Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa
|
|
- Olavi Sakari Turunen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä on useampia kohtia [merkittynä a, b jne], niin on vastattava niihin jokaiseen a Ratkaise yhtälö x x = b Ratkaise yhtälö 5 7x = m 7 = c Ratkaise yhtälöpari 9n n 8m = 77 a Määritä sin xdx fmm b Derivoi muuttujan r suhteen funktio f ( r = r c Millä vakion a arvoilla käyrä ax 5x + y a y 9 = kulkee pisteen (-, kautta? a Kolmion sivut ovat, ja Laske kolmion suurin kulma b Suorakulmion pituus kasvaa 5% ja pinta- ala kasvaa 7,% Miten muuttuu suorakulmion leveys? Virtuaalihenkilöillä Romeo ja Julia on salainen kohtaamispaikka Romeo lähtee paikasta (5, vektorin i + j suuntaan nopeudella 5 yksikköä minuutissa ja Julia paikasta (-, vektorin i + 9 j suuntaan samalla nopeudella Määritä kohtaamispaikan P koordinaatit 5 Kolmion kaksi sivua ovat ovat ja Näiden sivujen välisen kulman α puolittaja jakaa kolmion kahteen osaan Laske pinta- alojen suhteen tarkka arvo 6 a Laske luvut (((( ja b Ratkaise yhtälö log x = a c Määritelmä: a tetra = a a = a, a tetra = a = a a jne Laske 5 Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa missä a < n a,
2 Preliminäärikoe Tehtävät Pitkä matematiikka / 7 Alla olevassa kuvaajassa on funktion y = f (x derivaattafunktion y = f (x kuvaaja a Määritä funktion y = f (x ääriarvokohdat ja ääriarvon laatu b Millä muuttujan x arvolla funktion kasvu on voimakkainta? c Määritä derivaattafunktion kuvaajan avulla f ( 78 y y=df(x x 8 a Ilmoita ympyrän x + y + ax + by + c = keskipiste ja säde parametrien a, b ja c avulla b Määritä parametrin c arvot, kun ympyrän x + y + ax + by + c = keskipiste on (, 9 Funktio f ( x = 7 x, koordinaattiakselit ja suora x = rajoittavat alueen Suora x = a jakaa jakaa alueen kahteen yhtäsuureen osaan ja samoin tekee suora y = b Tällöin piste P = (a,b on painopiste Määritä P Terässäiliön tilavuus on,m Säiliö on muodostunut ympyrälieriöstä (korkeus h ja pohjan säde r, jonka molemmissa päissä on puolipallo (säde r Määritä säde r siten että säiliön rakentamiseen kuluu mahdollisimman vähän terästä? x Funktio ϕ( x = e on normitetun normaalijakautuman tiheysfunktio N (, a Määritä Simpsonin säännöllä integraalin arvo ϕ ( x dx Käytä jakoväliä, b Vertaa saamaasi integraalin arvoa arvoon, jonka saat käyttämällä apuna taulukkokirjan lukuarvoja Lukujono sin x,sin x, on geometrinen a Määritä jonon viiden ensimmäisen jäsenen summa b Millä muuttujan x arvoilla sarja sin x + sin x + suppenee ja mikä on sarjan summa?,
3 Preliminäärikoe Tehtävät Pitkä matematiikka / Origenes (85 5 oli yksi merkittävimmistä keskiajan kirkkoisistä Muuta hänen kuuluisa päättelyketjunsa Jos minä tiedän olevani kuollut, olen kuollut ja jos minä tiedän olevani kuollut, olen elossa, jotenka minä en tiedä olevani kuollut logiikan kielelle Onko hänen päättelyketjunsa loogisesti pätevä (tautologia? (Viereisessä kuvassa Origenes varhaiskeskiaikaisessa kuvassa (* Todista, että välillä [,8] määritellyllä funktiolla f ( x = log (x + on käänteisfunktio y = f ( x p b Millä muuttujan x arvoilla käänteisfunktio y = f ( x on määritelty? Mitä arvoja saa funktio f ( x = log (x + ja mitä arvoja saa käänteisfunktio? p c Määritä käänteisfunktio y = f ( x p d Todista, että funktion f ( x = log (x + ja sen käänteisfunktion yhdistetty funktio on identiteettifunktio I ( x = x ja todista, että käänteisfunktion ja funktion yhdistetty funktio on myös identiteettifunktio I ( x = x p e Määritä ( f (6 ratkaisematta käänteisfunktiota y = f ( x p 5 (* Kuutio, jonka kärjet ovat (,,, (5,,, (5,5,, (,5,, (,,5, (5,,5, (5,5,5 ja (,5,5 on x, y, z- koordinaatistossa Kuutio on muodostunut 5:stä pikku kuutiosta, joiden särmä on yksikkö Valitaan satunnaisesti pikku kuutiota alkuperäisestä kuutiosta a Millä todennäköisyydellä molemmat palat ovat nurkkapaloja? p b Millä todennäköisyydellä kumpikaan paloista ei ole kuution sivutahoilla? p c Millä todennäköisyydellä nämä kuutiota koskettavat toisiaan? 5p
4 Preliminäärikoe Ratkaisut Pitkä matematiikka / a Ratkaise yhtälö x x = 5 7x = m 7 = 9n n 8m = 77 b Ratkaise yhtälö c Ratkaise yhtälöpari a Kerrottu luvulla - ja saatu x x = x( x =, p josta saatu x = tai x = b Saatu x = 5, josta x = = = 7 c m m 7 m = 9n n = n = 7 7 m 8m = 77 9n 8m = m = 77 7 m 7 n = n = 7 7 9m 8m = 77 m = 7 n = m = 7 Vastaus: a x = tai a Määritä sin xdx x = b x = c m = 7 ja n = fmm b Derivoi muuttujan r suhteen funktio f ( r = r c Millä vakion a arvoilla käyrä ax 5x + y a y 9 = kulkee pisteen (-, kautta? a sin xdx = sin x dx = / ( cosx = ( cos( ( cos( = ( ( ( = p b fm m r f ( r = = fm m r,
5 Preliminäärikoe Ratkaisut Pitkä matematiikka / fmm josta f ( r = fm m ( r = fmmr = r c Piste (-, sijoitettu käyrän yhtälöön ja saatu yhtälö a + a =, josta a = tai a = fm Vastaus: a b m f ( r = c a = tai a = r a Kolmion sivut ovat, ja Laske kolmion suurin kulma b Suorakulmion pituus kasvaa 5% ja pinta- ala kasvaa 7,% Miten muuttuu suorakulmion leveys? a Pisintä sivua vastaa suurin kulma Käytetty kosinilausetta ja saatu = + cosα, p + josta cosα =, josta suurin kulma α =,575, 5 b Suorakulmion pituus on a ja leveys b Pituudesta tulee,5a ja pinta- alasta ab tulee,7ab,,7ab joten saamme yhtälön,5a x =, 7ab, josta x = =,9 b,,5a joten leveys tulee,9 - kertaiseksi eli leveys pienenee 7,% Vastaus: a suurin kulma,5 b 7,% Virtuaalihenkilöillä Romeo ja Julia on salainen kohtaamispaikka Romeo lähtee paikasta (5, vektorin i + j suuntaan nopeudella 5 yksikköä minuutissa ja Julia paikasta (-, vektorin i + 9 j suuntaan samalla nopeudella Määritä kohtaamispaikan P koordinaatit Saatu paikkavektorit OP = 5i + j + r( i + j ja OP = i + j + s( i + 9 j, p josta 5i + j + r( i + j = i + j + s( i + 9 j ( 8 r s i + (+ r 9s j =, 8 r s = r = josta saatu yhtälöpari, josta +p + r 9s = s = 6 Saatu paikkavektoriksi OP = i + j + 6( i + 9 j = 7 i + 56 j, joten P = (7,56 +p Hyväksytään myös analyyttisen geometrian mukainen tarkastelu Vastaus: P = (7,56 5 Kolmion kaksi sivua ovat ovat ja Näiden sivujen välisen kulman α puolittaja jakaa kolmion kahteen osaan Laske pinta- alojen suhteen tarkka arvo
6 Preliminäärikoe Ratkaisut Pitkä matematiikka / Olkoon puolittajan pituus a ja saatu esimerkiksi isomman kolmion alaksi ja pienemmän kolmion alaksi a sinα p a sin α +p Saatu kysytyksi suhteeksi ( a sin α : ( a sin α = : +p Vastaus: 6 a Laske luvut (((( ja b Ratkaise yhtälö log x = a a = a = a jne Laske a c Määritelmä: a tetra = a = a, a tetra Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa a b (((( = = = ,9 5 9, missä a < n a p = = =, log x = x =, 9 josta x =,7 9, c = = = = Olkoon x =, jolloin lg x = lg = 6556 lg = 978,79, josta x = 978,79, = =,, Vastaus: a ((((,9 ja c,, b 9 x, 7 Alla olevassa kuvaajassa on funktion y = f (x derivaattafunktion y = f (x kuvaaja a Määritä funktion y = f (x ääriarvokohdat ja ääriarvon laatu b Millä muuttujan x arvolla funktion kasvu on voimakkainta? c Määritä derivaattafunktion kuvaajan avulla f ( y y=df(x x
7 Preliminäärikoe Ratkaisut Pitkä matematiikka / a Koska y = f (x muuttuu negatiivisesta positiiviseksi kohdassa x, 65, niin funktiolla y = f (x on tässä kohdin minimi p Koska y = f (x muuttuu positiivisesta negatiiviseksi kohdassa x, 65, niin funktiolla y = f (x on tässä kohdin maksimi b Kohdassa x = derivaattafunktio on positiivinen ja suurimmillaan, joten funktio y = f (x tässä kohdassa kasvaa voimakkaimmin +p c Alla olevan kuvion kolmiosta ABC 7, saamme kohdassa x = tangentin kulmakertoimeksi =,,75, joten f (, y C y=df(x A B y=-x+ x=; <y<7 x Vastaus: a Maksimikohta: x, 65 ja minimikohta: x, 65 b x = c f (, 8 a Ilmoita ympyrän x + y + ax + by + c = keskipiste ja säde parametrien a, b ja c avulla b Määritä parametrin c arvot, kun ympyrän x + y + ax + by + c = keskipiste on (, a b a b a Saatu neliöimällä ( x ( + ( y ( = ( + ( c, p a b a b josta saatu keskipisteeksi (, ja säteeksi + c, a b missä + c > b Yhtälöstä a = saatu a = -6 ja yhtälöstä b = saatu b = -8,
8 Preliminäärikoe Ratkaisut Pitkä matematiikka 5 / ( 6 ( 8 joten + c >, 6 6 joten c < + c < 5 a b a b a b Vastaus: a Keskipiste (, ja säde + c missä + c > b c < 5 9 Funktio f ( x 7 x =, koordinaattiakselit ja suora x = rajoittavat alueen Suora x = a jakaa jakaa alueen kahteen yhtäsuureen osaan ja samoin tekee suora y = b Tällöin piste P = (a,b on painopiste Määritä P Funktion f ( x = 7 x, koordinaattiakselien ja suoran x = rajoittaman alueen pinta-alaksi saatu ( 7 x dx = /(7x x = p a Suora x = a rajaa pinta- alan kahtia, joten (7 x dx = 6, a josta /(7x x = 6 a + 7a 6 = a = tai a = 6, josta a = kelpaa Vakion b laskemiseksi on integroitava muuttujan y suhteen 7 Yhtälöstä y = 7 x saatu x = y Koska suora y = b rajaa pinta- alan kahtia, niin 7 7 oheisen kuvion perusteella ( y dy = 6, 7 /( b 7 y 7 7 josta saatu ( 7 7 ( b 7 5 b b + = josta saatu b = 7 6 b = 7 + 6, b y = 6 b = 6, joista b = 7 6 hyväksytty Painopisteeksi P saatu (,7 6 Tehtävä hyväksytään myös geometrisena tarkasteluna Vastaus: P = (, y Ala = 6 Ala = 6 x=(7/-(/y y=b x
9 Preliminäärikoe Ratkaisut Pitkä matematiikka 6 / Terässäiliön tilavuus on Säiliö on muodostunut ympyrälieriöstä (korkeus h ja pohjan säde r, jonka molemmissa päissä on puolipallo (säde r Määritä säde r siten että säiliön rakentamiseen kuluu mahdollisimman vähän terästä? r Saatu yhtälö r + r h =, josta h = r p r Pinta- alafunktioksi saatu A( r = r + rh = r + r, r joka sievenee muotoon A( r = r +, r 8 8r 6 josta saatu derivaataksi A ( r = r =, r r josta saatu derivaatan nollakohdaksi r = =,65,6 Perusteltu, että r = on minimikohta +p Vastaus: r = ( = x Funktio ϕ x e on normitetun normaalijakautuman tiheysfunktio N (, a Määritä Simpsonin säännöllä integraalin arvo ϕ x dx Käytä jakoväliä,, b Vertaa saamaasi integraalin arvoa arvoon, jonka saat käyttämällä apuna taulukkokirjan lukuarvoja a Osavälin pituus h =, ja osavälejä on 6 kpl Simpsonin säännöllä saadaan integraalin, ϕ ( x dx likiarvoksi (, ( ϕ ( + ϕ(, + ϕ(, + ϕ(,6 + ϕ(,8 + ϕ(, + ϕ(, p,,,,6 = ( e + e + e + e,8,, + e + e + e =,89,89, b Taulukkokirjan avulla saatu ϕ ( x dx = Φ(, Φ(,889,5 =, 89 Arvot ovat neljän merkitsevän numeron tarkkuudella samat +p Vastaus: a,89 b,89 Arvot ovat neljän merkitsevän numeron tarkkuudella samat
10 Preliminäärikoe Ratkaisut Pitkä matematiikka 7 / Lukujono sin x,sin x, on geometrinen a Määritä jonon viiden ensimmäisen jäsenen summa b Millä muuttujan x arvoilla sarja sin x + sin x + suppenee ja mikä on sarjan summa? a Koska jono on geometrinen, niin peräkkäisten jäsenten osamäärä sin x sin xcos x q = = = cos x, sin x sin x p 5 5 a( q sin x( (cos x joten s5 = = q cos x b Koska q = cos x, niin vaadittu ehto on cos x <, joten < cos x < Epäyhtälön ratkaisuksi saatu + n < x < + n, missä n Z sin x Sarjan summaksi saatu cos x 5 sin x( ( cos x sin x Vastaus: a s5 = b + n < x < + n, missä n Z Summa cos x cos x Origenes (85 5 oli yksi merkittävimmistä keskiajan kirkkoisistä Muuta hänen kuuluisa päättelyketjunsa Jos minä tiedän olevani kuollut, olen kuollut ja jos minä tiedän olevani kuollut, olen elossa, jotenka minä en tiedä olevani kuollut logiikan kielelle Onko hänen päättelyketjunsa loogisesti pätevä (tautologia? (Viereisessä kuvassa Origenes varhaiskeskiaikaisessa kuvassa Merkitty A: Tiedän olevani kuollut ja B: Olen kuollut p ja A: En tiedä olevani kuollut sekä B : En ole kuollut En ole kuollut tarkoittaa, että olen elossa Formalisoitu Origeneksen päättelyketjuksi ( A B ( A B A +p Saatu alla oleva totuusarvotaulukko A B A B A B A B ( A B ( A B, joten lause ( A B ( A B A saa vain ykkösiä, joten lause ( A B ( A B A on tautologia Vastaus: ( A B ( A B A, missä A: Tiedän olevani kuollut ja B: Olen kuollut Origeneksen päättelyketju on loogisesti pätevä (tautologia
11 Preliminäärikoe Ratkaisut Pitkä matematiikka 8 / (* a Todista, että välillä[,8] määritellyllä funktiolla f ( x = log (x + on käänteisfunktio y f ( x = p b Millä muuttujan x arvoilla käänteisfunktio y = f ( on määritelty? Mitä arvoja saa funktio f ( x = log (x + ja mitä arvoja saa käänteisfunktio? p c Määritä käänteisfunktio y = f ( p d Todista, että funktion f ( x = log (x + ja sen käänteisfunktion yhdistetty funktio on identiteettifunktio I ( x = x ja todista, että käänteisfunktion ja funktion yhdistetty funktio on myös identiteettifunktio I ( x = x p e Määritä ( f (6 ratkaisematta käänteisfunktiota y = f ( p a Saatu f ( x = > määrittelyjoukossaan, joten f(x on aidosti kasvava, joten (x + ln y = f ( x on olemassa p b Koska f ( x = log (x + on aidosti kasvava ja jatkuva, niin funktion pienin arvo on 8 f ( = log ( + = ja suurin arvo f (8 = log ( 8 + = log 56 = log = 8, joten funktio saa kaikki arvot väliltä [,8] Koska y = f ( x x = f ( y, niin käänteisfunktio on määritelty välillä [,8] ja käänteisfunktio saa kaikki arvot väliltä [,8] c y log (x+ y y f ( x = y = log (x + = x + = x =, joten y = f ( x = d Funktion f ( x = log (x + ja sen käänteisfunktion yhdistetty funktio on x x x f ( f ( x = f ( = log ( ( + = log = x ja käänteisfunktion ja funktion yhdistetty funktio on log x+ ( f ( f ( x = f (log (x + = = (x + = x e Koska y = f ( x x = f ( y, niin y = 6, joten 6 = log (x +, joten 6ln/ 6 log (x+ = x + = 6 x = 6 6ln Koska ( f ( y =, niin ( f (6 = = = = f ( x f ( ln ln + Vastaus: a Koska funktio f ( x = log (x + on aidosti kasvava, niin y = f ( x on olemassa b Funktio saa kaikki arvot väliltä [,8] Käänteisfunktio on määritelty välillä [,8] ja x käänteisfunktio saa kaikki arvot väliltä [,8] c f ( x = d f ( f ( x = x ja 6 6 f ( f ( x = x e ( f (6 = tai vaihtoehtoisesti ( f (6 = ln8 ln
12 Preliminäärikoe Ratkaisut Pitkä matematiikka 9 / 5(* Kuutio, jonka kärjet ovat (,,, (5,,, (5,5,, (,5,, (,,5, (5,,5, (5,5,5 ja (,5,5 on x, y, z- koordinaatistossa Kuutio on muodostunut 5:stä pikku kuutiosta, joiden särmä on yksikkö Valitaan satunnaisesti pikku kuutiota alkuperäisestä kuutiosta a Millä todennäköisyydellä molemmat palat ovat nurkkapaloja? p b Millä todennäköisyydellä kumpikaan paloista ei ole kuution sivutahoilla? p c Millä todennäköisyydellä nämä kuutiota koskettavat toisiaan? 5p 8 a Ensimmäinen pala on nurkassa todennäköisyydellä 5 p 7 ja toinen on nurkassa todennäköisyydellä, joten molemmat palat ovat nurkkapaloja todennäköisyydellä = = b Paloja, jotka eivät ole kuution sivutahoilla on = 7 ja kaikkia paloja on 5, 7 joten ensimmäinen pala ei ole sivutaholla todennäköisyydellä 5 6 ja toinen pala ei ole sivutaholla todennäköisyydellä, joten kumpikin pala ei ole sivutahoilla todennäköisyydellä = = c Tapaus : Ensimmäinen pikku kuutio on nurkassa ( P = Toisen kuution on oltava ensimmäisen vieressä ( P = = Molempien ehtojen on oltava voimassa, joten P(Tapaus = 5 Tapaus : Ensimmäinen pikku kuutio on ison kuution reunasärmällä, 6 mutta ei nurkassa ( P = = Toisen kuution on oltava ensimmäisen vieressä ( P = = 5 6 Molempien ehtojen on oltava voimassa, joten P(Tapaus = 5 Tapaus : Ensimmäinen pikku kuutio on jollakin kuudesta sivutahosta, mutta ei ison kuution reunasärmällä eikä nurkassa ( P = = Toisen kuution on oltava ensimmäisen vieressä ( P = = Molempien ehtojen on oltava voimassa, joten P(Tapaus = 5 Tapaus : Ensimmäinen pikku kuutio ei ole ison kuution sivutaholla ( P = = + p Toisen kuution on oltava ensimmäisen vieressä ( P = = 5
13 Preliminäärikoe Ratkaisut Pitkä matematiikka / Molempien ehtojen on oltava voimassa, joten P(Tapaus Tai- säännöllä saamme yhdistettyä kaikki tapausta: P = = = = Vastaus: a 5 58 b c P = =
Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
LisätiedotPreliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa
LisätiedotPreliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A
LisätiedotPRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
LisätiedotLisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x
MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa
LisätiedotA-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
LisätiedotMAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!
A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
LisätiedotPreliminäärikoe Pitkä Matematiikka 3.2.2009
Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.
LisätiedotPRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015
PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.
Lisätiedotx = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi
Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2
LisätiedotMATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
Lisätiedot, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä
Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =
LisätiedotRatkaisut vuosien tehtäviin
Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
LisätiedotVastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:
. Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona
LisätiedotVASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN
Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa
LisätiedotTekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.
Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (
LisätiedotMATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
LisätiedotRATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
Lisätiedot1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.
ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.
LisätiedotLataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!
Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa
Lisätiedot1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)
Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)
LisätiedotA Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7
1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ
LisätiedotA = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.
MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset
Lisätiedotl 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
LisätiedotDifferentiaalilaskenta 1.
Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,
LisätiedotPRELIMINÄÄRIKOE. Pitkä Matematiikka
Ratkaisut MA Preliminääri kevät 5 PRELIMINÄÄRIKOE Pitkä Matematiikka..5. a) Ratkaise epäyhtälö >. b) Määritä kaikki luvut, jotka toteuttavat vaatimuksen: Luvun neliön ja vastaluvun summa on. c) Sievennä
LisätiedotKERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.
KERTAUSHARJOITUKSIA. Rationaalifunktio 66. a) b) + + + = + + = 9 9 5) ( ) ( ) 9 5 9 5 9 5 5 9 5 = = ( ) = 6 + 9 5 6 5 5 Vastaus: a) 67. a) b) a a) a 9 b) a+ a a = = a + a + a a + a a + a a ( a ) + = a
LisätiedotMATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Lisätiedot* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat
Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa
LisätiedotTehtävien ratkaisut
Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta
LisätiedotMaksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta
Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti
LisätiedotRatkaisuja, Tehtävät
ja, Tehtävät 988-97 988 a) Osoita, että lausekkeiden x 2 + + x 4 + 2x 2 ja x 2 + - x 4 + 2x 2 arvot ovat toistensa käänteislukuja kaikilla x:n arvoilla. b) Auton jarrutusmatka on verrannollinen nopeuden
LisätiedotJuuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77
Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)
LisätiedotMuista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:
Määrittelyjoukot Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:, 0 ; log, > 0 ;, 0 (parilliset juuret) ; tan, π + nπ Potenssisäännöt Ole tarkkana kantaluvun kanssa 3 3
LisätiedotJuuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(
Lisätiedot5 Rationaalifunktion kulku
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 5 Rationaalifunktion kulku. Funktion f määrittelyehto on. Muodostetaan symbolisen laskennan ohjelman avulla derivaattafunktio f ja
Lisätiedot1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot
Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan
LisätiedotPyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin
Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
LisätiedotMikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.
4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa
LisätiedotIntegrointi ja sovellukset
Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,
LisätiedotÄänekosken lukio Mab4 Matemaattinen analyysi S2016
Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
LisätiedotMatematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.
7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f
Lisätiedotmäärittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin.
MAA8 Juuri- ja logaritmifunktiot 70 Jussi Tyni 5 a) Derivoi f ( ) e b) Mikä on funktion f () = ln(5 ) 00 c) Ratkaise yhtälö määrittelyjoukko log Käyrälle g( ) e 8 piirretään tangeti pisteeseen, jossa käyrä
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat
LisätiedotMAA7 7.2 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! lim.
MAA7 7. Koe Jussi Tyni 8.1.01 1. Laske raja-arvot: a) 9 lim 6 lim 1. a) Määritä erotusosamäärän avulla funktion f (). 1 f ( ) derivaatta 1 Onko funktio f ( ) 9 kaikkialla vähenevä? Perustele vastauksesi
Lisätiedot2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
LisätiedotHelsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,
LisätiedotPreliminäärikoe Pitkä Matematiikka 5.2.2008
Preliminäärikoe Pitkä Matematiikka 5..008 Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. Ratkaise
LisätiedotHelsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo -. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x +9, b) log (x) 7, c) x + x 4 =.. Määrää kaikki ne
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 8906 HYVÄN VASTAUKSEN PIIRTEITÄ Tutkintoaineen sensorikokous on hyväksynyt seuraavat hyvän vastauksen piirteet Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty
LisätiedotLataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!
Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa
Lisätiedotx + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /
MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa
Lisätiedot11 MATEMAATTINEN ANALYYSI
Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 MATEMAATTINEN ANALYYSI ALOITA PERUSTEISTA 444A. a) Funktion arvot ovat positiivisia silloin, kun kuvaaja on x-akselin yläpuolella.
Lisätiedot1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 13..015 MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Lisätiedot4 Polynomifunktion kulku
4 Polynomifunktion kulku. a) Funktio on kasvava jollakin välillä, jos sen arvo kasvaa tällä välillä. Kuvaajan nousemisen ja laskemisen perusteella funktio on kasvava kohtien x,4 ja x 0, välissä. b) Funktion
LisätiedotLaudatur 4 MAA4 ratkaisut kertausharjoituksiin
Laudatur MAA ratkaisut kertausharjoituksiin Yhtälöparit ja yhtälöryhmät 6. a) x y = 7 eli,y+, sijoitetaan alempaan yhtälöön x+ 7y = (, y+, ) + 7y =,y =, y = Sijoitetaan y = yhtälöparin ylempään yhtälöön.,
LisätiedotRatkaisut vuosien tehtäviin
Ratkaisut vuosien 1958 1967 tehtäviin 1958 Pyörähtäessään korkeusjanansa ympäri tasakylkinen kolmio muodostaa kartion, jonka tilavuus on A, ja pyörähtäessään kylkensä ympäri kappaleen, jonka tilavuus on
LisätiedotMatematiikan peruskurssi (MATY020) Harjoitus 7 to
Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat
Lisätiedotderivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,.
Matematiikka, MAA9. a) Ratkaise yhtälö tan (YOS) Kulma on välillä [, 6]. Ratkaise asteen tarkkuudella seuraavat yhtälöt: b) sin c) cos (YOs). Kulmalle [9,6 ] on voimassa sin = 8 7. Määritä cos ja tan..
Lisätiedot2 Raja-arvo ja jatkuvuus
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti
LisätiedotTekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
Lisätiedota) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:
6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,
LisätiedotKertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)
Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman
Lisätiedot13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
Lisätiedot10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen?
YLIOPPILASTUTKINTO- LAUTAKUNTA 3.3.0 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä
LisätiedotLataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!
Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa
LisätiedotPitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.
Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 26..208 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Lisätiedotk-kantaisen eksponenttifunktion ominaisuuksia
3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio
Lisätiedoty=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
Lisätiedotx 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua
Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö
LisätiedotMäärätty integraali. Markus Helén. Mäntän lukio
Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden
LisätiedotJohdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti
LisätiedotHyvä uusi opiskelija!
Hyvä uusi opiskelija! Tässä tulee tärkeää tietoa heti syksyn alussa pidettävästä laskutaitotestistä. Matematiikka kuuluu tekniikan alan opiskelijan tärkeimpiin oppiaineisiin. Matematiikan opiskelu kehittää
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta)
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 3.3.06. ( piste/kohta) Sivu / 8 Kohta Vaihtoehdon numero A B C D E F 3. a) Ainakin yhdet sulut kerrottu oikein auki 6x 4x x( 3x) Ratkaistu nollakohdat sieventämisen lisäksi
Lisätiedota) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 1.10.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
LisätiedotA-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:
MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:
LisätiedotVanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
Lisätiedot1.1. YHDISTETTY FUNKTIO
1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)
Lisätiedota) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
LisätiedotKertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,
Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
LisätiedotKoontitehtäviä luvuista 1 9
11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ..07 HYVÄN VASTAUKSEN PIIRTEITÄ Tutkintoaineen sensorikokous on hyväksynyt seuraavat hyvän vastauksen piirteet. Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty.
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää
LisätiedotJohdantoa. Jokaisen matemaatikon olisi syytä osata edes alkeet jostakin perusohjelmistosta, Java MAPLE. Pascal MathCad
Johdantoa ALGORITMIT MATEMA- TIIKASSA, MAA Vanhan vitsin mukaan matemaatikko tietää, kuinka matemaattinen ongelma ratkaistaan, mutta ei osaa tehdä niin. Vitsi on ajalta, jolloin käytännön laskut eli ongelman
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ.0.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Lisätiedot