4.3 Moniulotteinen Riemannin integraali

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "4.3 Moniulotteinen Riemannin integraali"

Transkriptio

1 4.3 Moniulotteinen Riemannin integraali Tässä luvussa opitaan miten integroidaan usean muuttujan reaaliarvoista tai vektoriarvoista funktiota, millaisten joukkojen yli jatkuvaa funktiota voi integroida, miten integraalissa tehdään muuttujan vaihto ja kuinka epäoleelliset integraalit (eng. improper integrals) määritellään. Huomautus Tässä luvussa sanalla integrointi tarkoitetaan Riemannin integraalia.toinen erittäin laajasti käytetty integraali on ns. Lebesguen integraali, joka määritellään eri tavoin kuin Riemannin integraali. Riemannin integraali ja Legesgue n integraali antavat saman arvon osalle integroitavista funktioista, mutta Lebesgue n interaalin voi laskea myös eräille funktioille, jotka eivat ole Riemann-integroituvia. Toisaalta Lebesgue n integraalia ei voi määritellä eräille funktioille, joiden epäoleellinen Riemann integraali on olemassa. Tämän vuoksi on syytä tuntea molemmat määritelmät.

2 4.3.1 Riemannin integraalin määritelmä Riittäisikö yhden muuttujan integraalien käyttö myös moniulotteisessa tapauksessa? Esimerkki Yhden muuttujan funktion, kuten f(x) = 4 cos(2x) (4.3.8) integraali yli välin [, 1] on 1 f(x)dx = 1 4 cos(2x)dx = 2 sin(2). Korvataan yhtälössä (4.3.8) luku 2 luvulla y R, luku 4 luvulla y 2 ja asetetaan f(x, y) = y 2 cos(xy) kaikilla x, y R. Samoin kuin yllä 1 f(x, y)dx = 1 y 2 cos(xy)dx = 1/ y sin(xy) = y sin(y). (4.3.9) Nyt voidaan laskea ns. iteroitu eli toistettu integraali, missä ensin lasketaan integraali x- muuttujan suhteen ja sitten integraali y-muuttujan suhteen: 2 ( 1 ) 2 ( 1 ) 2 f(x, y)dx dy = 2y 2 cos(xy)dx dy (4.3.9) = y sin(y)dy

3 Voidaanko nyt tulkita, että olemme laskeneet funktion f(x, y) integraalin yli joukon = {(x, y) R 2 : x [, 1], y [1, 2]}? Itse asiassa kyllä, mutta tarkastellaan kuitenkin toistakin esimerkkiä. Olkoon { 2x, kun y on irrationaalinen g(x, y) = 1, kun y on rationaalinen. Silloin 1 g(x, y)dx = Tällöin iteroitu integraali saa arvon 2 { 1 2xdx = 1, kun y on irrationaalinen 1 1 1dx = 1, kun y on rationaalinen. ( 1 ) g(x, y)dx dy = 1. Jos integroimisjärjestys vaihdetaan, niin ensin tulisi laskea integraali 2 1 2x1 R\ (y) + 1 (y)dy, mikä ei onnistu, sillä integrandi ei ole Riemannin mielessä integroituva! Toisaalta joukko I on sama integroitiinpa ensin muuttujan x tai muuttujan y yli..

4 Päättelemme tästä, että toistettu integraali ei ole ideaalinen moniulotteisen integraalin pohjaksi. Seuraavaksi esitetään tunnettu määritelmä, joka kykenee helposti tekemään selvän eron tapausten f (jonka integraalin saa laskea tällä taktiikalla) ja tapauksen g (jota ei voi integroida tällä taktiikalla) välille. Määritelmä Joukko R m on hypersuorakulmio, jos löytyy sellaiset välit I 1,..., I m R, että = I 1 I m. Hypersuorakulmion tilavuus (pinta-ala, kun m = 2) on välien I i, i = 1,..., m pituuksien tulo Huomautus Hypersuorakulmio = I 1 I m on kompakti, jos välit I 1,... I m R ovat suljettuja ja rajoitettuja. Esimerkki Joukko {(x 1, x 2, x 3, x 4 ) R 4 : x 1 2, 1 x 2 1, 1 x 3 11, x 4 5} on hypersuorakulmio = [, 2] [ 1, 1] [1, 11] [, 5], jonka tilavuus on = (2 ) (1 ( 1)) (11 1) (5 ) = 2.

5 Määritelmä Olkoon = I 1 I m kompakti hypersuorakulmio ja olkoon P i = {t (i) < < t (i) k i } välin I i jako jokaisella i = 1,..., m. Joukko P on hyoersuorakulmion jako, jos P sisältää kaikki hypersuorakulmiot missä 1 j i k i jokaisella i = 1,..., m. Esimerkki R j1,...,j m = [t (1) j 1 1, t(1) j 1 ] [t (m) j m 1, t(m) j m ], Kuva 4.5: Suorakulmion jako kahden muuttujan tapauksessa. Erityisesti j 1,j 2 R j1,j 2 =.

6 Määritelmä Olkoon R m hypersuorakulmio ja P, P sen kaksi jakoa. Jako P on jaon P hienonnus, jos jokainen jaon P hypersuorakulmio on jaon P jonkin hypersuorakulmion osajoukko. Määritelmä Olkoon R m kompakti hypersuorakulmio ja P hypersuorakulmion jako, joka koostuu hypersuorakulmioista R j1,...,j m, missä 1 j i k i jokaisella i = 1,..., m. Olkoon f : R rajoitettu funktio. Tällöin funktion f Riemannin alasumma joan P suhteen on L(f, P ) = inf f(x) R j1,...,j m x R j1,...,jm j 1,...j m ja funktion f Riemannin yläsumma jaon P suhteen on U(f, P ) = sup f(x) R j1,...,j m x R j1,...,jm j 1,...j m Kun pisteet p (j 1,...,j m ) R j1,...,j m, niin L(f, P ) j 1,...j m f(p (j1,...,jm) ) R j1,...,j m U(f, P ). Jos P ja P ovat kaksi hypersuorakulmion jakoa, niin löytyy jakojen P ja P yhteinen hienonnus P. Silloin L(f, P ) L(f, P ) U(f, P ) U(f, P ) eli alasumma minkä tahansa jaon suhteen on erityisesti aina pienenpi kuin yläsumma minkä tahansa muun jaon suhteen.

7 Määritelmä (Moniulotteinen Riemannin integraali). Olkoon R m kompakti hypersuorakulmio ja f : R rajoitettu funktio. Jos sup P L(f, P ) = inf P U(f, P ), (4.3.1) niin f on (Riemannin mielessä) integroituva yli hypersuorakulmion. Tällöin lukua (4.3.1) sanotaan funktion f integraaliksi yli hypersuorakulmion ja lukua (4.3.1) merkitään f(x, y)dxdy tai fda tai f kun m = 2 f(x, y, z)dxdydz tai fdv tai f kun m = 3 f(x)dx tai f(x 1,..., x m )dx 1 x m kun m on mikä tahansa dimensio Esimerkki Olkoon f(x) = 1 jokaisella x R 2. Tutkitaan, onko f integroituva yli joukon = [, 2] [3, 6]: Olkoon P suorakulmion jako. Silloin Riemannin alasumma L(f, P ) = j 1,j 2 inf f(x) R j1,j 2 = x R j1,j }{{ 2 } =1 Samoin U(f, P ) =. Siis (4.3.1) on totta ja f(x 1, x 2 )dx 1 dx 2 = (2 ) (6 3) = 6. [,2] [3,6]

8 Lause Olkoon R m kompakti hypersuorakulmio ja olkoon f : R rajoitettu funktion. Tällöin f on integroituva yli joukon jos ja vain jos jokaisella ε > löytyy sellaiset :n jaot P = P ε ja P = P ε, että U(f, P ) L(f, P ) < ε. Todistus. Seuraa supremumin ja infimumin määritelmistä sekä yhtälöstä (4.3.1). Esimerkki Olkoon f(x 1, x 2 ) = x 1 kaikilla (x 1, x 2 ) = [ 1, ] [ 1, ]. Tutkitaan, onko f integroituva yli joukon. Olkoon ɛ > ja olkoon P neliön sellainen jako, joka sisältää suorakulmiot R j1,j 2 = [a j1 1, a j1 ] [b j2 1, b j2 ] kaikilla 1 j 1 k 1 ja 1 j 2 k 2 ja a j1 a j1 1 < ɛ jokaisella j 1. Silloin L(f, P ) = ( ) inf x 1 R j1,...,j m x R j1,j j 1,j 2 2 = j 1,j 2 a j1 (a j1 a j1 1)(b j2 b j2 1) = j1 a j1 (a j1 a j1 1) b j2 b j2 1 j2 }{{} =1

9 Toisaalta U(f, P ) = j 1,j 2 sup ( x 1 ) R j1,...,j m x R j1,j 2 Lisäksi = j 1,j 2 a j1 1(a j1 a j1 1)(b j2 b j2 1) = j1 a j1 1(a j1 a j1 1) b j2 b j2 1 j2 }{{} =1 U(f, P ) L(f, P ) = j1 (a j1 a j1 1)(a j1 a j1 1) < ɛ Lauseen nojalla f on integroituva :n yli. Huomautus Esimerkin Riemannin summille saadaan myös geometrinen tulkinta tarkastelemalla funktion f kuvaajaa:

10 Kuva 4.6: Funktion f(x 1, x 2 ) = x 1 kuvaaja. Riemannin yläsumma approksimoi kiilan tilavuutta ylhäältä ja Riemannin alasumma approksimoi kiilan tilavuutta alhaalta.

11 Esimerkki Olkoon f(x 1, x 2 ) = { 1 kun x 1, x 2 muulloin. Tutkitaan, onko f integroituva yli joukon = [, 1] [, 1]. Olkoon P suorakulmion vapaasti valittu jako. Tällöin L(f, P ) = inf f(x) R j1,...,j m = x R j1,...,jm j 1,...j m }{{} = ja U(f, P ) = sup f(x) R j1,...,j m =. x R j1,...,jm j 1,...j m } {{ } =1 Tällöin = sup L(f, P ) inf U(f, P ) = = 1, P P joten f ei ole Riemannin mielessä integroituva yli :n.

12 Suuri joukko integroituvia funktioita löytyy seuraavan lauseen avulla. Lause Olkoon R m kompakti hypersuorakulmio ja olkoon f : R jatkuva funktio. Silloin funktio f on integroituva yli joukon. Todistus. Näytetään tulos yksinkertaisuuden vuoksi tapauksessa m = 2. Kompaktissa joukossa jatkuva funktio f on tasaisesti jatkuva. Kun ɛ > on annettu, niin tällöin löytyy sellainen δ >, että f(x) f(y) < ɛ (4.3.11) aina kun x y < δ ja x, y. Olkoon P sellainen suorakulmion jako, että sen jokaisen suorakulmion diagonaalin pituus on pienenpi kuin δ. Koska jatkuva funktio saavuttaa pienimmän ja suurimman arvonsa kompaktissa joukossa, niin U(f, P ) L(f, P ) = j 1,j 2 (( sup x R j1,...,jm f(x)) ( inf x R j1,...,jm f(x)) ) R j1,...,j m (4.3.11) ɛ. Koska ε on vapaasti valittavissa, niin Lauseen nojalla f on integoituva yli joukon.

13 4.3.2 Fubinin lause Seuraavaksi johdetaan tulos, jonka nojalla moniulotteisia Riemannin integraaleja voidaan laskea iteroitujen integraalien avulla. Lause Olkoot R R m ja R R n kompakteja hypersuorakulmioita ja olkoon f : R R R sellainen rajoitettu funktio, että 1. f on integroituva yli joukon R R 2. integraali f(x, y)dy on olemassa jokaisella x R. R R R Silloin funktio x R f(x, y)dy on integroituva yli joukon R ja ( ) f(x 1,... x m,, y 1,... y n )dx 1 dx m dy 1 dy n = f(x, y)dy dx. (4.3.12) Jos lisäksi funktio R f(x, y)dx on olemassa jokaisella y R, niin ( ) ( ) f(x, y)dx dy = f(x, y)dy dx. (4.3.13) R R R R R R

14 Esimerkki Fubinin lauseen nojalla esimerkiksi jatkuvan funktion f : R 3 R integraali yli joukon = [, 3] [ 1, ] [ 3, 4] on 3 ( ( 4 ) ) f(x 1, x 2, x 3 )dx 1 dx 2 dx 3 = f(x 1, x 2, x 3 )dx 3 dx 2 dx 1. Tässä käytetään Fubinia kahdesti joukkoon = [, 3] [ 1, ] [ 3, 4]: i) kun m = 1, n = 2 eli [, 3] ([ 1, ]) [ 3, 4]) }{{}}{{} =R = R ii) vielä erikseen tapaukseen n = 2 eli joukkoon [ 1, ] [ 3, 4]. }{{}}{{} =R = R Esimerkiksi, kun f(x 1, x 2, x 3 ) = x 2 1x 2 + x 3 x 2 2, niin 3 ( ( 4 ) ) x 2 1x 2 + x 3 x 2 2 dx 1 dx 2 dx 3 = x 2 1x 2 + x 3 x 2 2dx 3 dx 2 dx ( ( ) 4 = 7x 2 2 1x ( 3)2 x 22dx ) 2 dx = 7 2 x ( ) ( 3)2 dx ja = ( 3)2 2 = 28

15 Todistus. (Lause 4.3.3) Näytetään tulos tapauksessa m = n = 1. Yleisempi tapaus etenee vastaavasti. Tarkastellaan välejä = [a, b] ja = [c, d]. Koska funktio f on rajoitettu, niin löytyy vakiot e, E R joille e f(x, y) E (4.3.14) kaikilla x [a, b] ja y [c, d]. Karkea arvio (4.3.14) antaa epäyhtälön e(c c) d c f(x, y)dy E(d c) jokaisella x [a, b], mistä nähdään että funktio x d c f(x, y)dy on rajoitettu. Olkoon ɛ >. Oletuksen nojalla f on integroituva yli joukon [a, b] [c, d] ja lisäksi f(x, y)dy on olemassa jokaisella x [a, b]. Lauseen nojalla löytyy sellainen joukon [a, b] [c, d] jako P, että U(f, P ) L(f, P ) < ɛ. Merkitään jaon P muodostavia välien [a, b] ja [c, d] jakoja P 1 = {a = x < < x k = b} ja P 1 = {c = y < < y l = d}. Olkoon p (i) jokin piste joukossa [x i 1, x i ].

16 Kerrotaan inf f(x, y)(y j y j 1 ) (x,y) [x i 1,x i ] [y j 1,y j ] puolittain luvulla (x i x i 1 ). Silloin yj y j 1 f(p (i), y)dy inf f(x, y)(y j y j 1 )(x i x i 1 ) (x i x i 1 ) (x,y) [x i 1,x i ] [y j 1,y j ] sup (x,y) [x i 1,x i ] [y j 1,y j ] Summaamalla yli indeksien i ja j saadaan k L(f, P ) (x i x i 1 ) i=1 d c sup f(x, y)(y j y j 1 ) (x,y) [x i 1,x i ] [y j 1,y j ] yj f(p (i), y)dy y j 1 f(x, y)(y j y j 1 )(x i x i 1 ) f(p (i), y)dy U(f, P ). Koska p (i) on vapaasti valittavissa, nähdään 1 että ( ) ( d ) d L(f, P ) L f(, y)dy, P 2 U f(, y)dy, P 2 U(f, P ). (4.3.15) c Epähtälöiden (4.3.15), (4.3.15) ja Lauseen nojalla x [c,d] f(, y)dy on integroituva yli välin [a, b] ja integraalin arvo on vaadittua muotoa. 1 valitsemalla sellainen jono p (i) k, jolla d c f(p(i) k, y)dy suppenee kohti lukua sup d c c f(p(i) k, y)dy (vast. infimum).

17 4.3.3 Nollajoukko Samaan tapaan kuin paloittain jatkuvia funktioita voi integroida yksiulotteisessa tapauksessa, niin myös moniulotteinen integroituva funktio voi olla tietyllä tapaa paloittain jatkuva. On kuitenkin epäjatkuvuuksia, joita ei voi sallia. Esimerkki kehnosta epäjatkuvuudesta on fraktaalin, kuten Kochin lumihiutaleen, rajaama joukko. Hyvien ja huonojen epäjatkuvuuksien tunnistamisessa on avuksi ns. nollajoukon käsite. Koko avaruuden R m jako muodostetaan samoin kuin kompaktin hypersuorakulmion jako, paitsi että osa jaon hypersuorakulmioista saa olla rajoittamattomia suorakulmioita. Määritelmä Olkoon A R m ja P jokin avaruuden R m jako. Joukon A ja jaon P kontaktijoukko muodustuu sellaisista jaon P hypersuorakulmioista, R j1,...j m, joille A R j1,...j m. Kontaktijoukon tilavuutta (pinta-alaa, kun m = 2) merkitään κ(a, P ). Huomautus Jos A R m on rajoitettu joukko, niin löytyy aina sellainen jako, että κ(a, P ) <. Määritelmä Joukko A R m on nollajoukko, jos jokaisella ɛ > löytyy sellainen jako P, että kontaktijoukon tilavuus (pinta-ala, kun m = 2) κ(a, P ) < ɛ.

18 Esimerkki Neliön [, 1] [, 1] reuna on nollajoukko. Kuva 4.7: Neliön reunapisteiden kontaktijoukko punaisella. Huomautus Äärellisen monen nollajoukon yhdiste on nollajoukko. Myös nollajoukon osajoukko on nollajoukko.

19 Lause Olkoon R m kompakti hypersuorakulmio. Jos g : R on jatkuva funktio, niin sen kuvaaja {(x, g(x)) : x } on nollajoukko. Todistus. Todistetaan väite yksinkertaisuuden vuoksi tapauksessa m = 2. Olkoon ɛ > Jatkuva funktio g on määritelty kompaktilla joukolla, joten se on tasaisesti jatkuva. Tällöin löytyy sellainen δ >, että g(x) g(y) < ɛ aina, kun x y < δ ja x, y. Muodostetaan välin :n sellainen jako P jonka suorakulmioiden R ij halkaisija on pienempi kuin δ. Kuvaajan osajoukko {(x, g(x)) : x R ij } voidaan peittää suorakulmaisella särmiöllä, jonka tilavuus on korkeintaan ɛ R ij. Tällaisten suorakulmioiden yhteenlaskettu tilavuus on korkeintaan ɛ R ij = ɛ. i,j

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko. Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

4.3.7 Epäoleellinen integraali

4.3.7 Epäoleellinen integraali Esimerkki 4.3.16. (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

Funktiojonon tasainen suppeneminen

Funktiojonon tasainen suppeneminen TAMPEREEN YLIOPISTO Pro gradu -tutkielma Taina Saari Funktiojonon tasainen suppeneminen Matematiikan ja tilastotieteen laitos Matematiikka Elokuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen

Lisätiedot

Määrätty integraali. Markus Helén. Mäntän lukio

Määrätty integraali. Markus Helén. Mäntän lukio Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu. Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,

Lisätiedot

f(tx + (1 t)y) tf(x) + (1 t)f(y) jokaisella x, y A ja t [0, 1].

f(tx + (1 t)y) tf(x) + (1 t)f(y) jokaisella x, y A ja t [0, 1]. Tässä luvussa näytetään divergenssilause konveksin joukon tapauksessa. Määritelmä 4.5.1. 1. Joukko R m on konveksi, jos kaikilla x, y pisteet tx + (1 t)y jokaisella t [0, 1]. 2. Olkoon R m konveksi. Funktio

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy 215 1 / 24 Skalaarikenttä Olkoon R

Lisätiedot

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit MS-A22 i erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit Antti Rasila Aalto-yliopisto Syksy 25 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 25 / 8 Tasointegraali Olkoon R

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

Lebesguen mitta ja integraali

Lebesguen mitta ja integraali Lebesguen mitta ja integraali Olkoon m Lebesguen mitta R n :ssä. R 1 :ssä vastaa pituutta, R 2 :ssa pinta-alaa, R 3 :ssa tilavuutta. Mitallinen joukko E R n = joukko jolla on järkevästi määrätty mitta

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle / MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa

Lisätiedot

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

Luku 2. Jatkuvien funktioiden ominaisuuksia.

Luku 2. Jatkuvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 21 Risto Silvennoinen Luku 2. Jatkuvien funktioiden ominaisuuksia. Jatkossa väli I tarkoittaa jotakin seuraavista reaalilukuväleistä: ( ab, ) = { x a< x< b} = { x a

Lisätiedot

1.1. Joukon Jordanin sisältö. Reaaliakselin kompaktin välin [t 0, t m ] jako on

1.1. Joukon Jordanin sisältö. Reaaliakselin kompaktin välin [t 0, t m ] jako on 1. Jordan-joukot Yksinkertaisuuden (ja havainnollisuuden vuoksi) seuraavassa tarkastellaan vain tason osajoukkoja, vaikka päättelyt voitaisiin helposti siirtää yleiseen n-ulotteiseen euklidiseen avaruuteen

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Stokesin lause LUKU 5

Stokesin lause LUKU 5 LUU 5 Stokesin lause 5.1. Integrointi monistolla Olkoot W R k alue, W kompakti Jordan-joukko ja ω jatkuva k-muoto alueessa W, ω f dx 1 dx k. Asetetaan ω : f, t.s. f dx 1 dx k : f(x dx f(x 1,, x k dx 1

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot

Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R,

Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R, Vektorianalyysi Harjoitus 9, Ratkaisuehdotuksia Anssi Mirka Tehtävä 1. ([Martio, 3.4:1]) Millä suoralla sylinterillä, jonka tilavuus on V > on pienin vaipan ja pohjan yhteenlaskettu pinta-ala? Ratkaisu

Lisätiedot

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b. 2 Lukujonot 21 Lukujonon määritelmä 16 Fibonacci n luvut määritellään ehdoilla Osoita: 17 a 1 = a 2 = 1; a n+2 = a n+1 + a n, n N a n = 1 [( 1 + ) n ( 2 1 ) n ] 2 Olkoon a 1 = 3, a 2 = 6, a n+1 = 1 n (na

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 5 Tasointegraalin laskeminen iemmin tutkimme ylä- ja alasummien antamia arvioita tasointegraalille f (x, ydxdy. Tässä siis funktio f (x, y integroidaan muuttujien x

Lisätiedot

Tilastolliset inversio-ongelmat

Tilastolliset inversio-ongelmat Luku 4 Tilastolliset inversio-ongelmat Tilastollisen inversio-ongelman ratkaisu ei niinkään vastaa kysymykseen "mikä tuntematon vektori x 0 on"vaan pikemminkin kysymykseen "mitä tiedämme tuntemattomasta

Lisätiedot

Analyysin peruslause

Analyysin peruslause LUKU 10 Analyysin peruslause 10.1. Peruslause I Aiemmin Cantorin funktion ψ kohdalla todettiin, että analyysin peruslause II ei päde: [0,1] ψ (x) dm(x) < ψ(1) ψ(0). Kasvavalle funktiolle analyysin peruslauseesta

Lisätiedot

Todista suoraan integraalin määritelmään perustuen tasointegraalin ominaisuus. λ f = λ f,

Todista suoraan integraalin määritelmään perustuen tasointegraalin ominaisuus. λ f = λ f, 7. Taso- ja avaruusintegraali 7.1. Tasointegraalin määrittely 205. Tarkastellaan funktiota f (x,y) = x+y neliössä {(x,y) 0 x 1, 0 y 1}. Neliö jaetaan suorilla x = a ja y = b neljään osasuorakulmioon; 0

Lisätiedot

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus 1. (5:7) Olkoon E normiavaruus, I = [0, 1] ja f, g : I E jatkuvia. Osoita, että yhtälön h(s, t) = (1 t)f(s) + tg(s) määrittelemä kuvaus h : I 2 E on

Lisätiedot

Määritelmä 17. Olkoon Ω joukko ja Σ sen jokin σ-algebra. Kuvaus P : Σ [0, 1] on todennäköisyysmitta (eng. probability measure), jos

Määritelmä 17. Olkoon Ω joukko ja Σ sen jokin σ-algebra. Kuvaus P : Σ [0, 1] on todennäköisyysmitta (eng. probability measure), jos 0.02 0.04 0.06 0.08 f 0 5 0 5 0 Temperature Kuva 5.2: Tntf:n f kuvaaja: Lämpötilat välillä [5, 0] näyttävät epätodennäköisiltä. Lämpötila -2 näyttäisi todennäköisimmältä, mutta jakauma on leveä. Tämä heijastaa

Lisätiedot

2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a i > 0kaikillai 2 I, niin P i2i a i = 1.

2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a i > 0kaikillai 2 I, niin P i2i a i = 1. Harjoitus 1, 11.9.2015 1. Näytä, että joukossax on äärettömän monta alkiota jos ja vain jos on joukko X, 6= X, jokaonyhtämahtavakuinx. 2. Todista Lause 1.2 : Jos I on ylinumeroituva indeksijoukko ja a

Lisätiedot

Joukot metrisissä avaruuksissa

Joukot metrisissä avaruuksissa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saara Lahtinen Joukot metrisissä avaruuksissa Informaatiotieteiden yksikkö Matematiikka Elokuu 2013 Sisältö 1 Johdanto 1 2 Metriset avaruudet 1 2.1 Tarvittavia

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1. Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste, Reaaliluvuista Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät tiivistelmän reaaliluvuista ja niihin liittyvistä käsitteistä.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 varuusintegraali iemmin laskimme yksiulotteisia integraaleja b a f (x)dx, jossa integrointialue on x-akselin väli [a, b]. Lisäksi laskimme kaksiulotteisia integraaleja

Lisätiedot

3.4 Käänteiskuvauslause ja implisiittifunktiolause

3.4 Käänteiskuvauslause ja implisiittifunktiolause 3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Poistumislause Kandidaatintutkielma

Poistumislause Kandidaatintutkielma Poistumislause Kandidaatintutkielma Mikko Nikkilä 013618832 26. helmikuuta 2011 Sisältö 1 Johdanto................................... 2 2 Olemassaolon ja yksikäsitteisyyden historiaa............ 3 3 Esitietoja..................................

Lisätiedot

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause 91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

LUKU 6. Mitalliset funktiot

LUKU 6. Mitalliset funktiot LUKU 6 Mitalliset funktiot Määritelmistä 3. ja 3.0 seuraa, että jokainen Lebesgue-integroituva funktio on porrasfunktiojonon raja-arvo melkein kaikkialla. Kuitenkin moni tuttu funktio ei ole Lebesgue-integroituva.

Lisätiedot

Moderni reaalianalyysi

Moderni reaalianalyysi JUHA KINNUNEN Moderni reaalianalyysi F ( ) := f (ξ)e i ξ dξ 2π Juha Kinnusen laatiman luentomateriaalin pohjalta toimittaneet Mikael Lindström, Olli Hyvärinen ja Tuomas Pöyhtäri Sisältö LEBESGUEN ULKOMITTA

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

2.6 Funktioiden kuvaajat ja tasa-arvojoukot

2.6 Funktioiden kuvaajat ja tasa-arvojoukot 2.6 Funktioiden kuvaajat ja tasa-arvojoukot Olkoon I R väli. Yhden muuttujan funktion g : I R kuvaaja eli graafi on avaruuden R 2 osajoukko {(x, y) R 2 : x I, y = g(x)}. 1 0 1 2 3 1 0.5 0 0.5 1 Kuva 2.1:

Lisätiedot

Määritelmä 2.5. Lause 2.6.

Määritelmä 2.5. Lause 2.6. Määritelmä 2.5. Olkoon X joukko ja F joukko funktioita f : X R. Joukkoa F sanotaan pisteittäin rajoitetuksi, jos jokaiselle x X on olemassa sellainen C x R, että f x C x jokaiselle f F. Joukkoa F sanotaan

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

U missä U A := {U R n : U avoin ja U A}; intuitiivisesti suurin avoin joukko, joka sisältyy A:han. Määritellään A:n sulkeuma A := F F A

U missä U A := {U R n : U avoin ja U A}; intuitiivisesti suurin avoin joukko, joka sisältyy A:han. Määritellään A:n sulkeuma A := F F A Mitta a integraali Kesä 2 4. tehtävät Malliratkaisut (LS). Olkoon a i R i =, 2,... ono. Sanotaan, että i a i = os kaikille M R on olemassa i, olle kaikille i i pätee a i M. Sanotaan, että i a i = os i

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2. 13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π

e int) dt = 1 ( 2π 1 ) (0 ein0 ein2π Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet

Lisätiedot

L p -keskiarvoalueista

L p -keskiarvoalueista L p -keskiarvoalueista Jenni Alamehtä Matematiikan pro gradu Helsingin yliopisto Matematiikan ja tilastotieteen laitos Kesäkuu 4 HELSINGIN YLIOPISTO HELSINGFOS UNIVESITET UNIVESITY OF HELSINKI TiedekuntaOsasto

Lisätiedot

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista. JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva

Lisätiedot

1. Integrointi n-ulotteisessa avaruudessa

1. Integrointi n-ulotteisessa avaruudessa 1 Laaja matematiikka 5 Kevät 2010 1. Integrointi n-ulotteisessa avaruudessa Taso-integraali 2 Yleistetään määrätyn integraalin käsite ensin tasoon, sitten 3 n kolmiulotteiseen avaruuteen ja lopuksi yleiseen

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Täydennetään ja kerrataan Fitzpatrickin lukujen 18 ja 19 esitystä.

Täydennetään ja kerrataan Fitzpatrickin lukujen 18 ja 19 esitystä. 1 Laaja matematiikka 5 Kevät 009 Integrointi n-ulotteisessa avaruudessa Täydennetään ja kerrataan Fitzpatrickin lukujen 18 ja 19 esitystä. Tasointegraali Tasointegraali f voidaan laskea kaksinkertaisena

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla

KOMPLEKSIANALYYSI I KURSSI SYKSY exp z., k = 1, 2,... Eksponenttifunktion z exp(z) Laurent-sarjan avulla KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 11. Integrointi erillisen erikoispisteen ympäri Olkoot f analyyttinen punkteeratussa kiekossa D(z 0.r\{z 0 }. Funktiolla f on erikoispiste z 0.

Lisätiedot

Yleistettyjen jonojen käyttö topologiassa

Yleistettyjen jonojen käyttö topologiassa Yleistettyjen jonojen käyttö topologiassa Antti Karvinen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kesä 2016 Tiivistelmä: Antti Karvinen, Yleistettyjen jonojen

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. 5. Olkoon f : [0, 1] R kasvava. Osoita, että joukko. {x [0, 1] f ei ole jatkuva pisteessä x} on numeroituva. [Vihje: Lause 1.2.

JYVÄSKYLÄN YLIOPISTO. 5. Olkoon f : [0, 1] R kasvava. Osoita, että joukko. {x [0, 1] f ei ole jatkuva pisteessä x} on numeroituva. [Vihje: Lause 1.2. Harjoitukset 1 16.9.25 1. Merkitään Z + = {x Z x > }. Osoita, että f : Z + Z + Z +, f(x, y) = 2 x 1 (2y 1), on bijektio. Piirrä kuva. Perinteisempi kuvaus Z + Z + Z + on (x, y) (x + y 1)(x + y)/2 (x 1).

Lisätiedot

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista 6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida

Lisätiedot

11. Poissonin yhtälö Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä

11. Poissonin yhtälö Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä . Poissonin yhtälö.. Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä u = f kutsutaan Poissonin yhtälöksi ja siihen liittyvvää reuna-arvotehtävää { u = f :ssa, ja

Lisätiedot

Tehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i

Tehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 8, MALLIRATKAISUT Tehtävä. Oletetaan että uv on neliö ja (u, v) =. Osoita, että kumpikin luvuista u ja v on neliö. Ratkaisu. Olkoon p i alkuluku, joka jakaa luvun

Lisätiedot

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,

Lisätiedot

MS-C1540 Euklidiset avaruudet

MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet III-periodi, kevät 2016 Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu 1 / 30 Euklidiset

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut 0. Kertausta Luvut, lukujoukot (tavalliset) N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut Rationaaliluvut n/m, missä n,m Z Reaaliluvut R muodostavat jatkumon fysiikan lukujoukko Kompleksiluvut C:z

Lisätiedot

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen

Lisätiedot

Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011

Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011 Neljännen viikon luennot Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuun 2.1. Esko Turunen esko.turunen@tut.fi Funktion y = f (x) on intuitiivisesti

Lisätiedot

The Metropolis-Hastings Algorithm

The Metropolis-Hastings Algorithm The Metropolis-Hastings Algorithm Chapters 6.1 6.3 from Monte Carlo Statistical Methods by Christian P. Robert and George Casella 08.03.2004 Harri Lähdesmäki The Metropolis-Hastings Algorithm p. 1/21 Taustaa

Lisätiedot

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu

2. Fourier-sarjoista. Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu 2. Fourier-sarjoista Fourier-analyysi: Aaltoliikkeen ja lämmöjohtumisen matemaattinen tarkastelu Matemaattisen analyysin täkein työväline "Jokainen funktio" voidaan esittää harmonisten värähtelyjen, so.

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Supremum ja inmum Tarkastellaan aluksi avointa väliä, Tämä on joukko, johon kuuluvat kaikki reaaliluvut miinus yhdestä yhteen Kuitenkaan päätepisteet eli luvut ja

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot