Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Koko: px
Aloita esitys sivulta:

Download "Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4"

Transkriptio

1 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A lasketaan kaikki tehtävää. Taulukkokirjaa saa käyttää koko kokeessa. A. a) Sievennä. b) Ratkaise yhtälö ( x)( x ). c) Laske dx. x T06

2 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / A. a) Määritä viereisen polynomifunktion kuvaajan perusteella b) Määritä funktion c) Ratkaise yhtälö ) funktion derivaatan nollakohdat ) graafisesti derivaatan arvo kohdassa x. f ( x) x x. x x määrittelyjoukko. T06

3 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / A. a) Kartan mittakaava on : 000. Tontin pinta-ala on 000 m. Mikä on tontin pinta-ala tällä kartalla? x x b) Määritä lim. x x c) Asun hinta nousi ensin 0 % ja laski sitten 0 %. Kuinka monta prosenttia asun hinta muuttui yhteensä? T06

4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / A. a) Määritä ympyrän Y: x y x y 6 8 keskipiste ja säde. (p) b) Osoita, että piste A (, ) on ympyrällä Y. (p) c) Määritä ympyrälle Y pisteeseen A piirretyn tangentin yhtälö ja piirrä tangentin kuvaaja. (p) T06

5 Preliminäärikoe Tehtävät B-osio Pitkä matematiikka kevät 06 Sivu / B-osio. Laske tehtävistä B5-B9 enintään kolme. B5. Kolmion ABC kärkipisteet ovat A (,, ), B (0,,) ja C (,, ). a) Laske sivun AB pituus. (p) b) Määritä vektorien AC ja BC välinen kulma asteen kymmenesosan tarkkuudella. (p) c) Onko kolmio suorakulmainen? Perustele! (p) B6. Normaalista 5 kortin pakasta on poimittu seuraavat kortit pois: Hertta 0, hertta 9 sekä pata 9 ja pata 8. Nämä neljä korttia sekoitetaan hyvin ja asetetaan satunnaiseen järjestykseen kuvapuoli alaspäin pöydälle. Näistä korteista valitaan umpimähkään kaksi. Satunnaismuuttuja X ilmoittaa valittujen korttien arvon summan. a) Esitä pylväsdiagrammina tämän satunnaismuuttujan jakauma. b) Määritä satunnaismuuttujan X keskihajonta. B7. Olkoon funktio f ( x) x 8x 6x x 60. a) Määritä funktion ääriarvokohdat. Esitä perusteluksi kulkukaavio. (p) b) Määritä perustellen kumpi funktion arvoista 9 9 f ( 0 ) vai f ( 0 ) on suurempi? (p) c) Piirrä funktion kuvaajaa valaiseva kuvio. (+p) B8. Määritä käyrälle f ( x) ln x kohtaan x piirretyn tangentin T yhtälö suorituksen välivaiheet esittäen. Osoita, että tangentin T kuvaaja on aina käyrän kuvaajan yläpuolella sivuamispistettä lukuun ottamatta. B9. a) Millä muuttujan x arvoilla lukujono ln( x),ln(),ln( x ),... on aritmeettinen? Esitä suoritukseesi välivaiheita. b) Millä muuttujan x arvoilla lukujono cos x,, sin x,... on geometrinen? Esitä suoritukseesi välivaiheita. T05

6 Preliminäärikoe Tehtävät B-osio Pitkä matematiikka kevät 06 Sivu / B-osio. Laske tehtävistä B0-B enintään kolme. B0. Suorakulmion kaksi kärkeä ovat suoralla x pisteissä A (, a) ja B (, a), missä a 0. Toiset kaksi muuta kärkeä ovat pisteissä C ja D käyrällä x y y-akselin oikealla puolella. a) Piirrä huolellinen kuvio tilanteesta. (p) b) Suorakulmio ABCD pyörähtää suoran x ympäri. Muodosta määrätyn integraalin avulla lauseke, jonka avulla syntyvän pyörähdyskappaleen tilavuus V voidaan laskea. (p) c) Määritä luku a siten, että tilavuus V on suurin mahdollinen. Perustele tuloksesi esim. derivaatan avulla. (p) B. Lentokone on etäisyydellä h maapallon pinnan yläpuolella. Osoita, että siihen maasta näkyvän osan pinta-ala saadaan lausekkeesta rh A, missä r on maapallon säde. h r Laske tehtävässä B joko tehtävä I tai II (EI MOLEMPIA!) B/I. Osoita, että luku n n n 9n positiivisilla kokonaisluvuilla n. on jaollinen luvulla kahdeksan kaikilla B/II. Käyrä y x rajoittaa x-akselin kanssa alueen A välillä [,]. a) Laske alueen A pinta-alan tarkka arvo välivaiheet esittäen. (p) b) Laske alueen pinta-alan arvio käyttäen Simpsonin menetelmää ja neljää osaväliä. (p) c) Mikä on arvion prosentuaalinen virhe? (p) x B. a) Osoita, että funktiolla f ( x), x on käänteisfunktio f. x b) Määritä käänteisfunktion derivaatta kohdassa x. c) Osoita, että funktion f kuvaaja ja käänteisfunktion kuvaaja eivät kohtaa toisiaan. f T05

7 Preliminäärikoe RATKAISUT PItkä matematiikka kevät 06 Sivu / 5 A. a) Sievennä. b) Ratkaise yhtälö ( x)( x ). c) Laske dx. x a) Ratkaisu: b) Ratkaisu: ( x)( x ) x x x x x 6 0 x ( ) ( ) ( 6) 5 5 (p) (+p) (p) 5 5 x tai x (+p) c) Ratkaisu: dx x dx / x x (p) / x (+p) Vastaus: a) 7 9 b) x tai x c) V06

8 Preliminäärikoe RATKAISUT PItkä matematiikka kevät 06 Sivu / 5 A. a) Määritä viereisen polynomifunktion kuvaajan perusteella b) Määritä funktion c) Ratkaise yhtälö ) funktion derivaatan nollakohdat ) graafisesti derivaatan arvo kohdassa x. f ( x) x x. x x määrittelyjoukko. Ratkaisu: a) ) Derivaatan nollakohdat ovat ne kohdat, missä tangentti on vaakasuora eli tangentin kulmakerroin on nolla. Nollakohdat ovat x tai x. (p) ) Piirretään kohtaan x tangentti ja luetaan kuvasta tangentin kulmakerroin. Tangentin kulmakerroin on derivaatan arvo annetussa kohdassa. Siis 8 f '( ) (+p) V06

9 Preliminäärikoe RATKAISUT PItkä matematiikka kevät 06 Sivu / 5 b) Funktio x x 0 f ( x) x x on määritelty, kun juurrettava on positiivinen tai nolla. Siis. (p) Nollakohdat: xx 0 x( x) 0 x 0 tai x 0 x0 tai x Kyseessä on alaspäin aukeava paraabeli, joten f ( x) x x x x 0 määrittelyjoukko on siis 0 x, kun 0x. Funktion. (+p) c) x x x x x x x Vastaus: a) ) x tai x ) f '( ) b) 0x c) x (p) (+p) A. a) Kartan mittakaava on : 000. Tontin pinta-ala on 000 m. Mikä on tontin pinta-ala tällä kartalla? x x b) Määritä lim. x x c) Asun hinta nousi ensin 0 % ja laski sitten 0 %. Kuinka monta prosenttia asun hinta muuttui yhteensä? Ratkaisu: a) cm kartalla vastaa 0 m todellisuudessa. Täten cm vastaa (0 m) 00 m. Tästä kertomalla luvulla 5 saadaan, että 5cm vastaa 000 m. (p) (+p) b) x x x( x ) x( x)( x) lim lim lim x x x x x ( x) (p) lim( x( x)) ( ) (+p) x V06

10 Preliminäärikoe RATKAISUT PItkä matematiikka kevät 06 Sivu / 5 c) Olkoon asun alkuperäinen hinta a. 0 0 Tällöin uusi hinta on ( )( ) 0, a a (p) Joten hinta on alentunut %. (+p) Vastaus: a) 5cm b) c) Alentunut % A. a) Määritä ympyrän Y: x y x y 6 8 keskipiste ja säde. (p) b) Osoita, että piste A (, ) on ympyrällä Y. (p) c) Määritä ympyrälle Y pisteeseen A piirretyn tangentin yhtälö ja piirrä tangentin kuvaaja. (p) Ratkaisu: a) x x y y ( x ) ( y ). (p) Täten ympyrän keskipiste on K (, ) ja säde r. (+p) b) Saadaan ( ) ( ). ( tuli sama tulos kuin rivillä ) (p) c) Pisteiden KA (ympyrän säde) välisen janan kulmakerroin y ( ) kr x Koska ympyrän tangentti on kohtisuorassa sädettä vastaan, niin k tang. k Suoran yhtälö on muotoa y y0 k( x x0) eli y ( x ), josta y x 6. (p) Kuvaaja (p) r (p) Vastaus: a) Ympyrän keskipiste on A (, ) ja säde r c) y x 6 V06

11 Preliminäärikoe RATKAISUT PItkä matematiikka kevät 06 Sivu 5 / 5 B-osio. Laske tehtävistä B5-B9 enintään kolme. B5. Kolmion ABC kärkipisteet ovat A (,, ), B (0,,) ja C (,, ). a) Laske sivun AB pituuden tarkka arvo (p) b) Määritä vektorien AC ja BC välinen kulma asteen kymmenesosan tarkkuudella. (p) c) Onko kolmio suorakulmainen? Perustele! (p) Ratkaisu: a) AB (0 ) ( ) ( ). (p) b) AC ( ) i ( ) j ( ) k i j k, BC ( 0) i ( ( )) j ( ) k i 5 j k, AC ( ) 6 BC ( ) 5 ( ) 5 (+p) AC BC ( ) ( ) 5 ( ) (+p) AC BC AC BC cos AC, BC, joten AC BC 6 5, cos ( ) 7, ,0 6 5 (+p) c) Tutkitaan, toteutuuko Pythagoraan lause. Pisin sivu on BC, joten sen pitäisi olla hypotenuusa. AC AB BC Epätosi, joten Pythagoraan lause ei toteudu. Täten kolmio ABC ei voi olla suorakulmainen. (On myös muita tapoja ratkaista tehtävä) (p) (p) Vastaus: a) b) 7,0 c) ei ole B6. Normaalista 5 kortin pakasta on poimittu seuraavat kortit pois: Hertta 0, hertta 9 sekä pata 9 ja pata 8. Nämä neljä korttia sekoitetaan hyvin ja asetetaan satunnaiseen järjestykseen kuvapuoli alaspäin pöydälle. Näistä korteista valitaan umpimähkään kaksi. Satunnaismuuttuja X ilmoittaa valittujen korttien arvon summan. a) Esitä pylväsdiagrammina tämän satunnaismuuttujan jakauma. b) Määritä satunnaismuuttujan X keskihajonta. Ratkaisu: a) Mahdolliset summat ovat 9, 8 ja 7. V06

12 Preliminäärikoe RATKAISUT PItkä matematiikka kevät 06 Sivu 6 / 5 Saadaan jakauma Summa Todennäköisyys 9 P( 9+0 tai 0+9 )= 8 P( 0+8 tai 8+0 tai 9+9 )= 7 P( 9+8 tai 8+9 )= Yhteensä eli OK Oikea idea (p) Taulukko oikein (p) Diagrammi (p) b) Odotusarvo (Voidaan päätellä myös symmetrian avulla) Keskihajonta [(9 8) (8 8) (7 8) ] 0,8 Idea 6 Vastaus (kelpaa myös (p) (+p) ) (+p) Vastaus: 6 0,8 B7. Olkoon funktio f ( x) x 8x 6x x 60. a) Määritä funktion ääriarvokohdat. Esitä perusteluksi kulkukaavio. (p) b) Määritä perustellen kumpi funktion arvoista 9 9 f ( 0 ) vai f ( 0 ) on suurempi? (p) c) Piirrä funktion kuvaajaa valaiseva kuvio. (p) Ratkaisu: a) f x x x x x ( ) f ( x) x x x. (p) V06

13 Preliminäärikoe RATKAISUT PItkä matematiikka kevät 06 Sivu 7 / 5 x x x 0 x ( x ) ( x ) 0 x ( x ) 0 x 0 tai x 0 x x 0 tai x tai x x tai x (+p) x, ylöspäin aukeava paraabeli x, nouseva suora f ( x) f( x ) min max min Minimikohdat ovat x ja x, maksimikohta on x. (+p) b) Annetut muuttujan arvot ovat lähellä lukua, mutta sen oikealla puolella. Tällä välillä, funktio f ( x) x 8x 6x x 60 on aidosti vähenevä, (p) joten f ( 0 ) on suurempi kuin f ( 0 ), sillä 0 0. (+p) c) (p) Vastaus: a) Minimikohdat ovat x ja x =, maksimikohta on x = b) f 9 ( 0 ) B8. Määritä käyrälle f ( x) ln x kohtaan x piirretyn tangentin T yhtälö suorituksen välivaiheet esittäen. Osoita, että tangentin T kuvaaja on aina käyrän kuvaajan yläpuolella sivuamispistettä lukuun ottamatta. Ratkaisu: ) Määrittelyjoukko x 0 x. (p) f ( x) ln x ln( x ) ln( x ), x V06

14 Preliminäärikoe RATKAISUT PItkä matematiikka kevät 06 Sivu 8 / 5 Derivaatta f ( x) k f () Tangentin T yhtälö on muotoa tan g x x (+p) 5 y ( ln( )) ( x ) y x (+p) ) Väite: x 5 ln x, x Tutkitaan erotusfunktiota E( x) x ln x, x (p) x ln( x ), x x x Derivaatta E( x), x x ( x ) ( x ) ( x ) Derivaatan nollakohta x (on määrittelyjoukossa). (+p) E(,5) ( negat.arvo) ja E() ( posit.arvo) Saadaan oheinen kulkukaavio: E ( x) Ex ( ) Abs.min Täten E() 0 on erotusfunktion pienin arvo. 5 Siten Ex ( ) 0 eli x ln x, x. Yhtä suuruus tapahtuu vain kohdassa x. Vastaus: Tangentin yhtälö 5 y x V06

15 Preliminäärikoe RATKAISUT PItkä matematiikka kevät 06 Sivu 9 / 5 B9. a) Millä muuttujan x arvoilla lukujono ln( x),ln(),ln( x ),... on aritmeettinen? Esitä suoritukseesi välivaiheita. b) Millä muuttujan x arvoilla lukujono cos x,, sin x,... on geometrinen? Esitä suoritukseesi välivaiheita. Ratkaisu: a) Lukujono ln( x),ln(),ln( x),... on aritmeettinen, joten peräkkäisten jäsenten erotus (ns. differenssi) on vakio. ln ln x ln( x) ln, x 0 (p) x ln ln x ln ln x x x x x x (+p) Koska x 0, niin vain x käy. (+p) b) Lukujono cos x,, sin x,... on geometrinen, joten peräkkäisten jäsenten suhde on vakio. sin x cos x sin xcos x (p) sin x ( p) x n : x n, n (+p) (Kaikki nämä kulmat kelpaavat, sillä tällöin sin x 0 ja cos x 0 eli nimittäjä ei tule nollaksi). Vastaus: a) x b) x n, n V06

16 Preliminäärikoe RATKAISUT PItkä matematiikka kevät 06 Sivu 0 / 5 B-osio. Laske tehtävistä B0-B enintään kolme. B0. Suorakulmion kaksi kärkeä ovat suoralla x pisteissä A (, a) ja B (, a), missä a 0. Toiset kaksi muuta kärkeä ovat pisteissä C ja D käyrällä x y y-akselin oikealla puolella. a) Piirrä huolellinen kuvio tilanteesta. (p) b) Suorakulmio ABCD pyörähtää suoran x ympäri. Muodosta määrätyn integraalin avulla lauseke, jonka avulla syntyvän pyörähdyskappaleen tilavuus V voidaan laskea. (p) c) Määritä luku a siten, että tilavuus V on suurin mahdollinen. Perustele tuloksesi esimerkiksi derivaatan avulla. (p) Ratkaisu: a) b) Piste C a a D a a (, ) ja (, ). Täten pyörähdyssäde r DA a a ( ) 5 (p) Tilavuus a a 0 (p) (5 a ) dy (5 a ) dy symmetrian nojalla. (+p) a a ( Symmetriaa ei vaadita) 5 c) V (5 a ) dy (5 a ) / y (5a 0 a a ) (p) 0 0 a Funktion määrittelyjoukko on avoin väli 0a, sillä annettu paraabeli leikkaa y-akselin kohdassa y. V( a) (5 0a 5 a ),0 a Merkitään b a, joten lauseke 0 (5 6 b b ) 0 ( b )( b 5) Täten V( a) 0 ( a )( a 5),0 a V a a a a a ( ) 0 tai 5 tai 5 V06

17 Preliminäärikoe RATKAISUT PItkä matematiikka kevät 06 Sivu / 5 Näistä vain a on määrittelyjoukossa. (+p) V(0,5),9...eli posit. arvo ja V(,5) 07,99... eli negat.arvo niin saadaan oheinen kulkukaavio. 0 V (a) + -- V(a) Abs.max Siis a antaa suurimman tilavuuden. (+p) Vastaus: b) V (5a 0a 5 a ),0 a c) a (laskimen käyttö sallitaan koko c) kohdassa) B. Lentokone on etäisyydellä h maapallon pinnan yläpuolella. Osoita, että siihen maasta näkyvän osan pinta-ala saadaan lausekkeesta rh A, missä r on maapallon säde. h r Ratkaisu: Huolellinen kuvio ja selkeät merkinnät. (p+p) Olkoon x pallokalotin korkeus ED x. Kolmiot OAD ja OBA ovat yhdenmuotoiset (kk), sillä DOA AOB on yhteinen ja D A 90. (perustelu oltava ) (+p) Saadaan verranto OA OD r r x, josta OB OA h r r (+p) hr Edelleen r hr r xh xr, josta x h r (+p) hr r h Pallokalotin pinta-ala A rh rx r h r h r (+p) V06

18 Preliminäärikoe RATKAISUT PItkä matematiikka kevät 06 Sivu / 5 Laske tehtävässä B joko tehtävä I tai II (EI MOLEMPIA!) B/I. Osoita, että luku n n n 9n positiivisilla kokonaisluvuilla n. Ratkaisu: Oletus: Olkoon n on positiivinen kokonaisluku. Väite: Luku n n n 9n on jaollinen luvulla kahdeksan kaikilla on jaollinen luvulla 8. V06

19 Preliminäärikoe RATKAISUT PItkä matematiikka kevät 06 Sivu / 5 Todistus: Muokataan lukuan n n 9n. Nyt n n n 9n n n n n n n n n n n n n n n (p) Koska n, n, n ja n ovat peräkkäiset kokonaisluvut, niin jokin niistä on jaollinen luvulla. Koska n ja n ovat peräkkäiset kokonaisluvut, niin toinen niistä on jaollinen luvulla. Luku ( n)( n ) on triviaalisti kokonaisluku. (+p) (+p) Täten luku nn n n n n n Täten väite on todistettu. on jaollinen luvulla 8. (+p) B/II. Käyrä y x rajoittaa x-akselin kanssa alueen A välillä [,]. a) Laske alueen A pinta-alan tarkka arvo välivaiheet esittäen. (p) b) Laske alueen pinta-alan arvio käyttäen Simpsonin menetelmää ja neljää osaväliä. (p) c) Mikä on arvion prosentuaalinen virhe? (p) Ratkaisu: a) Koska x 0 aina välillä [,], niin käyrän kuvaaja on x-akselin yläpuolella, joten pinta-ala saadaan määrätystä integraalista. ( ) dx x x dx (p) / x,67999 t. (+p) Integraalifunktio oltava b) Osavälin pituus h. ( ja hyvä aloitus) (+p) Simpsonin arvion mukainen pinta-ala A [ f () f ( ) f ( ) f ( ) f ()]. (+p), l (+p) c) Suhteellinen virhe l t 00 % 0, % 0,0%. t (+p) V06

20 Preliminäärikoe RATKAISUT PItkä matematiikka kevät 06 Sivu / 5 Vastaus: a) b) Likiarvo l,68798 c) 0,0 % x B. a) Osoita, että funktiolla f ( x), x on käänteisfunktio f. x b) Määritä käänteisfunktion derivaatta kohdassa. c) Osoita, että funktion f kuvaaja ja käänteisfunktion kuvaajat eivät kohtaa toisiaan. f Ratkaisu: a) x f ( x), x x x(x ) (x ) x x 6x 6x x f '( x) (x ) (x ) (x ) Osamäärä on nolla, jos osoittaja on nolla. Siis D , ei nollakohtia. Kyseessä on ylöspäin aukeava paraabeli, joten 6x x 0. 6x x 0 kaikilla x. Ja koska (x ) 0 kaikilla x, niin f( x) 0 kaikilla x. Täten funktio f( x ) on aidosti kasvava ja käänteisfunktio on siten olemassa. (p) (+p) b) x x x x x 0 x(x ) 0 x x 0 tai x Koska x, niin vain juuri x 0 on mahdollinen. (+p) Täten ( f ) ( ). (+p) f (0) 60 0 (0 ) c) Jos funktio ja suora y x eivät leikkaa tai sivua toisiaan, niin funktion f kuvaaja ja käänteisfunktion f kuvaaja eivät kohtaa toisiaan. (p) V06

21 Preliminäärikoe RATKAISUT PItkä matematiikka kevät 06 Sivu 5 / 5 x x x x x 0. Diskriminantti D 0. Yhtälöllä ei ole ratkaisua, joten f( x ) ja suora y = x eivät leikkaa tai sivua toisiaan. Täten funktion f kuvaaja ja käänteisfunktion f kuvaaja eivät voi kohdata toisiaan. (+p) Vastaus: b) ( f ) ( ) V06

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0. Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka

PRELIMINÄÄRIKOE. Pitkä Matematiikka Ratkaisut MA Preliminääri kevät 5 PRELIMINÄÄRIKOE Pitkä Matematiikka..5. a) Ratkaise epäyhtälö >. b) Määritä kaikki luvut, jotka toteuttavat vaatimuksen: Luvun neliön ja vastaluvun summa on. c) Sievennä

Lisätiedot

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti! A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2

Lisätiedot

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a) Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa

Lisätiedot

5 Rationaalifunktion kulku

5 Rationaalifunktion kulku Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 5 Rationaalifunktion kulku. Funktion f määrittelyehto on. Muodostetaan symbolisen laskennan ohjelman avulla derivaattafunktio f ja

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: MAA Koe 8.1.014 Arto Hekkanen ja Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: 1. a) Laske polynomien x x

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(

Lisätiedot

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268. KERTAUSHARJOITUKSIA. Rationaalifunktio 66. a) b) + + + = + + = 9 9 5) ( ) ( ) 9 5 9 5 9 5 5 9 5 = = ( ) = 6 + 9 5 6 5 5 Vastaus: a) 67. a) b) a a) a 9 b) a+ a a = = a + a + a a + a a + a a ( a ) + = a

Lisätiedot

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö

Lisätiedot

2 Raja-arvo ja jatkuvuus

2 Raja-arvo ja jatkuvuus Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 8906 HYVÄN VASTAUKSEN PIIRTEITÄ Tutkintoaineen sensorikokous on hyväksynyt seuraavat hyvän vastauksen piirteet Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

11 MATEMAATTINEN ANALYYSI

11 MATEMAATTINEN ANALYYSI Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 MATEMAATTINEN ANALYYSI ALOITA PERUSTEISTA 444A. a) Funktion arvot ovat positiivisia silloin, kun kuvaaja on x-akselin yläpuolella.

Lisätiedot

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2. MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,.

derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,. Matematiikka, MAA9. a) Ratkaise yhtälö tan (YOS) Kulma on välillä [, 6]. Ratkaise asteen tarkkuudella seuraavat yhtälöt: b) sin c) cos (YOs). Kulmalle [9,6 ] on voimassa sin = 8 7. Määritä cos ja tan..

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ ESITYS pisteitykseksi

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ ESITYS pisteitykseksi MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 ESITYS pisteitykseksi Yleisohje tarkkuuksista: Ellei tehtävässä vaadittu tiettyä tarkkuutta, kelpaa numeerisissa vastauksissa ohjeen vastauksen lisäksi yksi merkitsevä

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

4. Kertausosa. 1. a) 12

4. Kertausosa. 1. a) 12 . Kertausosa. a kun, : b kun, tai 8 . Paraabeli y a bc c aukeaa ylöspäin, jos a alaspäin, jos a a Funktion g kuvaaja on paraabeli, jolle a. Se aukeaa ylöspäin. b Funktion g kuvaaja on paraabeli, jolle

Lisätiedot

Ratkaisuja, Tehtävät

Ratkaisuja, Tehtävät ja, Tehtävät 988-97 988 a) Osoita, että lausekkeiden x 2 + + x 4 + 2x 2 ja x 2 + - x 4 + 2x 2 arvot ovat toistensa käänteislukuja kaikilla x:n arvoilla. b) Auton jarrutusmatka on verrannollinen nopeuden

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a) K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty Pyramidi Integraalilaskenta harjoituskokeiden ratkaisut sivu 98 Päivitetty.5. Pyramidi Harjoituskokeet 6.5.7 Ensimmäinen julkaistu versio..7.7 Korjattu ulkoasua ja painovirheitä..8.7 Täydennetty ratkaisuja

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 K. a) b) c) d) 6 6 a a a, a > 0 6 6 a a a a, a > 0 5 5 55 5 5 5 5 5 5 5 5 5 5 a a a a a ( a ) a a a, a > 0 K.

Lisätiedot

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K. a) Polynomi P() = 3 + 8 on jaollinen polynomilla Q() = 3, jos = 3 on polynomin P nollakohta, eli P(3) = 0. P(3) = 3 3 3 + 8 3 = 54 08 + 54 = 0. Polynomi P on jaollinen polynomilla Q. b) Jaetaan

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1958 1967 tehtäviin 1958 Pyörähtäessään korkeusjanansa ympäri tasakylkinen kolmio muodostaa kartion, jonka tilavuus on A, ja pyörähtäessään kylkensä ympäri kappaleen, jonka tilavuus on

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! MAA7 7.1 Koe Jussi Tyni 9.1.01 1. Laske raja-arvot: a) 5 lim 5 10 b) lim 9 71. a) Määritä erotusosamäärän avulla funktion f (). f ( ) derivaatta 1 b) Millä välillä funktio f ( ) 9 on kasvava? Perustele

Lisätiedot

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa

Lisätiedot

2. a- ja b-kohdat selviä, kunhan kutakuinkin tarkka, niin a-kohta 1 p b-kohta 1 p

2. a- ja b-kohdat selviä, kunhan kutakuinkin tarkka, niin a-kohta 1 p b-kohta 1 p LYHYT MATEMATIIKKA PRELIMINÄÄRIKOE 2.2.2018 RATKAISUT 1. a) 3,50 b) 56 c) 43300 km d) 15 e) 21.08 f) 23.9. kukin oikea vastaus a-kohdassa pelkkä 3,50 ilman yksikköä kelpuutetaan, samoin c-kohdassa pelkkä

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea.

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea. B-OSA 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea. 1.1 Mitä voidaan sanoa funktion f raja-arvosta, kun x a? I Raja-arvo on f(a), jos f on määritelty kohdassa a. II Raja-arvo on f(a),

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia? Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

Ratkaisut. π π. Ratkaisu: a) Tapa I: Yhtälön diskriminantin D = a = 4 4a kyseisen funktion kuvaaja on ylöspäin aukeava paraabeli.

Ratkaisut. π π. Ratkaisu: a) Tapa I: Yhtälön diskriminantin D = a = 4 4a kyseisen funktion kuvaaja on ylöspäin aukeava paraabeli. Ratkaisut A. a) Sievennä (x ) (x )(x + ). 7 b) Laske ( ) π + sin( ). c) Ratkaise yhtälö (x 5x ) = 5. Ratkaisu: a) (x ) (x )(x + ) = 4x x + 9 (4x 9) = x + 8 + 7 b) ( ) π π + sin( ) = ( ) + sin( + π ) 5

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0, Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0

Lisätiedot

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/3

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/3 Mb8 Koe 4.11.015 Kuopion Lyseon lukio (KK) sivu 1/3 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

7 Differentiaalilaskenta

7 Differentiaalilaskenta 7 Differentiaalilaskenta 7. Raja-arvo ja jatkuvuus LUVUN 7. YDINTEHTÄVÄT 70. a) lim f( ), lim f ( ) ja f(). b) lim f ( ), lim f ( ),5 ja lim f ( ) 5 Raja-arvoa kohdassa ei ole olemassa. c) Funktio on jatkuva

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ.0.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

MAA preliminääri 2018

MAA preliminääri 2018 MAA preliminääri 018 Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Kirjoita A-osion ratkaisut alla olevaan ruudukkoon. Vastausta voi tarvittaessa jatkaa erillisellä puoliarkilla. Osiossa A EI SAA

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin: Määrittelyjoukot Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:, 0 ; log, > 0 ;, 0 (parilliset juuret) ; tan, π + nπ Potenssisäännöt Ole tarkkana kantaluvun kanssa 3 3

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

MAA7 7.2 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! lim.

MAA7 7.2 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! lim. MAA7 7. Koe Jussi Tyni 8.1.01 1. Laske raja-arvot: a) 9 lim 6 lim 1. a) Määritä erotusosamäärän avulla funktion f (). 1 f ( ) derivaatta 1 Onko funktio f ( ) 9 kaikkialla vähenevä? Perustele vastauksesi

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 14..016 Kertaus K1. a) b) x 18 ( x 9) ( x ) ( x+ ) lim = lim = lim x+ x+ ( x + ) x x x = lim (x 6) = ( ) 6 = 1 x x + 6 ( ) + 6 0 lim = =

Lisätiedot

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta)

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ (1 piste/kohta) MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 3.3.06. ( piste/kohta) Sivu / 8 Kohta Vaihtoehdon numero A B C D E F 3. a) Ainakin yhdet sulut kerrottu oikein auki 6x 4x x( 3x) Ratkaistu nollakohdat sieventämisen lisäksi

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ Merkintäohjeita alustavaan arvosteluun

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ Merkintäohjeita alustavaan arvosteluun MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 8.9.06 Merkintäohjeita alustavaan arvosteluun YTL Hyvän vastauksen piirteitä: Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty. Ratkaisussa on oltava tarvittavat

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

Tästä saadaan (määrittelyehdon täyttävät) yhtälön ratkaisut x 3 tai x 3.

Tästä saadaan (määrittelyehdon täyttävät) yhtälön ratkaisut x 3 tai x 3. 998 Yhtälö on määritelty, kun x 0, joten on oltava x. Yhtälö voidaan kirjoittaa yhtäpitävään muotoon x x x x x x 0, ja edelleen x x 0. x Tästä saadaan (määrittelyehdon täyttävät) yhtälön ratkaisut x tai

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

Äänekosken lukio Mab4 Matemaattinen analyysi S2016 Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut

Lisätiedot

4 Polynomifunktion kulku

4 Polynomifunktion kulku 4 Polynomifunktion kulku. a) Funktio on kasvava jollakin välillä, jos sen arvo kasvaa tällä välillä. Kuvaajan nousemisen ja laskemisen perusteella funktio on kasvava kohtien x,4 ja x 0, välissä. b) Funktion

Lisätiedot

Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K. a) E Nouseva suora. b) A 5. asteen polynomifunktio, pariton funktio Laskettu piste f() = 5 =, joten piste (, ) on kuvaajalla. c) D Paraabelin mallinen, alaspäin aukeava. Laskettu piste f() =

Lisätiedot

Tehtävien ratkaisut

Tehtävien ratkaisut Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot