukset, erä Högnäs Tässä ensimmäinen erä ratkaisuja demonstraatiotehtäviin. (Kuvat ovat melko heikkolaatuisia ja ainoastaan "kvalitatiivisia".)
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
Lisätiedotsin(x2 + y 2 ) x 2 + y 2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 2017 Harjoitus 2 Ratkaisuedotukset 2.1. Tutki funktion g : R 2 R, g(0, 0) = 0, jatkuvuutta. g(x, y) = sin(x2 + y 2 ) x 2 + y 2, kun (x,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo
LisätiedotVektorianalyysi II (MAT21020), syksy 2018
Vektorianalyysi II (MAT21020), syksy 2018 Ylimääräisiä harjoitustehtäviä 1. Osoita, että normin neliö f : R n R, f(x) = x 2 on differentioituva pisteessä a R n ja, että sen derivaatalle on voimassa 2.
LisätiedotTilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R,
Vektorianalyysi Harjoitus 9, Ratkaisuehdotuksia Anssi Mirka Tehtävä 1. ([Martio, 3.4:1]) Millä suoralla sylinterillä, jonka tilavuus on V > on pienin vaipan ja pohjan yhteenlaskettu pinta-ala? Ratkaisu
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
Lisätiedot1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100
HARJOITUS, RATKAISUEHDOTUKSET, YLE 07.. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 0x +0xy +5y (b.) f(x,y) = 4x y xy +x+y +00 (a.) Funktion kriittiset pisteet ratkaisevat
Lisätiedot4. Derivointi useammassa ulottuvuudessa
6 VEKTORIANALYYSI Lento 3 4. Derivointi seammassa lottvdessa Osittaisderivaatta. Kerrataan alksi osittaisderivaatan käsite. Fnktio f f ( r) f ( x, y, z) on kolmen mttjan fnktio, jonka arvo yleensä mtt,
Lisätiedot5 Usean muuttujan differentiaalilaskentaa
5 Usean muuttujan differentiaalilaskentaa Edellä on jo käsitelty monia funktioita, joissa lähtö- (ja/tai) maalijoukko on useampi- kuin 1-ulotteinen: Esim. A-, B- ja C-raaka-ainemäärien yhdistelmien x =
Lisätiedot1 Rajoittamaton optimointi
Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y
LisätiedotBM20A0900, Matematiikka KoTiB3
BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt
LisätiedotReaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011
Kuudennen eli viimeisen viikon luennot Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuihin 2.3. ja 2.4. Esko Turunen esko.turunen@tut.fi Jatkuvuuden
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)
LisätiedotLisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x
MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotKERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.
KERTAUSHARJOITUKSIA. Rationaalifunktio 66. a) b) + + + = + + = 9 9 5) ( ) ( ) 9 5 9 5 9 5 5 9 5 = = ( ) = 6 + 9 5 6 5 5 Vastaus: a) 67. a) b) a a) a 9 b) a+ a a = = a + a + a a + a a + a a ( a ) + = a
LisätiedotMäärätty integraali. Markus Helén. Mäntän lukio
Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden
LisätiedotMATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
Lisätiedotl 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
LisätiedotTalousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita
LisätiedotLuku 4. Derivoituvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa
Lisätiedot5 Differentiaaliyhtälöryhmät
5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =
LisätiedotTutki, onko seuraavilla kahden reaalimuuttujan reaaliarvoisilla funktioilla raja-arvoa origossa: x 2 + y 2, d) y 2. x + y, c) x 3
2. Reaaliarvoiset funktiot 2.1. Jatkuvuus 23. Tutki funktion f (x,y) = xy x 2 + y 2 raja-arvoa, kun piste (x,y) lähestyy origoa pitkin seuraavia xy-tason käyriä: a) y = ax, b) y = ax 2, c) y 2 = ax. Onko
LisätiedotDifferentiaali- ja integraalilaskenta 2
ifferentiaali- ja integraalilaskenta 2 Riikka Kangaslampi Syksy 214 2 Esipuhe Tämä on Aalto-yliopiston Matematiikan ja systeemianalyysin laitoksen kurssin ifferentiaali- ja integraalilaskenta 2 tueksi
LisätiedotVektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 23.
Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 23. lokakuuta 2017 Sisältö Luennot syyslukukaudella 2017 3 Esimakua 4 Kertaus
LisätiedotDifferentiaalilaskenta 1.
Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot
MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot Harri Hakula Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2018 1 Perustuu Antti Rasilan luentomonisteeseen
LisätiedotOletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on
Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 13 Derivaatan määritelmä Määritelmä
LisätiedotBM20A1501 Numeeriset menetelmät 1 - AIMO
6. marraskuuta 2014 Opetusjärjestelyt Luennot + Harjoitukset pe 7.11.2014 10-14 2310, 14-17 7337 la 8.11.2014 9-12 2310, 12-16 7337 pe 14.11.2014 10-14 2310, 14-17 6216 la 15.11.2014 9-12 2310, 12-16 7337
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
Lisätiedot3. Useamman muuttujan funktioiden differentiaalilaskentaa Olkoon A R n. Kuvaus f : A R on n:n muuttujan reaalifunktio. Se kuvaa
3 Useamman muuttujan funktioiden differentiaalilaskentaa Olkoon A R n Kuvaus f : A R on n:n muuttujan reaalifunktio Se kuvaa A:n pisteet x = (x,, x n ) A (x,, x n R) reaaliluvuiksi f(x) ja koko A:n R:n
LisätiedotVektorianalyysi I MAT21003
Vektorianalyysi I MAT21003 Ritva Hurri-Syrjänen Helsingin yliopisto 3. syyskuuta 2018 Sisältö Luennot syyslukukaudella 2017 3 Esimakua 4 Kertaus 5 1 Euklidinen avaruus 6 1.1 Euklidinen avaruus R n...............................
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 5A Vastaukset alkuviikolla
Lisätiedot