Viikon aiheet. Funktion lineaarinen approksimointi
|
|
- Petri Lehtonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen derivaatta Newton-Raphson metodi funktion nollakohdan likiarvon laskemiseksi f(x) CDH: luvut (ääriarvot+newton), 8.. (approksimointi), 7-7. (vektorit) Prujut06: luvut.6 ja -. Prujut008: sivut 7-78, vektorit s. -8 Funktion ääriarvot Funktion ääriarvot voivat sijaita Derivaatan nollakohdissa Määrittelyalueen reunoissa g(x)/h(x) tapauksissa h(x):n nollakohdissa Funktion lineaarinen approksimointi Derivaatan nollakohdassa f (x 0 ) = 0 funktiolla on maksimi, jos f (x 0 ) < 0 on minimi, jos f (x 0 ) > 0 Derivaatan määritelmästä f (x) = lim x 0 f (x + x) f (x) x Jos toinen derivaatta häviää, täytyy tarkastella korkeampia derivaattoja. Mikäli alimman nollasta poikkeavan derivaatan f (n) (x 0 ) kertaluku n on parillinen, homma menee kuin toisen derivaatan tapauksessa. Kun n on pariton, pisteessä ei ole ääriarvoa. voidaan ratkaista f (x + x) lim f (x + x) = lim f (x) + f (x) x x 0 x 0 Kun x ei ole infinitesimaalinen, mutta pieni on voimassa Ääriarvo on globaali, jos se on funktion suurin/pienin arvo. Muuten se on lokaali (paikallinen) ääriarvo. f (x + x) f (x) + f (x) x Approksimaatio on sitä parempi, mitä pienempi x on.
2 Väliarvolause Funktion lineaarinen approksimointi f Funktion f (x) arvo pisteen a ympäristössä voidaan siis approksimatiivisesti laskea f (x) f (a) + f (a)(x a), kun x a on pieni x w x + x Approksimaatio on lineaarinen, ts. lausekkeessa esiintyy vain x, eikä sen korkeampia potensseja. Esim: Origon ympäristössä Väliarvolause kertoo, että derivoituvalle funktiolle f (x) pisteiden x ja x + x välissä löytyy piste w, jossa laskettua derivaatan arvoa käyttämällä edellä mainittu approksimaatio on tarkka, ts. f (x + x) = f (x) + f (w) x sin x sin(0) + cos(0)(x 0) = x mikä pätee sitä paremmin mitä lähempänä x on nollaa. (Piirrä!) Implisiittinen derivaatta 5 Newton-Raphson menetelmä 6 Joskus x:n ja y(x):n välinen riippuvuus on implisiittisessä muodossa F ( x, y(x) ) = C, missä C on vakio. Näissä tapauksissa derivaatta dy/dx voidaan saada derivoimalla yo. implisiittistä funktiota. Esim. F(x, y) = x + y = df dx = d ( x + y(x) ) dx = x + y(x) dy dx = 0 dy dx = x y x = 0., x =.705, x =.66, x =., x 5 =.0 7 8
3 Newton-Raphson menetelmä Newton-Raphson menetelmä iteratiivinen funktion nollakohdan ratkaisemisalgoritmi. Uusi (parempi) arvio nollakohdalle saadaan edellisen pisteen avulla: x n+ = x n f (x n) f (x n ) Vektori on olio jolla on suuruus ja suunta. Vektorien merkintätapoja on esim. a, a, a Luvuilla on vain suuruus. Lukuja kutsutaan myös skalaariksi. Vektorien summa eli resultantti on myös vektori: C = A + B Vektorin ja sen vastavektorin summa on nolla (=nollan pituinen vektori) A + ( A ) = A A = 0 = Kolmiulotteisen avaruuden (R ) vektorit voidaan esittää komponenttimuodossa kolmen luvun avulla A = (A, A, A ). Vektorilaskutoimituksille pätee Vaihdannaisuus: A + B = B + A Vektorien summa määritellään komponenttimuodossa A + B = (A, A, A ) + (B, B, B ) = (A + B, A + B, A + B ) Liitännäisyys: ( A + B ) + C = A + ( B + C ) Skalaarilla kerrottaessa osittelulaki: Skalaarilla n kertominen muuttaa vain vektorin pituutta n ( A + B ) = n A + n B n A = n(a, A, A ) = (na, na, na )
4 Edellisten perusteella voidaan vektori esittää A = (A, A, A ) = A (, 0, 0) + A (0,, 0) + A (0, 0, ) Vektori A voidaan esittää kolmen kantavektorin summana. Tyypillisesti valitaan kantavektorit x, y ja z-akselin suuntaisiksi ja niiden pituudeksi. Näitä merkitään (, 0, 0) = ê = î x-suunta (0,, 0) = ê = ĵ y-suunta (0, 0, ) = ê = ˆk z-suunta Tätä kutsutaan monesti karteesisen koordinaatiston standardikannaksi. Hattumerkintä tarkoittaa yksikkövektoria, eli vektoria, jonka pituus on. Vektorien derivointi Kannan {ê i } virittävät kantavektorit. Eli muut vektorit voidaan aina esittää näiden kantavektoreiden lineaarikombinaationa: A = A ê + A ê + A ê = A i ê i i Standardikannassa esitetyn vektorin pituus saadaan Pythagoraan lauseen avulla A = A = A + A + A Vektorista A voidaan tehdä yksikkövektori jakamalla vektori pituudellaan  = A A Kanta Koska derivointi on lineaarinen operaatio on voimassa: d A dt = d ( ) da A ê + A ê + A ê = dt dt ê + da dt ê + da dt ê = d dt ( ) (da A, A, A = dt, da dt, da ) dt Vektoreita derivoitaessa siis derivoidaan kutakin komponenttia erikseen. A = î + ĵ 5 6
5 Kanta Kannan muutos Vektorin esitystavan muutos kannasta toiseen onnistuu lausumalla kantavektorit {â, â } kantavektoreiden {î, ĵ} avulla: [ â = î + ĵ â = î + ĵ [ î = (â â )/5 ĵ = (â â )/5 Tällöin A = î + ĵ = (â â )/5 + (â â )/5 = â + â A = â + â Erityisen näppärästi tämä voidaan laskea matriisien avulla (MAPU II). 7 8 Kaksi vektoria A = (A, A, A ) ja B = (B, B, B ) ovat yhtä suuret, jos vektorien komponentit ovat yhtä suuret: A = B A = B A = B A = B Huom! Tällöin molemmat vektorit pitää olla esitettynä samassa kannassa! 9
Mapu 1. Laskuharjoitus 3, Tehtävä 1
Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0
LisätiedotVektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa
Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden
LisätiedotA B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1
Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!
LisätiedotDerivaatta: funktion approksimaatio lineaarikuvauksella.
Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen
Lisätiedotinfoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1
infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.
LisätiedotMatematiikkaa kauppatieteilijöille
Matematiikkaa kauppatieteilijöille Harjoitus 7, syksy 2016 1. Funktio f(x) = x 2x 2 + 4 on jatkuva ja derivoituva kaikilla x R. Nyt funktio f(x) on aidosti alaspäin kupera kun f (x) > 0 ja aidosti ylöspäin
LisätiedotAnalyysi I (sivuaineopiskelijoille)
Analyysi I (sivuaineopiskelijoille) Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2017 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 19 1 of 18 Kahden muuttujan funktioista
Lisätiedot763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 2012
763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 01 1 Sisältö: 1 Differentiaalilaskentaa Integraalilaskentaa 3 Vektorit 4 Potenssisarjoja 5 Kompleksiluvut 6 Differentiaaliyhtälöistä
LisätiedotMatriisit ja optimointi kauppatieteilijöille
Matriisit ja optimointi kauppatieteilijöille Harjoitus 4, kevät 2019 1. a) f(x) = x 3 6x 2 + 9x + 1, 3 x 3 Funktio f(x) on jatkuva ja derivoituva. Funktio f(x) saavuttaa suurimman ja pienimmän arvonsa
LisätiedotJohdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti
LisätiedotMatematiikka B1 - avoin yliopisto
28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan
Lisätiedot3.4 Käänteiskuvauslause ja implisiittifunktiolause
3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen
LisätiedotDifferentiaalilaskenta 1.
Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti
Lisätiedot1 Rajoittamaton optimointi
Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y
Lisätiedot1.7 Gradientti ja suunnatut derivaatat
1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset
LisätiedotMatematiikan perusteet taloustieteilij oille I
Matematiikan perusteet taloustieteilijöille I Harjoitukset syksy 2006 1. Laskeskele ja sieventele a) 3 27 b) 27 2 3 c) 27 1 3 d) x 2 4 (x 8 3 ) 3 y 8 e) (x 3) 2 f) (x 3)(x +3) g) 3 3 (2x i + 1) kun, x
Lisätiedotläheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?
BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo
LisätiedotTalousmatematiikan perusteet: Luento 9
Talousmatematiikan perusteet: Luento 9 Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo ja pituus Vektorien välinen kulma Motivointi Tähän asti olemme tarkastelleet yhden
LisätiedotRatkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1
1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin
LisätiedotOletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on
Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
Lisätiedot13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
LisätiedotBM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
LisätiedotH7 Malliratkaisut - Tehtävä 1
H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotLuento 9: Yhtälörajoitukset optimoinnissa
Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa
LisätiedotFunktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
LisätiedotMatematiikan peruskurssi (MATY020) Harjoitus 7 to
Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat
LisätiedotLineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.
LisätiedotNopeus, kiihtyvyys ja liikemäärä Vektorit
Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotAntti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
LisätiedotMatematiikka B1 - TUDI
Osittaisderivointi Osittaisderivaatan sovellukset Matematiikka B1 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Osittaisderivointi Osittaisderivaatan sovellukset Kurssin
LisätiedotPreliminäärikoe Pitkä Matematiikka 3.2.2009
Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotVektorialgebra 1/5 Sisältö ESITIEDOT: vektori
Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena
Lisätiedot1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti
LisätiedotVektorit, suorat ja tasot
, suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
Lisätiedot9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa
9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.
LisätiedotTalousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo
Talousmatematiikan perusteet: Luento 8 Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Motivointi Esim. Herkkumatikka maksaa 50 /kg. Paljonko
LisätiedotMATP153 Approbatur 1B Harjoitus 5 Maanantai
MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).
LisätiedotTalousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta
Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion
LisätiedotKuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
LisätiedotMAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!
A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
LisätiedotPisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta
Laskukarnevaali Matematiikka B. fx, y, z) = x sin z + x y, etsi f,, ) Osittaisderivaatat ovat f f x = sin z + xy, y = x, f z = x cos z Pisteessä,,) osittaisderivaatoilla on arvot 4, ja. Täten f,, ) = 4i
LisätiedotTalousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta
Talousmatematiikan perusteet: Luento 6 Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta Motivointi Funktion arvojen lisäksi on usein kiinnostavaa tietää jotakin funktion
LisätiedotVASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN
Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa
Lisätiedotx = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi
Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2
LisätiedotReaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011
Kuudennen eli viimeisen viikon luennot Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuihin 2.3. ja 2.4. Esko Turunen esko.turunen@tut.fi Jatkuvuuden
LisätiedotTalousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita
LisätiedotOletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
Lisätiedot8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa
8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot
LisätiedotLuento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /
MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
LisätiedotVapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
Lisätiedot1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen
Lisätiedotsin(x2 + y 2 ) x 2 + y 2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 2017 Harjoitus 2 Ratkaisuedotukset 2.1. Tutki funktion g : R 2 R, g(0, 0) = 0, jatkuvuutta. g(x, y) = sin(x2 + y 2 ) x 2 + y 2, kun (x,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).
LisätiedotLuento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
Lisätiedot2 Osittaisderivaattojen sovelluksia
2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä
LisätiedotMaksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta
Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti
LisätiedotFunktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen
4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f
LisätiedotMS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
. Lasketaan valmiiksi derivaattoja ja niiden arvoja pisteessä x = 2: f(x) = x + 3x 3 + x 2 + 2x + 8, f(2) = 56, f (x) = x 3 + 9x 2 + 2x + 2, f (2) = 7, f (x) = 2x 2 + 8x + 2, f (2) = 86, f (3) (x) = 2x
LisätiedotHavainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause
LisätiedotA = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.
MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset
Lisätiedotr > y x z x = z y + y x z y + y x = r y x + y x = r
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.
LisätiedotMatematiikan tukikurssi. Toinen välikoe
Matematiikan tukikurssi Toinen välikoe 1 Sisältö 1 Useamman muuttujan funktion raja-arvo 1 2 Useamman muuttujan funktion jatkuvuus 7 3 Osittaisderivaatat ja gradientti 8 4 Vektoriarvoiset funktiot 9 5
Lisätiedot12. Hessen matriisi. Ääriarvoteoriaa
179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
Lisätiedot